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Abstract 1 

Cysts of the brine shrimp Artemia franciscana are harvested from the Great Salt Lake 2 

(GSL) and San Francisco Bay saltworks (SFB) in the U.S.A, and marketed worldwide 3 

to provide live food for aquaculture. This species has become invasive across several 4 

countries. We investigated (1) if the introduced populations in the Mediterranean region 5 

could have originated from these U.S.A. populations, (2) how the genetic diversity of 6 

Mediterranean compares with that at GSL and SFB, and (3) if genetic patterns in the 7 

Mediterranean can shed light on colonization routes. We sequenced a fragment of the 8 

Cytochrome c Oxidase Subunit I and screened microsatellites loci from Mediterranean 9 

populations and the two putative U.S.A. sources. Haplotypes from Mediterranean 10 

populations were identical or closely related to those from SFB and GSL, and not 11 

related to other available American populations. Microsatellite analyses showed a 12 

reduced population diversity for most Mediterranean populations suggesting bottleneck 13 

effects, but few populations showing similar or higher genetic diversity than native 14 

ones, which are likely to be admixed from both GSL and SFB due to multiple 15 

introductions. Results suggest natural dispersal via flamingos between two Spanish 16 

populations. Our analyses show that all invaded populations could have originated from 17 

those commercialised U.S.A. populations. 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 
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Introduction 1 

Aquatic environments are especially vulnerable to biological invasions (Sakai et al., 2 

2001; Grosholz, 2002). The introduction and rapid spread of invasive species in both 3 

marine and freshwater ecosystems are of worldwide concern (Ruiz et al., 2000; Roman 4 

& Darling, 2007; Gherardi, 2007). For instance, the human-mediated dispersal rate for 5 

crustacean zooplankton at an intercontinental scale has been estimated to be up to 6 

50,000 times greater than the natural dispersal rate (Hebert & Cristescu, 2002). Aquatic 7 

invertebrate invasions often remain undetected for decades due to the difficulty of 8 

identifying cryptic species (Knowlton, 1993; Knowlton & Weigt, 1997; Lee, 2000), and 9 

are often only discovered using molecular approaches (Mergeay et al., 2005; Mergeay 10 

et al., 2007). Non-marine aquatic ecosystems contain many passively dispersed taxa 11 

such as copepods, rotifers, ostracods, bryozoans and branchiopods, which produce 12 

resting eggs (i.e., encysted embryos in arrested state of development) that allow survival 13 

during unfavourable environmental conditions and facilitate dispersal (Hairston, 1996), 14 

and are often the stages involved in accidental anthropogenic introductions (Bailey et 15 

al., 2003; Gray et al., 2005). 16 

 The anostracan Artemia franciscana Kellogg, 1906, is a sexual brine shrimp 17 

native to the Americas (Amat et al., 2004) that inhabits hypersaline ecosystems such as 18 

lakes, lagoons and salt ponds. Since the 50s, A. franciscana commercially harvested 19 

cysts (i.e., diapausing or resting eggs) have been exported worldwide from two U.S.A. 20 

populations, San Francisco Bay (SFB) and the Great Salt Lake (GSL) in Utah for use as 21 

live food in aquaculture and the aquarium pet trade (Lavens & Sorgeloos, 2000, and 22 

references therein), leading to accidental or deliberate introductions into ecosystems 23 

outside the native range. Artemia franciscana was also intentionally inoculated into 24 

salterns worldwide to provide local sources of cysts (e.g., Camara, 2001). Thus, by the 25 

80s many other commercial sources of cysts became available (Vanhaecke & 26 
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Sorgeloos, 1983), and notably from coastal China (Van Stappen et al., 2007). However, 1 

Bengtson et al. (1991) estimated that over 70% of marketed Artemia cysts originated 2 

from the GSL population. In addition to anthropogenic introductions, Artemia cysts can 3 

be effectively dispersed by migratory birds (Sánchez et al., 2007; Sánchez et al., 2012) 4 

and over short and mid distances by wind and motor vehicles (Vanschoenwinkel et al., 5 

2008a, b; Waterkeyn et al., 2010). In particular, there is potential for spread of this 6 

invasive anostracan to hypersaline sites unaffected by aquaculture facilities via 7 

flamingos and other waterbirds. 8 

 The recent expansion of aquaculture in the Mediterranean region has led to the 9 

release of A. franciscana into sites previously occupied by native Artemia species. 10 

Artemia franciscana was first reported in Portugal around the 1980’s (Hontoria et al., 11 

1987), and later in France (Thiery & Robert, 1992), Spain, Italy, and Morocco (Amat et 12 

al., 2007, and references therein; Mura et al., 2006). Its establishment was followed by 13 

rapid local extinctions of the native A. salina and A. parthenogenetica. A combination 14 

of habitat loss and the establishment of A. franciscana have resulted in the loss of 55 - 15 

74% of native Artemia populations across Spain, Portugal and France (Amat et al., 16 

2007). Although the initial colonization of Mediterranean habitats is assumed to have 17 

originated from GSL and SFB in the U.S.A., this hypothesis has not been tested yet 18 

using genetic markers. Furthermore, although genetic studies can shed light on the role 19 

of aquatic birds as effective dispersal vectors of invertebrates (Figuerola et al., 2005), 20 

no such studies have yet been carried out on A. franciscana. 21 

 Artemia franciscana‘s high genetic diversity, phenotypic plasticity, high 22 

fecundity, and a large native geographic range could explain its high invasiveness 23 

(Amat et al., 2007; Ruebhart et al., 2008, and references therein). This invasive 24 

anostracan outcompetes the native parthenogenetic Artemia strain in laboratory 25 

experiments (Browne, 1980). In addition, propagule pressure can be extremely high. 26 
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Shrimp and finfish hatchery effluent leading to accidental releases and intentional 1 

inoculations involving large number of nauplii (i.e., first larval stage) may regularly 2 

have taken place in the form of multiple introductions, not necessarily from the same 3 

geographic source. Enemy release may also be involved in the ability of A. franciscana 4 

to outcompete native species, as compared to native Mediterranean Artemia, A. 5 

franciscana experiences reduced levels of parasitism by avian cestodes, which reduce 6 

the fecundity of brine shrimps and increase bird predation (Georgiev et al., 2007; 7 

Sánchez et al., 2009). Despite its detrimental effects on native Artemia biodiversity 8 

(Muñoz et al., 2008) and calls for import control and management (Ruebhart et al., 9 

2008; Amat et al., 2005a), no specific actions have been carried out to contain the 10 

spread of A. franciscana. However, a better knowledge of the introduction sources, 11 

mode and patterns of invasion and colonisation in A. franciscana could assist the 12 

development of future strategies for the management of aquaculture and the 13 

conservation of hypersaline ecosystems. 14 

The relationship between the levels of genetic diversity found in source 15 

populations and those found in the established populations after invasion is not 16 

straightforward (Roman & Darling, 2007; Darling et al., 2008; Dlugosch & Hays, 17 

2008). Genetic diversity of invasive populations has generally been assumed to be 18 

reduced compared to those from the native range. Indeed, punctual introductions can 19 

result in strong population bottlenecks (Golani et al., 2007). Many invasive species 20 

suffer an associated reduction in genetic diversity due to founder effects (e.g., Muñoz-21 

Fuentes et al., 2006), while large increases are rare (Dlugosch & Parker, 2008). 22 

However, similar or higher genetic diversity to the native range has been reported in 23 

some aquatic invasive species (Roman & Darling, 2007), due to introduction events 24 

from multiple sources and/or large propagule pressure lead to admixture in the non-25 

native range (Roman & Darling, 2007; Wilson et al., 2009). Unlike natural extra-range 26 
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dispersal events, human-mediated biological invasions are often the result of multiple 1 

introductions from different sources to non-indigenous locations (Wilson et al., 2009). 2 

Therefore, new populations established directly by human-mediated introductions might 3 

have different genetic signatures to those established by natural dispersal from pre-4 

existing populations within the introduced range, providing a valuable tool for 5 

understanding the colonisation routes of invasive species. For instance, human-6 

mediated dispersal and multiple introductions should result in a lack of correlation 7 

between genetic and geographic distances (e.g., Elderkin et al., 2004), whereas the 8 

opposite (i.e., an isolation-by-distance pattern) or a random genetic distribution (e.g., 9 

Dupont et al., 2003) would be more likely under equilibrium conditions (but see 10 

Herborg et al., 2007). 11 

 The invasive history and biological traits of A. franciscana represent a rare 12 

opportunity to investigate the interplay between genetic patterns and the relative role 13 

that human- and waterbird-mediated dispersal have on population expansion. Here we 14 

investigate the origin, mechanisms, and patterns of A. franciscana invasion in the 15 

Mediterranean by screening populations with mitochondrial and nuclear markers, using 16 

combined phylogenetic, phylogeographic, and population genetic analyses. Specifically, 17 

we investigated whether (1) all Mediterranean populations originated from the marketed 18 

GSL and SFB populations, and (2) whether current patterns of genetic diversity and 19 

differentiation in the non-native range are consistent with scenarios of human- and bird 20 

mediated dispersal. 21 

 22 

Materials and methods 23 

Samples and data collection 24 

We collected cyst samples from 16 invaded Mediterranean solar salterns and salt lakes, 25 

from a total of 26 populations identified to date, covering the four European countries 26 
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(i.e., Portugal, Spain, France, and Italy - Hontoria et al., 1987; Amat et al., 2005a) 1 

where A. franciscana has been detected. Additionally, we obtained cyst samples from 2 

the two native commercially exploited U.S.A. populations (SFB and GSL), and a 3 

population of unknown origin in Sal Island in the Cape Verde archipelago (Amat et al., 4 

2010) (see Table 1). All samples were obtained from the ‘cyst-bank’ of the Instituto de 5 

Acuicultura de Torre de la Sal (CSIC, Castellón, Spain). Cysts were preserved in 100% 6 

ethanol until needed. In addition, for phylogenetic analyses we downloaded all available 7 

A. franciscana COI sequences from GenBank for which we could obtain geographic 8 

information, either directly from the GenBank record or from the original publication, 9 

including samples from U.S.A., and the rest of its native range in the Americas, as well 10 

as India, Vietnam and China. 11 

 12 

Laboratory procedures 13 

DNA was isolated from individual cysts (5-37 individuals per population for 14 

mitochondrial analyses, and 29-47 individuals for nuclear analyses), previously rinsed 15 

in distilled water, using an alkaline lysis protocol optimized for zooplanktonic 16 

diapausing eggs (Montero-Pau et al., 2008). We used specific Artemia primers in the 17 

same position as primers LCO1490/HCO2198 from (Folmer et al., 1994) to amplify a 18 

fragment of the Cytochrome c Oxidase Subunit I (COI) mitochondrial gene. 19 

PCR/sequencing protocols were performed following (Muñoz et al., 2008). Sequences 20 

were edited and aligned using Sequencher
TM

 version 4.5 (Gene Codes Corp., © 1991-21 

2005). All different sequences (i.e., haplotypes) found in the present study were 22 

deposited in DNA Data Bank of Japan (DDBJ) database (Accession No AB859230-23 

AB859239 – see Table 2 for details and link to GenBank Acc Nos). Samples were 24 

genotyped for four microsatellite loci (Af_A108, Af_B10, Af_B9, and Af_B11) 25 

following Muñoz et al. (2009). 26 
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Mitochondrial DNA analyses 1 

Identical sequences were collapsed into haplotypes prior to phylogenetic and 2 

phylogeographic analyses using FaBox (http://users-birc.au.dk/biopv/php/fabox/). We 3 

reconstructed the evolutionary history of all A. franciscana haplotypes (i.e., from 4 

Mediterranean and out of this area) using Neighbor-Joining (NJ) and Maximum 5 

Likelihood (ML) approaches in MEGA v.5.2.2. (Tamura et al., 2007) using the 6 

evolutionary model best fitting the data. The robustness of the branches was assessed 7 

with 1000 pseudo-replicates. DnaSP v.4.90 (Rozas et al., 2003) was used to compute 8 

the number of polymorphic sites and of non-synonymous substitutions. 9 

 TCS v.1.21 (Clement et al., 2000), which follows the statistical parsimony 10 

algorithm to generate a haplotype network, was used to display the genealogical 11 

relationships among our Mediterranean samples and some public available A. 12 

franciscana COI haplotypes. Standard intra-population diversity parameters, haplotype 13 

diversity (H) and nucleotide diversity (π), and inter-population pairwise ST values 14 

(corrected by a K2-P evolutionary model) were obtained using Arlequin v.3.11 15 

(Excoffier et al., 2005). Because differences in sampling can bias genetic diversity 16 

comparisons among different populations, a rarefaction analysis adapted for population 17 

genetic data conducted by the program RAREFAC v. 1.02 (available from R. Petit at 18 

http://www.pierroton.inra.fr/genetics/labo/Software/Rarefac/index.html) was used to 19 

calculate standardized allelic richness (A) for each sampled population. RAREFAC 20 

requires a rarefaction size (see Petit et al., 1998), which was set to ten in our case (n = 21 

10). Thus, three populations with n<10 (i.e., CBU, FVO, and RFR) were not used in 22 

such analyses. All those estimates (i.e., H, π, A and ST) were used to assess the 23 

population genetic diversity after introduction and to identify the likely origin of each 24 

invaded population. 25 

 26 

http://www.pierroton.inra.fr/genetics/labo/Software/Rarefac/index.html
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Microsatellite analyses from U.S.A. and Mediterranean invaded sites 1 

Arlequin was used to compute observed (HO) and expected (HE) heterozygosity, number 2 

of alleles (Na), linkage disequilibrium (LD) between loci, Hardy-Weinberg equilibrium 3 

(HWE) of each locus. The Fst-statistic may not be appropriate for assessment of genetic 4 

structure and differentiation among populations (Jost, 2008; Dupont et al., 2009), 5 

therefore, we calculated both Fst and Dest pairwise values using GenAlEx ver.6.5 6 

(Peakall & Smouse, 2012). In addition, we used a Bayesian multi-locus method (with a 7 

non-equilibrium method, individual-based admixture analysis) implemented in BAPS 8 

v.5.2 (Corander et al., 2003; Corander et al., 2008) to infer population structure and to 9 

group the data by a stochastic optimization model to infer the posterior probability of 10 

the number of distinct clusters, K. In particular, we used the spatial model for genetic 11 

discontinuities, running five replicates with upper bound values of K = 5, 10, 20 and 25. 12 

Furthermore, to assess the most likely grouping of individuals in clusters, we used 13 

Principal Component Analysis (PCA) as a different clustering approach. PCA-GEN 14 

software (http://www2.unil.ch/popgen/softwares/pcagen.htm) is a program that does not 15 

require assumptions of equilibrium within populations, correlates genotypes and allele 16 

frequencies among all individuals using no information regarding population 17 

identification, and plots genetic structure among populations. 18 

 19 

Results 20 

Global mitochondrial phylogeography of invasive Artemia franciscana 21 

The sequence alignment used in both phylogenetic and phylogeographic analyses were 22 

trimmed to 477 bp. The COI sequences aligned (including 274 generated in the present 23 

study – collected from 19 sites from GSL, SFB, Cape Verde and Mediterranean region; 24 

see Table 1) collapsed into 71 haplotypes. Overall, 94 variable sites and 62 parsimony 25 

http://www2.unil.ch/popgen/softwares/pcagen.htm
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informative sites were revealed, with no indels or stop codons. Five non-synonymous 1 

substitutions were found in positions. 2 

 Both phylogenetic reconstruction methods (ML and NJ) recovered a virtually 3 

identical tree topology and support values, so only the ML reconstruction is shown (Fig. 4 

1), with geographically concordant branches and over ten lineages, similarly to results 5 

from Muñoz et al (2013). All Mediterranean and other invasive populations had 6 

identical haplotypes to SFB and UTAH populations or highly related haplotypes to 7 

these. 8 

 The median-joining haplotype network showed three disjoined networks. One 9 

included the Cape Verde haplotypes, another for the Mexican and Chilean/Argentinean 10 

phylogenetic subclades (data not shown, but see Fig. 1), and a major network formed by 11 

the rest of haplotypes encompassing U.S.A., invasive and some Chilean haplotypes. In 12 

this latter network (see Fig. 2), when excluding relatively divergent Chilean haplotypes, 13 

a total of 12 closely related haplotypes, no more than five substitutions apart, were 14 

detected. A total of ten haplotypes were present in invaded populations in the 15 

Mediterranean, six of them found also in GSL and SFB (Fig. 2). The remaining four 16 

haplotypes were only found in invaded populations, although they were closely related 17 

to the most common haplotypes in GSL and SFB (1 or 2 substitutions apart). Both GSL 18 

and SFB shared the three most common haplotypes (i.e., HAf01, HAf02, and HAf04), 19 

but they were found at different frequencies. Haplotype HAf02 was the most common 20 

in GSL (79.3% of individuals), whereas haplotype HAf04 was the most common in 21 

SFB (70.3% of individuals). Furthermore, HAf02 and HAf04 were the most common 22 

haplotypes in the invaded populations. Amongst the 16 Mediterranean populations 23 

analysed, HAf04 was present at 14 sites, while HAf02 was present at six. 24 

 25 

Mitochondrial genetic diversity in U.S.A. and Mediterranean populations 26 
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Intra-population haplotype diversity, A (Table 2; note that for three populations, the 1 

value A was not estimated due to low sample sizes), and inter-population pairwise 2 

genetic diversity ST (Table 4B) indicated: 1) A high and significant level of population 3 

differentiation between both native populations SFB and GSL (ST value of 0.546); 2) 4 

GSL had lower haplotype diversity than SFB; 3) Ten Mediterranean populations 5 

appeared to be related to SFB with non-significant ST values and lower diversity values 6 

than SFB, except for FPI, which had similar diversity values; 4) Only one population, 7 

TRI, showed a non-significant ST value when compared to GSL; 5) Four populations 8 

(ESM, GER, LTA, and SPA) were significantly different to both U.S.A. populations as 9 

indicated by ST values, but of these four only LTA contained a haplotype not found in 10 

SFB or GSL. 11 

 12 

Nuclear genetic diversity, regional structure and demographic patterns in the 13 

Mediterranean 14 

All loci used to screen Mediterranean and North American samples (714 cysts) were 15 

unlinked (results not shown) and only the Af_108 locus was in Hardy-Weinberg 16 

disequilibrium for most populations, with significant homozygote excesses probably 17 

due to null alleles (Muñoz et al., 2009). Nevertheless, no population was found to be 18 

under disequilibrium for all loci. Af_108 was monomorphic for two populations, BFI 19 

and RFR, and RFR population could not be genotyped for the Af_B9 locus (see Tables 20 

1 and 3 for details). The number of alleles per locus ranged from 13 (Af_A108) to 40 21 

(Af_B11). The mean number of alleles (Na) and gene diversity (HE) was similar in both 22 

commercialised native populations (13.5 and 14.0, and 0.753 and 0.847 in SFB and 23 

GSL, respectively, with SFB showing two private alleles in Af_B10). However, Na and 24 

HE showed wide differences in the Mediterranean, ranging from 3.0 to 17.0 and 0.256 to 25 
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0.840, respectively, with private alleles in nine populations. Several introduced 1 

populations showed equal or higher Na than native ones. 2 

 Most pairwise FST and Dest values were highly significant (see Table 4A), even 3 

between both native populations SFB and GSL (0.076 and 0.593, respectively). 4 

Contrary to the results for mitochondrial ST values, all Mediterranean populations 5 

showed significantly high pairwise FST and Dest values with SFB and GSL except ESM 6 

population, which showed non-significant values compared to GSL. Four 7 

Mediterranean populations (ESM, SLU, GER and CBU) showed no genetic 8 

differentiation between them based on their FST and Dest pairwise values. 9 

Bayesian clustering analysis (BAPS) and Principal Component Analysis (PCA) 10 

gave similar population structure, but produced different numbers of clusters. BAPS 11 

analysis resulted in ten clusters with a probability higher than 0.97 (see Fig. 3 for 12 

details). Four clusters contained more than one population, while six populations were 13 

identified as single clusters. As expected, two multi-population clusters included the 14 

two native populations. The cluster containing GSL had five populations, and the 15 

cluster containing SFB had one. However, two clusters made up of two populations 16 

each were inferred with independence from the native populations (BMA-FVO, and 17 

LTA-FPI). The first two axes of the PCA explained 70.24% of the total variation. 18 

Unlike BAPS, PCA analysis did not consider SPA as belonging to the GSL genetic 19 

group, and did not group ALC with SFB. Both population structure analyses clearly 20 

show that most populations group around SFB and GSL, or in the space between them, 21 

indicating introductions from single sources or a range of admixture. However, three of 22 

the populations (BFI, RFR or AIG) were outside this admixture gradient. 23 

 24 
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Discussion 1 

Our results strongly suggest that A. franciscana invasive populations across the 2 

Mediterranean region and other parts of the world originate from the commercialised 3 

populations at GSL and/or SFB in the U.S.A. Other genetic lineages in the native range 4 

are geographically restricted and genetically divergent, and have clearly played no part 5 

in the Mediterranean and the non-native range included in our study. Although we 6 

included all the available populations in U.S.A., we want to highlight that GSL and SFB 7 

are the only ones of importance for exporting cysts on the world market. In addition, 8 

Muñoz et al. (2013) have recently confirmed our results by surveying a continental 9 

phyogeography for A. franciscana including additional American haplotypes present on 10 

this study. The low frequency of private alleles (between 1.1% and 7.9% for 11 

microsatellites, data not shown) in the invasive populations, also suggests that SFB and 12 

GSL could be the original source populations. 13 

 However, we cannot rule out that some of the Mediterranean populations were 14 

established by secondary introductions from Asia, given the dominance of SFB and 15 

GSL haplotypes in China, India and Vietnam (Fig. 2) and the commercial availability of 16 

A. franciscana cysts from Bohai Bay in China on the world market (Van Stappen et al. 17 

2007, http://www.bhb-artemia.com/). Surprisingly, Cape Verde haplotypes form a 18 

highly supported independent mitochondrial clade, even though this region has 19 

previously been assumed to be part of the invasive range of this species due to its 20 

isolation from the Americas (see Muñoz & Pacios, 2010). Our results suggest that A. 21 

franciscana may be native in the Cape Verde islands. 22 

 The three most common haplotypes from SFB and GSL (HAf01, HAf02, and 23 

HAf04) are extremely similar, indicating that either: 1) both populations were formed 24 

very recently; 2) one of them was used to 'seed' the other one (e.g., A. franciscana 25 

colonizing the salt ponds created at SFB may have originated from GSL, these sites 26 
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being connected via migratory waterbirds); or 3) after some relatively recent population 1 

differentiation there has been a lot of admixture. Despite the fact that our analyses 2 

included only a few nuclear loci, our results indicate a significant genetic divergence 3 

between these two populations (see also Muñoz et al., 2009). Although there are 10 4 

microsatellites developed for this species, only the four used in this study amplified 5 

consistently and provided repeatable banding patterns. We recognize that this small 6 

number gives little power in our PCA and BAPS analyses. However, developing 7 

microsatellite markers for Anostraca is notoriously difficult, and we are not aware of 8 

any other studies that have used them for these crustaceans (but see Deiner et al., 2013), 9 

despite a range of studies using mitochondrial markers. 10 

Mitochondrial markers have been very useful in inferring the origin and invasion 11 

pathways of introduced vertebrate and invertebrate species (Kelly et al., 2006; Ashton et 12 

al., 2008; Ficetola et al., 2008; Mabuchi et al., 2008; Gaubert et al., 2009). However, 13 

since the same three commonest haplotypes in A. franciscana are shared by GSL and 14 

SFB, but with different relative frequencies, the resolution offered by mtDNA is 15 

insufficient to make clear conclusions on which of these U.S.A. populations is involved 16 

as the ultimate source of invasions or estimate the level of admixture. The most 17 

common mtDNA haplotype from SFB (HAf04) is present in most invaded populations 18 

(see Table 2), and genetic drift is likely to be involved in changing haplotype 19 

frequencies of the invaded populations. In addition, many Mediterranean populations 20 

were not significantly different from the SFB population as measured with ST (see 21 

Table 4B). 22 

 Different colonization and dispersal patterns can be expected to leave specific 23 

genetic signatures across the invaded range (Dupont et al., 2009; Willson et al., 2009). 24 

For instance, under a scenario of mass introduction, high genetic diversity is expected in 25 

the invaded populations. In addition, homogenization of the gene pool of invaded 26 
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populations or low population differentiation between invaded populations and the 1 

source population can be expected due to continuous or frequent introduction events, 2 

which is likely for easily accessible geographic areas. Examples of this mass 3 

introduction pattern occurs in our microsatellite analyses where we found one 4 

Mediterranean A. franciscana population (ESM) is not significantly different than the 5 

GSL population as measured with the G-statistics Dest and FST (see Table 4A). 6 

Furthermore, this Mediterranean population does not show significant differentiation 7 

with SLU or GER, and SLU is not differentiated from CBU. These four populations 8 

from different parts of the Iberian Peninsula also cluster together with GSL in the BAPS 9 

population structure analyses (Fig. 3), and do not show signs of loss of genetic diversity 10 

when compared with native populations (see Table 3). 11 

 On the other hand, as expected given the relatively reduced number of 12 

mitochondrial haplotypes in the native populations (and the smaller effective population 13 

size of mtDNA), most invasive populations showed reduced mtDNA diversity likely 14 

due to population bottlenecks, founder effects, and genetic drift during the colonisation 15 

process, which might reflect habitat monopolisation by a few highly successful 16 

individuals (see De Meester et al., 2002). 17 

Our microsatellite results could fit with punctual human introductions resulting 18 

in population bottlenecks for at least three Mediterranean populations (BFI, AIG and 19 

MSA), which show the lowest genetic diversity (i.e., expected heterozygosity and 20 

number of alleles), but non-significant differentiation with the native population SFB at 21 

mitochondrial level (see Table 4B). All of these populations were strongly differentiated 22 

genetically with the rest of the populations according to the microsatellite analyses 23 

(Table 4A). BFI and AIG also appear as single population clusters in the PCA analysis, 24 

away from the admixture gradient between SFB and GSL where the rest of the 25 

populations are distributed (Fig. 3). 26 
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 In addition, our results suggest natural dispersal between two populations in 1 

South Spain, La Tapa salt ponds (LTA) and Fuente de Piedra lagoon (FPI). Both 2 

mitochondrial and nuclear data show a close relationship between these populations 3 

(e.g., no significant FST value, clustering analyses, both share a unique mitochondrial 4 

haplotype – HAf05 in Table 2). LTA is a coastal saltpan population in Cadiz Bay with 5 

an intensive aquaculture industry and where A. franciscana was fully established around 6 

2002 (Amat et al., 2005a; Amat et al., 2007). In contrast, FPI is a natural inland closed-7 

basin lake situated 140 km away from LTA, and where the native A. salina occurred 8 

until A. franciscana was detected in 2005 (Amat et al., 2007). FPI holds the most 9 

important breeding colony of the greater flamingo Phoenicopterus ruber in Spain, is a 10 

highly protected Nature Reserve and has no influence from the aquaculture industry, but 11 

flamingos breeding there regularly fly to LTA to feed (Amat et al., 2005b). Flamingos 12 

are the most abundant waterbirds in saltpans along the Iberian coast by biomass 13 

(Rodríguez-Pérez & Green, 2006; Sánchez et al., 2013), and are effective dispersers of 14 

Artemia cysts (MacDonald, 1980; Sánchez et al., 2012. In addition, a mechanistic 15 

model of dispersal of Artemia cysts by waterbirds estimated that ducks may disperse 16 

them over distances of 230-1209 Km (Viana et al., 2013).  Although anostracan cysts 17 

can also be dispersed a short distance by wind, this appears to be limited to a maximum 18 

of a few hundred metres Vanschoenwinkel et al., 2008a, b). Therefore, the most likely 19 

explanation for the colonization of FPI by A. franciscana is through natural dispersal 20 

via birds, rather than by direct human intervention. Unfortunately, our dataset does not 21 

have the necessary resolution to shed light into the invasion patterns of the other 22 

Mediterranean populations such as SPA, TRI from Spain; SGU from France; and ALC, 23 

BMA, FVO, RFR from Portugal, which likely involve a combination of several patterns 24 

described and also including admixture. 25 
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 In conclusion, our results confirm previous indications that the worldwide 1 

invasion of A. franciscana is based on the spread of cysts originally from two 2 

commercially exploited U.S.A. populations (i.e., SFB and GSL). As in other aquatic 3 

invaders (Rius et al., 2008), high genetic diversity found in several Mediterranean 4 

populations point to an establishment as a result of multiple introductions from different 5 

populations of origin and/or high propagule pressure (see Wilson et al., 2009). 6 

Furthermore, high genetic diversity is usually linked to both adaptive potential and 7 

physiological plasticity, helping an introduced species to success as an invader 8 

(Dlugosch & Parker, 2008). Our results, and previous studies (Browne & 9 

Wanigasekera, 2000), indicate that A. franciscana possesses high genetic diversity, and 10 

high adaptive potential and plasticity, facilitating the successful colonisation of suitable 11 

habitats through the world. Future research using genomics approaches is desirable to 12 

provide better information on the relationships between populations in the native and 13 

non-native ranges and the role of local adaptation in the invasive process (e.g. to 14 

variation in water chemistry or temperature).  15 

 16 

Acknowledgements We are grateful to F. Hortas, M.I. Sánchez, and H. Rodríguez for 17 

assistance in collecting samples, and to J.M. Arroyo for assistance in microsatellite 18 

screening. This study was funded by the Spanish Ministerio de Educación y Ciencia 19 

(projects BOS2003-02846, CGL2005-02306/BOS, CGL2006-05085/BOS, and CGL 20 

2008-03277 including FEDER funds). AG was supported by an Advanced NERC 21 

Fellowship (NE/B501298/1, UK). 22 

 23 

 24 

 25 

 26 



 18 

References 1 

Amat, F., R. G. Cohen, F. Hontoria & J. C. Navarro, 2004. Further evidence and 2 

characterization of Artemia franciscana (Kellogg, 1906) populations in 3 

Argentina. Journal of Biogeography 31: 1735-1749. 4 

Amat, F., F. Hontoria, O. Ruiz, A. J. Green, M. I. Sánchez, J. Figuerola & F. Hortas, 5 

2005a. The American brine shrimp as an exotic invasive species in the western 6 

Mediterranean. Biological Invasions 7: 37-47. 7 

Amat, J. A., M. A. Rendon, M. Rendon-Martos, A. Garrido & J. M. Ramirez, 2005b. 8 

Ranging behaviour of greater flamingos during the breeding and post-breeding 9 

periods: Linking connectivity to biological processes. Biological Conservation 10 

125: 183-192. 11 

Amat, F., F. Hontoria, J. C. Navarro, N. Vieira & G. Mura, 2007. Biodiversity loss in 12 

the genus Artemia in the Western Mediterranean Region. Limnetica 26: 177–13 

194. 14 

Amat, F., F. Hontoria, E. Redon, M. Maccari, I. Varo, J. C. Navarro & L. Ballell, 2010. 15 

Biodiversidad de Artemia en Macaronesia. XV Congreso de la Asociación 16 

Ibérica de Limnología. Ponta Delgada, San Miguel, Azores. 4-11 Julio. 17 

Ashton, G. V., M. I. Stevens, M. C. Hart, D. H. Green, M. T. Burrows, E. J. Cook & K. 18 

J. Willis, 2008. Mitochondrial DNA reveals multiple Northern Hemisphere 19 

introductions of Caprella mutica (Crustacea, Amphipoda). Molecular Ecology 20 

17: 1293-1303. 21 

Bailey, S. A., I. C. Duggan, C. D. A. van Overdijk,  P. T. Jenkins & H. J. MacIsaac, 22 

2003).Viability of invertebrate diapausing eggs collected from residual ballast 23 

sediment. Limnology and Oceanography 48: 1701-1710. 24 



 19 

Bengtson, D. A, P. Léger & P. Sorgeloos, 1991. Use of Artemia as a food source for 1 

aquaculture. In: Browne RA, Sorgeloos P, Trotman CAN (eds). Artemia 2 

biology. CRC Press, Boca Raton, FL. Pp. 255-285. 3 

Browne, R. A., 1980. Competition experiments between parghenogenetic and sexual 4 

strains of the brine shrimp, Artemia salina. Ecology 31: 471-474. 5 

Browne, R. A. & G. Wanigasekera, 2000. Combined effects of salinity and temperature 6 

on survival and reproduction of five species of Artemia. Journal of Experimental 7 

Marine Biology and Ecology 244: 29-44. 8 

Camara, M. R., 2001. Dispersal of Artemia franciscana Kellogg (Crustacea; Anostraca) 9 

populations in the coastal saltworks of Rio Grande do Norte, northeastern Brazil. 10 

Hydrobiologia 466: 145-148. 11 

Clement, M., D. Posada & K. A. Crandall, 2000. TCS: a computer program to estimate 12 

gene genealogies. Molecular Ecology 9: 1657–1659. 13 

Corander, J., P. Waldmann & M. J. Sillanpaa, 2003. Bayesian analysis of genetic 14 

differentiation between populations. Genetics 163: 367-374. 15 

Corander, J., P. Marttinen, J. Sirén & J. Tang, 2008. Enhanced Bayesian modelling in 16 

BAPS software for learning genetic structures of populations. BMC 17 

Bioinformatics 9: 539. 18 

Darling, J. A., M. J. Bagley, J. Roman, C. K. Tepolt &  J. B. Geller, 2008. Genetic 19 

patterns across multiple introductions of the globally invasive crab genus 20 

Carcinus. Molecular Ecology 17: 4992-5007. 21 

De Meester, L., A. Gómez, B. Okamura & K. Schwenk, 2002. The Monopolization 22 

Hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta 23 

Oecologica 23: 121-135. 24 

Deiner, K., J. Hull & B. May, 2013. Eight novel microsatellite loci developed from 25 

vernal pool fairy shrimp. Journal of Fish and Wildlife Management 4: 134-138. 26 



 20 

Dlugosch, K. M. & C. G. Hays, 2008. Genotypes on the move: some things old and 1 

some things new shape the genetics of colonization during species invasions. 2 

Molecular Ecology 17: 4583-4585. 3 

Dlugosch, K. M. & I. M. Parker, 2008. Founding events in species invasions: genetic 4 

variation, adaptive evolution, and the role of multiple introductions. Molecular 5 

Ecology 17: 431-449. 6 

Dupont, L., D. Jolliver & F. Viard, 2003. High genetic diversity and ephemeral drift 7 

effects in a successful introduced mollusc (Crepidula fornicata: Gastropoda). 8 

Marine Ecology Progress Series 253: 183-195. 9 

Dupont, L., F. Viard, M. J. Dowell, C. Wood & J. D. D. Bishop, 2009. Fine- and 10 

regional-scale genetic structure of the exotic ascidian Styela clava (Tunicata) in 11 

southwest England, 50 years after its introduction. Molecular Ecology 18: 442-12 

453. 13 

Elderkin, C. L., E. J. Perkins, P. L. Leberg, P.L. Klerks & R. F. Lance, 2004. Amplified 14 

fragment length polymorphism (AFLP) analysis of the genetic structure of the 15 

zebra mussel Dreissena polymorpha, in the Mississippi River. Freshwater 16 

Biology 49: 1487-1494. 17 

Excoffier, L., G. Laval & S. Schneider, 2005. Arlequin (version 3.0): An integrated 18 

software package for population genetics data analysis. Evolutionary 19 

Bioinformatics 1: 47–50. 20 

Ficetola, G. F., A. Bonin & C. Miaud, 2008. Population genetics reveals origin and 21 

number of founders in a biological invasion. Molecular Ecology 17: 773-782. 22 

Figuerola, J., A. J. Green & T. C. Michot, 2005. Invertebrate eggs can fly: evidence of 23 

waterfowl-mediated gene flow in aquatic invertebrates. The American Naturalist 24 

165: 274-280. 25 

Folmer, O., M. Black, W. Hoeh, R. Lutz & R. Vrijenhoek, 1994. DNA primers for 26 



 21 

amplification of mitochondrial cytochrome C oxidase subunit I from diverse 1 

metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–2 

299. 3 

Gaubert, P., J . A. Godoy, I. del Cerro & F. Palomares, 2009. Early phases of a 4 

successful invasion: mitochondrial phylogeography of the common genet 5 

(Genetta genetta) within the Mediterranean Basin. Biological Invasions 11: 523-6 

546. 7 

Georgiev, B. B., M. I. Sánchez, G. P. Vasileva, P. N. Nikolov & A. J. Green, 2007. 8 

Cestode parasitism in invasive and native brine shrimps (Artemia spp.) as a 9 

possible factor promoting the rapid invasion of A. franciscana in the 10 

Mediterranean region. Parasitology Research 101: 1647-1655. 11 

Gherardi, F., 2007. Biological invaders in inland waters: Profiles, distribution, and 12 

threats. Edited by Francesca Gherardi. Published by Springer, The Netherlands. 13 

ISBN: 978-1-4020-6028-1. Pp. 733. 14 

Golani, D. G., E. Azzurro, M. Corsini-Foka, M. Falautana, F. Andaloro & G. Bernardi, 15 

2007. Genetic bottlenecks and successful biological invasions: the case of a 16 

recent Lessepsian migrant. Biology Letters 3: 541-545. 17 

Gray, D. K., S. A. Bailey, I. C. Duggan & H. J. MacIsaac, 2005. Viability of 18 

invertebrate diapausing eggs exposed to saltwater: implications for Great Lakes’ 19 

ship ballast management. Biological Invasions 7: 531–539. 20 

Grosholz, E., 2002. Ecological and evolutionary consequences of coastal invasions. 21 

Trends Ecology and Evolution 17: 22-27. 22 

Hairston, N. G., 1996. Zooplankton egg banks as biotic reservoirs in changing 23 

environments. Limnology and Oceanography 41: 1087-1092. 24 

Hebert, P. D. N. & M. Cristescu, 2002. Genetic perspective on invasions: the case of the 25 

Cladocera. Canadian Journal of Fisheries and Aquatic Science 59: 1229-1234. 26 



 22 

Herborg, L. M., D. Weetman, C. van Oosterhout & B. Hänfling, 2007. Genetic 1 

population structure and contemporary dispersal patterns of a recent European 2 

invader, the Chinese mitten crab, Eriocheir sinensis. Molecular Ecology 16: 3 

231-242. 4 

Hontoria, F., J. C. Navarro, I. Varo, A. Gonzalbo, F. Amat & N. Vieira, 1987. Ensayo 5 

de caracterización de cepas autóctonas de Artemia de Portugal. Seminario 6 

Aquac. Inst. Ciencias Biom. “Abel Salazar” Porto (Portugal). Publ Inst C 7 

Biomed. Pp. 10. 8 

Jost, L., 2008. Gst and its relative do not measure differentiation. Molecular Ecology 9 

17: 4015-4026. 10 

Kelly, D. W., J. R. Muirhead, D. D. Heath & H. J. Macisaac, 2006. Contrasting patterns 11 

in genetic diversity following multiple invasions of fresh and brackish waters. 12 

Molecular Ecology 15: 3461-3653. 13 

Knowlton, N., 1993. Sibling species in the sea. Annual Review of Ecology and 14 

Systematics 24: 189–216. 15 

Knowlton, N. & L. A. Weigt, 1997. Species of marine invertebrates: a comparison of 16 

the biological and phylogenetic species concepts. In M. F. Claridge, H. A. 17 

Dawah, and M. R. Wilson (eds.). Species: the units of biodiversity. Chapman 18 

and Hall, New York. Pp. 199–219. 19 

Lavens, P. & P. Sorgeloos, 2000. The history, present status and prospects of the 20 

availability of Artemia cysts for aquaculture. Aquaculture 181: 397-403. 21 

Lee, C. E., 2000. Global phylogegraphy of a cryptic copepod species complex and 22 

reproductive isolation between genetically proximate “populations”. Evolution 23 

54: 2014-2027. 24 

Mabuchi, K., H. Senou & M. Nishida, 2008. Mitochondrial DNA analysis reveals 25 

cryptic large-scale invasion of non-native genotypes of common carp (Cyprinus 26 



 23 

carpio) in Japan. Molecular Ecology 17: 796-809. 1 

MacDonald, G. H., 1980. The use of Artemia cysts as food by the flamingo 2 

(Phoenicopterus ruber roseus) and the shelduck (Tadorna tadorna). In G. 3 

Persoone, P. Sorgeloos, O. Roels, and E. Jaspers (eds.). The Brine Shrimp 4 

Artemia. Ecology, Culturing, Use in Aquaculture. Universa Press, Wetteren. Pp. 5 

97-104. 6 

Mergeay, J., D. Verschuren & L. De Meester, 2005. Cryptic invasion and dispersal of 7 

an American Daphnia in East Africa. Limnology and Oceanography 50: 1278–8 

1283. 9 

Mergeay, J., J. Vanoverbeke, D. Verschuren & L. De Meester, 2007. Extinction, 10 

recolonization, and dispersal through time in a planktonic crustacean. Ecology 88: 11 

3032–3043. 12 

Montero-Pau, J., A. Gómez & J. Muñoz, 2008. Application of an inexpensive and high-13 

throughput genomic DNA extraction method for the molecular ecology of 14 

zooplanktonic diapausing eggs. Limnology and Oceanography Methods 6: 218-15 

222. 16 

Mura, G., I. Kappas, A. D. Baxevanis, S. Moscatello, Q. D’Amico, G. M. Lopez, F. 17 

Hontoria, F. Amat & T. J. Abatzopoulos, 2006. Morphological and molecular 18 

data reveal the presence of the invasive Artemia franciscana in Margherita di 19 

Savoia salterns (Italy). International Review of Hydrobiology 91: 539-554. 20 

Muñoz, J., A. Gómez, A. J. Green, J. Figuerola, F. Amat & C. Rico, 2008. 21 

Phylogeography and local endemism of the native Mediterranean brine shrimp 22 

Artemia salina (Branchiopoda: Anostraca). Molecular Ecology 17: 3160-3177. 23 

Muñoz, J., A. J. Green, J. Figuerola, F. Amat & C. Rico, 2009. Characterization of 24 

polymorphic microsatellite markers in the brine shrimp Artemia (Branchiopoda, 25 

Anostraca). Molecular Ecology Resources 9: 547-550. 26 



 24 

Muñoz, J. & F. Pacios, 2010. Global biodiversity and geographical distribution of 1 

diapausing aquatic invertebrates: the case of the cosmopolitan brine shrimp, 2 

Artemia (Branchiopoda, Anostraca). Crustaceana 83: 465-480. 3 

Muñoz, J., F. Amat, A. J. Green, J. Figuerola & A. Gómez, 2013. Bird migratory 4 

flyways influence the phylogeography of the invasive brine shrimp Artemia 5 

franciscana in its native American range. PeerJ 1: e200. 6 

http://dx.doi.org/10.7717/peerj.200. 7 

Muñoz-Fuentes, V., A. J. Green, M. D. Sorenson, J. J. Negro & C. Vilà, 2006. The 8 

ruddy duck Oxyura jamaicensis in Europe: natural colonisation or human 9 

introduction? Molecular Ecology 15: 1441-1453. 10 

Peakall, R. & P. Smouse, 2012. GenAlEx 6.5: genetic analysis in Excel. Population 11 

genetic software for teaching and research - an update. Bioinformatics 28: 2537-12 

2539. 13 

Petit, R. J., A. El Mousadik & O. Pons, 1998. Identifying populations for conservation 14 

on the basis of genetic markers. Conservation Biology 12: 844-855. 15 

Rius, M., M. Pascual & X. Turon, 2008. Phylogeography of the widespread marine 16 

invader Microcosmus squamiger (Ascidiacea) reveals high genetic diversity of 17 

introduced populations and non-independent colonizations. Diversity and 18 

Distribution 14: 818-828. 19 

Rodríguez-Pérez, H. & A. J. Green, 2006. Waterbird impacts on widgeongrass Ruppia 20 

maritima in a Mediterranean wetland: comparing bird groups and seasonal 21 

effects. Oikos 112: 525-534. 22 

Roman, J. & J. A. Darling, 2007. Paradox lost: genetic diversity and the success of 23 

aquatic invasions. Trends in Ecology and Evolution 22: 454-464. 24 

http://dx.doi.org/10.7717/peerj.200


 25 

Rozas, J., J. C. Sánchez-DelBarrio, X. Messeguer & R. Rozas, 2003. DnaSP, DNA 1 

polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2 

24969-2497. 3 

Ruebhart, D. R., I. E. Cock & G. R. Shaw, 2008. Invasive character of the brine shrimp 4 

Artemia franciscana Kellogg 1906 (Branchiopoda: Anostraca) and its potential 5 

impact on Australia inland hypersaline waters. Marine & Freshwater Research 6 

59: 587-595. 7 

Ruiz, G. M., P. W. Fofonoff, J. T. Carlton, M. J. Wonham & A. H. Hines, 2000. 8 

Invasion of coastal marine communities in North America: apparent patterns, 9 

processes, and biases. Annual Review of Ecology and Systematics 31: 481-531. 10 

Sakai, A. K., F. W. Allendorf, J. S. Holt, D. M. Lodge, J. Molofsky, K. A. With, S. 11 

Baughman, R. J. Cabin, J. E. Cohen, N.C. Ellstrand, D. E. McCauley, P. O'Neil, 12 

I. M. Parker, J. N. Thompson & S. G. Weller, 2001. The population biology of 13 

invasive species. Annual Review of Ecology and Systematics 32: 305-332. 14 

Sánchez, M. I., A. J. Green, F. Amat & E. M. Castellanos, 2007. Transport of brine 15 

shrimps via the digestive system of migratory waders: dispersal probabilities 16 

depend on diet and season. Marine Biology 151: 1407-1415. 17 

Sánchez, M. I., F. Hortas, J. Figuerola & A. J. Green, 2009. Sandpipers select red brine 18 

shrimps rich in both carotenoids and parasites. Ethology 115: 196-200. 19 

Sánchez, M. I., F. Hortas, J. Figuerola & A. J. Green, 2012. Comparing the dispersal 20 

potential of a native and an invasive brine shrimp via waterbirds. Freshwater 21 

Biology 57: 1896–1903. 22 

Sánchez, M. I., P. N. Nikolov, D. D. Georgieva, B. B. Georgiev, G. P. Vasileva, P. 23 

Pankov, M. Paracuellos, K. Lafferty & A. J. Green, 2013. High prevalence of 24 

cestodes in Artemia spp. throughout the annual cycle: relationship with 25 

abundance of avian final hosts. Parasitology Research. 112: 1913-1923. 26 



 26 

Stamatakis, A., P. Hoover & J. Rougemont, 2008. A rapid bootstrap algorithm for the 1 

RAxML web-servers. Systematic Biology 75: 758-771. 2 

Tamura, K., J. Dudley, M. Nei & S. Kumar, 2007. MEGA4: Molecular Evolutionary 3 

Genetics Analysis (MEGA) software version 4.0. Molecular Biology and 4 

Evolution 24: 1596–1599. 5 

Thiery, A. & F. Robert, 1992. Bisexual populations of the brine shrimp Artemia in Sète-6 

Villeroy and Villeneuve Saltworks (Languedoc, France). International Journal of 7 

Salt Lake Research 1: 47-63. 8 

Van Stappen, G., H. Y. Yu, X. M. Wang, S. Hoffman, K. Cooreman, P. Bossier & P. 9 

Sorgeloos, 2007. Occurrence of allochthonous Artemia species in the Bohai Bay 10 

area, PR China, as confirmed by RFLP analysis and laboratory culture tests. - 11 

Fundamental and Applied Limnology 170: 21-28 12 

Vanhaecke, P. & P. Sorgeloos, 1983. International study on Artemia XIX. Hatching 13 

data for ten commercial sources of brine shrimp cysts and re-evaluation of the 14 

“hatching efficiency” concept. Aquaculture 30: 43-52. 15 

Vanschoenwinkel, B., S. Gielen, M. Seaman & L. Brendonck, 2008a. Any way the 16 

wind blows - frequent wind dispersal drives species sorting in ephemeral aquatic 17 

communities. Oikos 117: 125-134. 18 

Vanschoenwinkel, B., S. Gielen, H. Vandewaerde, M. Seaman & L. Brendonck, 2008b. 19 

Relative importance of different dispersal vectors for small aquatic invertebrates 20 

in a rock pool metacommunity. Ecography 31: 567-577. 21 

Viana, D. S., L. Santamaria, T. C. Michot & J. Figuerola, 2013. Migratory strategies of 22 

waterbirds shape the continental-scale dispersal of aquatic organisms. 23 

Ecography 36: 430-438. 24 

Waterkeyn, A., B. Vanschoenwinkel, S. Elsen, M. Anton-Pardo, P. Grillas & L. 25 

Brendonck, 2010. Unintentional dispersal of aquatic invertebrates via footwear 26 



 27 

and motor vehicles in a Mediterranean wetland area. Aquatic Conservation: 1 

Marine and Freshwater Ecosystems 20: 580-587. 2 

Wilson, J. R. U., E. E. Dormontt, P. J. Prentis, A. J. Lowe & D. M. Richardson, 2009. 3 

Something in the way you move: dispersal pathways affect invasion success. 4 

Trends in Ecology and Evolution 24: 136-144. 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 



 28 

Figure Legends 1 

Figure 1: Tree showing the evolutionary history of Artemia franciscana inferred from 2 

the Cytochrome Oxidase Subunit I dataset obtained from the total geographic range 3 

analysed. Topology shown was obtained using Maximum Likelihood (see text for 4 

details). The haplotypes found in this study are labelled HAf01 to HAf10 (see Table 2). 5 

Only tips of the U.S.A.-invasive and Cape Verde lineages are shown for simplicity. For 6 

further information about the remaining lineages see Muñoz et al (2013). Tips from 7 

U.S.A.-invasive clade include geographical information in parenthesis. Haplotypes 8 

found in invaded non-American sites are indicated in red, and those exclusive from the 9 

U.S.A. commercialised populations analysed (i.e., GSL and SFB) are indicated in bold. 10 

Bootstrap supports over 50, after 1000 pseudo-replicates, are shown for the main 11 

branches. 12 

 13 

Figure 2: Haplotype network displayed by TCS software. Circles (i.e., haplotypes) are 14 

scaled to the number of individuals observed with that haplotype. Grey circles indicate 15 

haplotypes exclusive to Mediterranean invaded populations. Higher divergent Chilean, 16 

Cape Verde, Argentinean, and Mexican haplotypes were removed from the network 17 

analysis, as they were not included in the 95% Confidential Interval of the parsimony 18 

algorithm in TCS software. Only the closest Chilean haplotypes are shown. Each 19 

connection represents a single nucleotide difference. Black circles correspond to 20 

unsampled or missing haplotypes. Haplotypes obtained in this study are labelled HAf01 21 

to HAf10. GenBank haplotypes are labelled with their ARC code or corresponding 22 

Accession number. The geographic origin is indicated next to each haplotype. For 23 

population codes see Table 1. Haplotypes sharing one or more Mediterranean 24 

populations are labelled as Med. 25 

 26 

Figure 3: Principal Component Analysis computed by PCA-GEN software plotted with 27 

the two main axes. Populations enclosed within lines were identified to have NO 28 

significant FST/Dest values in genetic differentiation analyses, but they group into the 29 

same cluster in a mutation-migration-drift equilibrium model (i.e., BAPS). Population 30 

codes (in the left column next to the figure) and points (inside the figure) sharing the 31 

same colour come from the cluster analysis computed by BAPS. A map of sampling 32 

sites is also included (see Table 1 for population codes and geographic coordinates). 33 

 34 

 35 
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Tables 1 

Table 1: Artemia franciscana populations sampled for this study, population codes, geographic 2 
coordinates, and sampling date. Population codes are listed by alphabetical order within each 3 
country. Sequences for additional populations from the Americas range used in the phylogenetic 4 
analyses were obtained from GenBank (see methods). 5 
 6 

Locality Code Latitude Longitude Sampling date 

Native     

San Francisco Bay, California SFB 37º39' N 122º25' W -- 

Great Salt Lake, Utah GSL 40º45' N 111º54' W -- 

 Non-native     

Alcochete, Portugal ALC 38º44' N 08º58' W 2004 

Esmolas, Aveiro, Portugal ESM 40º39' N 08º41' W 1991 

Bonfim, Portugal BFI 38º24' N 08º34'01'' W 1996 

Bella Mandil, Portugal BMA 37º01' N 07º52' W 2005 

Cerro Bufo, Portugal CBU 37º13' N 07º26' W 2002 

F.M. Vontade, Portugal FVO 37º00' N 07º54' W 1987 

Rio Frio, Portugal RFR 38º24' N 08º34' W 1993 

Santa Luzia, Tavira, Portugal SLU 37º06' N 07º38' W 2004 

Fuente de Piedra, Málaga, Spain FPI 37º06' N 04º45' W 2007 

Gerri de Sal, Lleida, Spain GER 42º20' N 01º04' E 2004 

La Tapa, Cádiz, Spain LTA 36º36' N 06º13' W 2004 

San Pascual, Cádiz, Spain SPA 36º30' N 06º09' W 2003 

Trinitat, Ebro Delta, Tarragona, Spain TRI 40º35' N 00º40' E 2004 

Aigües Mortes, France AIG 43º34' N 04º11' E 2002 

Saillé-Guérande, France SGU 47º20' N 02º26' W 2007 

Margherita di Savoia, Italy MSA 41º22' N 16º05' E 2004 

Pedra de Lume, Sal Island, Cape Verde PLU 16º46' N 22º53' W 2005 

 7 
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Table 2: Mitochondrial diversity for Artemia franciscana for a 477 bp COI fragment from the two native, Cape Verde (PLU), and the 16 non-native Mediterranean populations utilized 1 
in this study. Note that PLU† population has an uncertain origin. (n) = number of haplotypes per population; H = gene diversity; π = nucleotide diversity; A = standardized allelic 2 
richness; N = number of individuals analyzed per population. Bold numbers indicate the two main native haplotypes. Bold and italic numbers indicate haplotypes found exclusively in 3 
non-native Mediterranean populations. Asterisks indicate those non-native populations with higher standardised mitochondrial diversity than native ones. DDBJ Acc. No = DNA Data 4 
Bank of Japan Accession Number. 5 

  Haplotype # Diversity   

Locality (n)  HAf01 HAf02 HAf03 HAf04 HAf05 HAf06 HAf07 HAf08 HAf09 HAf10  H π A  N 

Native                  

SFB (4)   6  4 0 26 0  0 0 0 1 0  0.48   0.0019 1.877  37 

GSL (5)   2 23 2  1 0  0 0 0 0 1  0.37  0.0022 1.847  29 

                  

Non-native                  

ALC (2)   0  1 0 11 0  0 0 0 0 0  0.17   0.0007 0.833  12 

ESM (3)   6  3 1  0 0  0 0 0 0 0  0.60 0.0033 2.000*  10 

BFI (1)   0  0 0 10 0  0 0 0 0 0  0.00   0.0000   0.000  10 

BMA (1)   0  0 0 12 0  0 0 0 0 0  0.00   0.0000   0.000  12 

CBU (1)   0  0 0  6 0  0 0 0 0 0  0.00   0.0000   N.C.    6 

FVO (2)   0  0 0  7 0  0 0 1 0 0  0.25   0.0005 N.C.    8 

RFR (1)   0  0 0  5 0  0 0 0 0 0  0.00   0.0000   N.C.    5 

SLU (1)   0  0 0 12 0  0 0 0 0 0  0.00   0.0000   0.000  12 

FPI (3)   0  1 0  7 5  0 0 0 0 0  0.60 0.0025 1.759  13 

GER (2)  16  0 0  1 0  0 0 0 0 0  0.12   0.0005 0.588  17 

LTA (4)   2  4 0  3 3  0 0 0 0 0  0.80 0.0033 2.985*  12 

SPA (3)   9  4 1  0 0  0 0 0 0 0  0.54 0.0029 1.713  14 

TRI (2)   0 13 0  5 0  0 0 0 0 0  0.42   0.0018 0.993  18 

AIG (1)   0  0 0 11 0  0 0 0 0 0  0.00   0.0000   0.000  11 

SGU (1)   0  0 0 16 0  0 0 0 0 0  0.00 0.0000 0.000  16 

MSA (1)   0  0 0 16 0  0 0 0 0 0  0.00   0.0000   0.000  16 

PLU
†
 (2)    0  0 0  0 0 15 1 0 0 0  0.12   0.0003   0.625  16 

DDBJ Acc. No   *AB859230 *AB859231 *AB859232 *AB859233 AB859234 *AB859235 *AB859236 AB859237 *AB859238 *AB859239             

Due to shutdown occurred in U.S.A. and the stop of PubMed service, we followed the Hydrobiologia Editor’s suggestion to send our sequences to DDBJ database. Asterisks (*) 

correspond to haplotypes with identical nucleotide sequence, but different length, to GenBank Acc No as follow: AB859230 = KF662968; AB859231 = KF662970; AB859232 = 

KF662971; AB859233 = KF662960; AB859235 = KF663036; AB859236 = KF663043; AB859238 = KF662975; and AB859239 = KF662977. 
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Table 3: Genetic characteristics of each native and Mediterranean sampled site for the four Artemia franciscana microsatellites used. N = number of 1 
individuals; HO = observed heterozygosity; HE = expected heterozygosity; P = p-value of exact test using Markov Chain Monte Carlo with a confidence 2 
interval of 95%; Na = number of alleles (pa = number of private alleles). Bold numbers indicate significant departure from HWE after sequential 3 
Bonferroni correction (p-value = 0.0083). Non-native populations marked with the symbol ‡ indicate those with higher mean Na values than native 4 
populations. 5 

 Loci     

Locality Af_A108  Af_B10  Af_B9  Af_B11  Mean 

 N HO HE P Na (pa)  N HO HE P Na (pa)  N HO HE P Na (pa)  N HO HE P Na (pa)  HE Na 

Native                           

SFB 27 0.296 0.797 0.000 7  42 0.357 0.355 0.204 8 (2)  38 0.579 0.923 0.000 20  34 0.882 0.935 0.861 19  0.753 13.5 

GSL 44 0.705 0.724 0.225 9  44 0.818 0.817 0.598 9  40 0.825 0.903 0.285 17  37 0.865 0.944 0.015 21  0.847 14.0 

Non-native                           

ALC 35 0.486 0.813 0.000 7  43 0.558 0.694 0.232 7  37 0.676 0.929 0.001 18 (1)  41 0.805 0.922 0.152 14  0.840 11.5 

ESM 45 0.667 0.655 0.924 9  44 0.750 0.737 0.659 10  45 0.889 0.930 0.366 21 (1)  44 0.841 0.948 0.029 24 (1)  0.818 16.0‡ 

BFI 30 Monomorphic 1  44 0.477 0.463 0.872 3  32 0.531 0.833 0.009 9  42 0.738 0.734 0.242 9  0.507 5.2 

BMA 46 0.630 0.568 0.258 6  46 0.761 0.709 0.384 7  46 0.870 0.875 0.937 21 (1)  46 0.804 0.855 0.235 15  0.752 12.2 

CBU 41 0.610 0.655 0.576 8  40 0.725 0.681 0.807 8  32 0.875 0.890 0.854 13  38 0.868 0.938 0.007 22  0.791 12.7 

FVO 45 0.578 0.537 0.611 6  45 0.444 0.709 0.000 5  42 0.929 0.928 0.138 21 (1)  43 0.605 0.828 0.000 10  0.751 10.5 

RFR 36 Monomorphic 1  44 0.386 0.446 0.195 3  0 N.A. N.A. N.A. 0  44 0.659 0.615 0.799 9  0.265 3.0 

SLU 42 0.476 0.601 0.032 7  42 0.786 0.749 0.519 9  38 0.947 0.934 0.165 22 (1)  41 0.829 0.924 0.281 20  0.802 14.5‡ 

FPI 39 0.590 0.803 0.000 8  40 0.675 0.652 0.819 6  40 0.800 0.871 0.671 12  38 0.842 0.925 0.118 18  0.813 11.0 

GER 43 0.814 0.751 0.954 12 (1)  43 0.651 0.718 0.628 9  37 0.811 0.924 0.039 20  34 0.823 0.942 0.008 22  0.834 15.7‡ 

LTA 38 0.500 0.780 0.000 8  39 0.769 0.686 0.504 7  37 0.784 0.850 0.827 14  30 0.900 0.905 0.398 15  0.805 11.0 

SPA 42 0.643 0.745 0.669 8  43 0.674 0.703 0.385 10 (1)  44 0.727 0.936 0.027 23 (1)  41 0.805 0.954 0.056 27 (1)  0.835 17.0‡ 

TRI 42 0.357 0.692 0.000 5  47 0.468 0.553 0.499 5 (1)  42 0.476 0.812 0.000 9  45 0.844 0.910 0.058 17  0.742 9.0 

AIG 29 0.000 0.133 0.000 3  36 0.472 0.469 1.000 3  33 0.788 0.868 0.070 13  32 0.812 0.8649 0.369 12 (1)  0.583 7.7 

SGU 28 0.321 0.675 0.000 4  29 0.034 0.034 1.000 2  23 0.304 0.907 0.000 11  29 0.828 0.829 0.202 9  0.611 6.5 

MSA 32 0.125 0.569 0.000 3   41 0.195 0.182 1.000 3   37 0.784 0.860 0.308 12   40 0.775 0.781 0.521 9   0.598 6.7 

TOTAL 684    13  752    15  643    37  699    40    
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Table 4: A) Pairwise population matrix of G-Statistics Analysis for Dest and Fst values from nuclear loci above and below the diagonal, respectively, 1 
calculated by GenAlEx for 17 Artemia franciscana populations (two native from U.S.A. and 15 non-native from the Mediterranean. Values for the 2 
Portuguese population, RFR, could not be calculated, as only three loci were available. Values with NO statistical significance (p-value >0.05) are 3 
shown in bold and italics. B) ST values from mitochondrial COI locus for 18 A. franciscana populations (two native from U.S.A. and 16 non-native 4 
from the Mediterranean). Population codes are those indicated in Table 1. Values in bold are statistically significant (p-value < 0.05). 5 

 6 

A) 7 

 SFB GSL ALC ESM BFI BMA CBU FVO RFR SLU FPI GER LTA SPA TRI AIG SGU MSA 

SFB - 0.593 0.092 0.703 0.644 0.700 0.761 0.573 NA 0.708 0.427 0.666 0.501 0.228 0.143 0.333 0.115 0.119 

GSL 0.076 - 0.390 0.021 0.863 0.140 0.085 0.140 NA 0.034 0.315 0.036 0.236 0.173 0.564 0.786 0.720 0.782 

ALC 0.020 0.042 - 0.052 0.636 0.066 0.508 0.431 NA 0.057 0.049 0.047 0.056 0.020 0.030 0.082 0.055 0.062 

ESM 0.094 0.008 0.462 - 0.911 0.120 0.046 0.197 NA 0.014 0.051 0.006 0.042 0.212 0.083 0.162 0.787 0.158 

BFI 0.166 0.177 0.140 0.194 - 0.190 0.886 0.870 NA 0.187 0.181 0.185 0.191 0.177 0.195 0.123 0.200 0.213 

BMA 0.106 0.023 0.497 0.022 0.767 - 0.086 0.086 NA 0.014 0.053 0.021 0.046 0.336 0.107 0.159 0.158 0.170 

CBU 0.108 0.016 0.061 0.012 0.200 0.019 - 0.173 NA 0.009 0.045 0.011 0.038 0.042 0.094 0.175 0.158 0.174 

FVO 0.094 0.024 0.059 0.032 0.210 0.020 0.032 - NA 0.022 0.049 0.034 0.046 0.038 0.094 0.165 0.141 0.151 

RFR NA NA NA NA NA NA NA NA - NA NA NA NA NA NA NA NA NA 

SLU 0.099 0.010 0.486 0.008 0.840 0.054 0.021 0.106 NA - 0.046 0.012 0.036 0.275 0.092 0.164 0.811 0.162 

FPI 0.064 0.038 0.422 0.418 0.820 0.356 0.323 0.315 NA 0.340 - 0.049 0.012 0.315 0.064 0.132 0.571 0.113 

GER 0.087 0.010 0.423 -0.000 0.885 0.116 0.035 0.213 NA 0.050 0.4115 - 0.312 0.236 0.079 0.158 0.752 0.154 

LTA 0.074 0.031 0.476 0.321 0.861 0.292 0.253 0.285 NA 0.250 0.041 0.040 - 0.292 0.075 0.146 0.645 0.132 

SPA 0.036 0.023 0.132 0.028 0.838 0.048 0.316 0.250 NA 0.036 0.039 0.030 0.038 - 0.037 0.118 0.070 0.083 

TRI 0.032 0.074 0.172 0.591 0.773 0.665 0.630 0.570 NA 0.632 0.425 0.579 0.501 0.229 - 0.130 0.243 0.065 

AIG 0.085 0.142 0.393 0.862 0.313 0.723 0.887 0.752 NA 0.841 0.662 0.864 0.730 0.612 0.550 - 0.352 0.369 

SGU 0.037 0.126 0.251 0.143 0.600 0.761 0.828 0.658 NA 0.152 0.112 0.134 0.126 0.343 0.064 0.116 - 0.075 

MSA 0.036 0.137 0.293 0.872 0.641 0.816 0.914 0.699 NA 0.863 0.572 0.871 0.670 0.418 0.251 0.121 0.213 - 
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B) 1 

 SFB GSL ALC ESM BFI BMA CBU FVO RFR SLU FPI GER LTA SPA TRI AIG SGU MSA 

SFB - 0.546   0.017  0.433   0.088  0.100  0.046  0.078  0.027  0.100  0.149 0.556  0.241  0.446   0.415   0.094 0.312   0.100 

GSL  - 0.653   0.265   0.717   0.728   0.689   0.697   0.680   0.728   0.486   0.624  0.217  0.300   0.049  0.723 0.233   0.728  

ALC   - 0.611 -0.016   -0.000 -0.069   -0.017   -0.093   -0.000 0.224 0.828 0.365 0.620 0.544 -0.008 0.380 -0.000 

ESM    - 0.705   0.728   0.643   0.658   0.622   0.728   0.337 0.209 0.084 -0.091   0.289 0.717 0.294   0.728 

BFI     - 0.000 0.000  0.029  0.000  0.000 0.308 0.921 0.460    0.702 0.643 0.000 0.469 0.000 

BMA      - 0.000  0.053  0.000  0.000 0.335 0.927 0.489 0.721   0.661 0.000 0.493 0.000 

CBU       - -0.040   0.000  0.000 0.237 0.907 0.387 0.652 0.596 0.000 0.408 0.000 

FVO        - -0.069   0.053 0.269 0.892 0.417 0.665 0.610 0.042 0.433 0.053 

RFR         - 0.000 0.212 0.903 0.362 0.636 0.581 0.000 0.387 0.000 

SLU          - 0.335 0.927 0.489 0.721   0.661 0.000 0.493   0.000 

FPI           - 0.555 0.053 0.368   0.361 0.322 0.267   0.335 

GER            - 0.394  0.172 0.649 0.924 0.579   0.927 

LTA             - 0.119 0.122 0.475 0.137 0.489 

SPA               - 0.324 0.711 0.331 0.721 

TRI               - 0.652 0.117  0.661 

AIG                - 0.481   0.000 

SGU                  - 0.493 

MSA                  - 
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