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Abstract 

Background: Studies have demonstrated that whereas some opioids have little 

effect on immunity (e.g. buprenorphine), others can be immunosuppressive (e.g. 

morphine) or immunostimulatory (e.g. tramadol). However, a variety of approaches 

have been used and the findings are variable. We hypothesised that opioids have 

differential effects on immunity via direct actions on neutrophils, monocytes, NK and 

T cells and this is the first study to systematically evaluate the influence of eight 

opioids on neutrophil and monocyte phagocytosis and oxidative burst responses, 

natural killer (NK) cell cytotoxicity and T cell responsiveness in vitro.  

Methods: Peripheral blood was obtained from healthy volunteers and the effects of 

clinically relevant concentrations of morphine, tramadol, fentanyl, buprenorphine, 

methadone, oxycodone, diamorphine and codeine on phagocytosis and oxidative 

burst responses were determined using whole blood flow cytometry. The influence of 

opioids on the capacity of resting and IL-2 stimulated isolated peripheral blood 

mononuclear cells (PBMCs) to kill NK cell-sensitive K562 cells, and the 

responsiveness of PBMC sub-populations to IL-2 and polyclonal stimulation were 

also evaluated.  

Results: Methadone, oxycodone and diamorphine inhibited the production of IL-6 by 

IL-2 stimulated PBMCs. None of the opioids influenced the other measured immune 

parameters, although there was a trend for morphine, tramadol, fentanyl and 

buprenorphine to inhibit phagocytosis and oxidative burst responses to E.coli. 

Conclusions: Preliminary studies using standardised in vitro methodologies have 

demonstrated that some therapeutic opioids suppress IL-6 production. Although this 
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might potentially suppress bacterial defence mechanisms, it would have little direct 

effect on anti-cancer immunity. These findings should be confirmed in larger in vitro 

and clinical studies. 

 

Keywords: opioids; phagocytosis; oxidative burst; NK cell cytotoxicity; T cells; 

immunoregulation 
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1. Introduction  

 The commonly prescribed opioids in palliative care include morphine, tramadol, 

fentanyl, buprenorphine, methadone, oxycodone, diamorphine and codeine [1, 2] 

and these exhibit multisystem effects due to their interactions with receptors that are 

targeted by the endogenous opioid system. The reported presence of opioid 

receptors on activated T lymphocyte, monocyte, and granulocyte populations [3] 

suggests that opioids might also influence immune function.  

 As the immune system plays a key role in anti-tumour immunity and protection 

against infection, both of which are important in the non-terminal patient receiving 

palliative care, its impairment might have an influence on the clinical progress of 

patients that require pain relief. This concept appears to be clinically relevant, as 

opioids have been associated with an increased risk and severity of infection [4, 5]. 

Although previous in vitro and in vivo studies have demonstrated that opioids can 

have differential effects on the immune system, these have used different 

methodologies and the conclusions are variable. Notwithstanding this, the general 

consensus is that some opioids (eg, buprenorphine) seem to have no effects on 

immune function, whereas others tend to be immunosuppressive (eg, morphine) or 

immunostimulatory (eg, tramadol) [2, 6, 7]. This is likely due to a combination of 

direct effects on immune cells and, in vivo, via indirect effects that involve centrally-

mediated mechanisms and the systemic production and release of 

immunomodulatory mediators [8-10]. In vitro experiments indicate that the 

immunoregulatory effects of morphine are mediated via interactions with µ opioid 

receptors (MORs) on immune cells [3].  
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 Opioid-immune system interactions are complex and their differential 

immunological consequences depend on the molecular structure of the opioids, their 

receptor binding profiles and non-opioid mediated effects such as serotonin re-

uptake inhibition in the case of tramadol [11]. The discovery that morphine, fentanyl, 

buprenorphine, methadone and oxycodone are Toll-like receptor 4 (TLR4) agonists 

suggests that they might also directly influence innate immune responsiveness [12], 

probably via a MOR mediated mechanism [13]. It has also recently been 

demonstrated that chronic administration of morphine can abrogate the natural 

tolerance to the proinflammatory effects of lipopolysaccharide due to effects on TLR4 

[14]. 

 Opioids also have indirect effects on immune cells in vivo via centrally-produced 

mediators such as immunosuppressive glucocorticoids that are released by the 

hypothalamic-pituitary-adrenal (HPA) axis, or the release of immunosuppressive 

amines from the sympathetic nervous system (SNS) which innervates lymphoid 

organs [10].  

 The choice of opioids that are prescribed in clinical practice could therefore be 

critical in patients with cancer or infection, in whom impaired immunity could 

significantly influence their clinical course. Although therapeutic opioids 

predominantly exert their analgesic effects via the MOR pathway, their analgesic and 

side-effects differences are mediated through variations in drug-receptor 

interactions. We therefore hypothesised that opioids also have differential effects on 

immunity via direct actions on neutrophils, monocytes, NK and T cells. This study 

therefore used standardised and consistent methodologies to systematically assess 
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the in vitro effects of eight therapeutic opioids on multiple aspects of immune 

function. 

 

2. Methods 

2.1. Ethics 

Ethical approval for this study was obtained from the University of Sheffield 

Medical School Research Ethics Committee (Reference Number: SMBRER102).  

 

2.2. Blood samples  

Peripheral blood from healthy volunteers aged 25-33 years old was collected into 

lithium heparin Vacutainers (BD Biosciences, Oxford, UK) following written informed 

consent. All blood samples were taken in the morning or early afternoon. At least 

three subjects were used to screen for the effects of each opioid on the immune 

function parameters and the number of experimental replicates was increased if 

effects were suggested. 

 

2.3. Opioids 

Morphine, tramadol, fentanyl, buprenorphine, methadone, oxycodone, 

diamorphine and codeine were obtained from the Pharmacy at the Royal 

Hallamshire Hospital, Sheffield, UK. Each opioid was diluted with RPMI 1640 

medium containing 10% v/v fetal bovine serum (FBS; Invitrogen Ltd., Paisley, UK), 

100 µg/ml streptomycin and 100 U/ml penicillin or phosphate buffered saline (PBS) 

immediately prior to each experiment. Concentrations of the opioids used in the 
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current study (Table 1) were reflective of in vivo levels that have been reported in 

volunteer and clinical studies [15-22]. 

Although diamorphine and codeine are prodrugs of morphine, and some other 

opioids have effects mediated by their metabolites, these opioids were included to 

produce a baseline of the direct immune effects of the (pro)drugs, including potential 

non-MOR effects. For example, tramadol was included because its analgesic effect 

depends on the active metabolite, the molecule may also exert immune effects via 

serotoninergic pathways [6, 23]. Furthermore, diamorphine has been shown to have 

direct effects on exon 11 variants of MOR-1 receptor [24]. 

 

 
Opioid Final concentrations used in this study (ng/ml) 

Morphine  20 100 500 2,500 

Tramadol  80 400 2,000 10,000 

Fentanyl  0.8 4 20 100 

Buprenorphine 0.8 4 20 100 

Methadone 20 100 500 2,500 

Oxycodone 4 20 100 500 

Diamorphine  10 50 250 1,250 

Codeine 16 80 400 2,000 

 

Table 1: Opioid concentrations used in this study. 
The opioid concentrations used in this study relate to those that are found clinically, with the maximal 

clinical concentration falling in the middle of the concentrations used, with 5x dilutions above and 

below the clinical maximum plasma concentration. In the NK cell cytotoxicity assay, the central two 

concentrations were used. In the phagocytosis and oxidative burst assay the lowest concentration 

was used in addition to these. In the T cell and cytokine assays all concentrations were used (with the 
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addition of a supra-maximal concentration, 10x that of the top concentration, for the T cell assays). 

 

2.4. Influence of opioids on neutrophil and monocyte function  

The influence of opioids on neutrophil and monocyte phagocytic and oxidative 

burst responses was determined by whole blood flow cytometry using 

PHAGOBURST® and BURSTTEST® kits (both ORPEGEN Pharma GmbH, 

Heidleberg, Germany) according to the supplier’s recommended protocols. For these 

assays, heparinized whole blood (50µl) was incubated for 60 min at 37°C with 50µl 

of opioid or PBS. For the evaluation of phagocytosis, samples were then incubated 

with 10µl FITC-labelled opsonised E.coli ( bacteria/ml) for 10 min at 37°C (4°C as a 

control). Opioids were not washed out. Following quenching (to exclude fluorescent 

signals from adhered rather than internalized bacteria), erythrocytes were lysed, 

samples washed and the proportion of neutrophils and monocytes that had 

phagocytosed FITC-E.coli and the total amount of E.coli that had been 

phagocytosed (on the basis of the median fluorescent intensity, MFI) were analysed 

using a BD Biosciences FACSCalibur™ flow cytometer and BD Biosciences 

CELLQuest™ acquisition and analysis software. For the oxidative burst reaction, 

opioid-treated samples and controls were incubated for 10 min at 37°C with 10µl 

opsonised, unconjugated E.coli ( bacteria/ml), 8.1µM phorbol myristate acetate 

(PMA), 5µM N-formyl-methionine-leucine-phenylalanine (fMLP) or washing solution 

(negative control). Dihydrorhodamine 123 substrate solution (10µl) was then added, 

and the samples were incubated at 37°C for a further 10 min. Opioids were not 

washed out. Erythrocytes were lysed, samples washed and the proportion of cells 
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undergoing the oxidative burst reaction and the intensity of this response were 

analysed. For both assays, data on a minimum of 5,000 events (cells) in the 

monocyte region and more than 10,000 cells in the neutrophil region were collected. 

The reproducibility of these assays (coefficient of variation) is 0.1% for the proportion 

of neutrophils undergoing the oxidative burst reaction to E. coli; 4.8% for the MFI of 

this response; 1.1% for the proportion of monocytes undergoing the oxidative burst 

reaction to E. coli; and 6.5% for the MFI of this response (ORPEGEN Pharma 

GmbH). 

 

2.5. Isolation of peripheral blood mononuclear cells (PBMCs) 

Peripheral blood mononuclear cells (PBMCs) were used for the natural killer 

(NK) cell and T cell assays. PBMCs were separated from whole blood by density 

gradient centrifugation (300xg for 30 minutes at room temperature, no brake) using 

Nycoprep 1.077 (Axis-Shield POCAS, Oslo, Norway). As platelet-derived secretory 

products can inhibit NK cell cytotoxicity responses, platelets were removed by 

layering 10 ml of Nycoprep 1.068 (comprising 4 parts Nycoprep 1.077 and 1 part 

PBS) under 10 ml of the PBMC interface acquired during the first centrifugation and 

samples were centrifuged at 400xg for 15 min at room temperature (no brake) [25]. 

The supernatant was removed and the cell pellet was washed and re-suspended in 

supplemented RPMI 1640 medium, as detailed above ( viable cells/ml).  

 

2.6. Influence of opioids on natural killer (NK) activation and function  

The effect of opioids on the capacity of PBMCs to kill NK cell-sensitive K562 
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human erythroleukemic target cells (Health Protection Agency Culture Collection, 

Porton Down, UK) was determined using flow cytometry, as described previously 

[25]. Briefly, PBMCs ( cells/well) were stimulated with 100 U/ml (50 ng/ml) 

recombinant human IL-2 (Miltenyi Biotec) in the presence or absence of different 

opioid concentrations for 3 days (37°C, 5% v/v , 100% humidity) in 96-well microtiter 

plates. PBMCs were harvested, washed (to remove IL-2 and opioids) and incubated 

with MitoTracker™ Green (MTG; Invitrogen Ltd., Paisley, UK) labelled K562 target 

cells (effector:target (E:T) ratios of 100:1, 50:1, 25:1 and 12.5:1) in 12x75 mm 

polycarbonate tubes for 3 h at 37°C. The viability stain propidium iodide (PI; Sigma-

Aldrich, Gillingham, UK) was added to the samples 10 min prior to analysis and the 

proportions of viable (MTG+PI-) and non-viable (MTG+PI+) K562 target cells were 

determined using a BD LSRII flow cytometer (BD Biosciences) [25]. 

For each E:T cell ratio, NK cell cytotoxicity was represented by the proportion of 

non-viable K562 cells (number of MTG+PI+ K562 cells/total number of MTG+ labelled 

K562 cellsx100) following corrections being made for background target cell death. 

The area under the cytotoxic curve (AUCC), a composite calculation of cytotoxicity 

which incorporates all four E:T ratios [26], was also determined as we have 

previously shown that this increases the reproducibility of the assay [25]. 

 

2.7. Influence of opioids on the activation of peripheral blood mononuclear cells  

The influence of opioids on the ability of PBMC sub-populations to be activated 

by IL-2 (100 U/ml) and anti-CD3/anti-CD28 monoclonal antibody (mAb) coated 

beads (  Suppression Inspector, 1:1 bead:cell ratio, Miltenyi Biotec Ltd, Bisley, UK) 
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was determined by flow cytometry. For this, PBMCs were incubated with opioids or 

PBS and anti-CD3/anti-CD28 mAb coated beads for 3 days at 37°C, 5% v/v  and 

100% humidity. Cells were harvested and the supernatants stored at -80°C for 

subsequent analysis of IL-1β, IL-6, IL-8, IL-10, IL-17A, IFN-γ and TNF-α levels using 

Cytometric Bead Arrays (CBAs) and a BD FACSArray™ (both BD Biosciences). 

The expression of the activation markers CD25 and CD69 by CD4+ and CD8+ T 

cell subpopulations and NK cells following stimulation in the presence and absence 

of opioids were determined using a BD™ LSRII flow cytometer and BD Biosciences 

FACSDiva™ software. For the flow cytometric analysis, PBMCs (1.) were incubated 

with 0.5µl mouse serum for 15 min at room temperature, after which they were 

incubated with Pacific Blue™-conjugated anti-CD4 (clone RPA-T4, BioLegend),  

Alexa Fluor™ 700-conjugated anti-CD8a (clone RPA-T8, BioLegend), FITC-

conjugated anti-CD16/CD56 (clones LNK16, MEM-188, AbD Serotec), PE-

conjugated anti-CD25 (clone MEM-181, AbD Serotec) and anti-CD69 (clone FN50, 

BioLegend) mAbs for 30 min at 4°C. Cells were washed and kept on ice prior to flow 

cytometry. The viability stain 7-Aminoactinomycin D (1µl/100µl cell suspension, 

Cambridge Biosciences, Cambridge, UK) was added 5-10 min before analysis. 

For the analysis, cells were initially identified on the basis of their size and 

granularity. Doublets and dead cells were excluded and the proportion of CD4+ T 

cells, CD8+ T cells and NK cells expressing CD25 and CD69, and the intensity of 

expression were determined. Unstained and cells incubated with non-reactive 

isotype-matched reagents served as controls. 
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2.8. Statistical analysis 

Data were analysed in Microsoft Excel 2010 and Predictive Analytics SoftWare 

(PASW) version 18.0 using a paired 2-tailed Student t-test (*P value < 0.05) and are 

presented as mean ± standard error of the mean (SEM), or as individual 

experiments, as indicated.  

 

1. 3. RESULTS 

3.1 Effect of opioids on neutrophil and monocyte phagocytosis and oxidative burst 

responses 

None of the opioids inhibited phagocytosis, although there was a non-significant 

trend for morphine, tramadol, fentanyl and buprenorphine to inhibit the intensity of 

the phagocytic response (Figure 1).  

None of the opioids had any effect on the proportion of neutrophils that 

underwent the oxidative burst responses by fMLP, PMA and E. coli, although there 

was a non-significant trend for responses to E. coli to be inhibited and PMA to be 

enhanced, by morphine, tramadol, fentanyl and buprenorphine (Figure 2). These 

data suggest that the capacity of opioids to influence the recruitment of cells into 

oxidative burst and its intensity is dependent on the inducing stimuli. The effects of 

opioids were cell type-dependent, as the ‘effects profile’ for monocytes differed from 

that which was observed for neutrophils (Figure 3). It is therefore possible that these 

opioids have differential effects on various aspects of immunity.  

 

3.2. Effect of opioids on CD16+CD56+ natural killer (NK) cells 



13 | P a g e  

 

The incubation of PBMCs for 3 days with IL-2 (100 U/ml) enhanced the ability of 

NK cells to kill K562 target cells and this was unaffected by any of the opioids tested 

(Figure 4). IL-2 increased CD69, but not CD25 expression on NK cells and neither of 

these markers were influenced by any of the opioids (data not shown). Incubation of 

PBMCs with anti-CD3/anti-CD28 mAb coated beads for 3 days also increased the 

proportion of NK cells that expressed CD69 and, to a greater extent, the intensity of 

CD69, but not CD25 expression (data not shown). The expression of CD69 and 

CD25 was not affected by any of the opioids (data not shown). 

 

3.3. Effect of opioids on T cell activation and cytokine secretion 

Opioids had no consistent effect on the activation status (CD25, CD69 

expression) of CD4+ and CD8+ T cells following a 3-day incubation of PBMCs with 

anti-CD3/anti-CD28 mAb coated beads. This remained the case if opioids were 

added at the same time, 1 day after or 1 day before the anti-CD3/anti-CD28 mAb 

coated beads, or if platelets were present in the PBMC preparations (data not 

shown, representative graph - Figure 5). Anti-CD3/anti-CD28 mAb coated beads had 

little effect on cytokine secretion and none of the opioids tested had an influence on 

this (data not shown). 

The stimulation of PBMCs with IL-2 increased the production of IL-1β, IL-6, IL-8, 

IL-17A, IL-10, IFN-γ and TNF-α. The only consistent statistically significant effect 

was that methadone, oxycodone and diamorphine decreased IL-6 production from 

IL-2 stimulated PBMCs (Figure 6).   
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2. 4. Discussion and Conclusions 

Opioids exert actions on most biological systems and have differing 

physicochemical properties which can elicit a range of pharmacodynamic effects. 

This is the first systematic analysis of the in vitro effects of eight commonly used 

therapeutic opioids at clinically relevant concentrations across a standardised profile 

of tests that reflect innate and adaptive immune potential. 

 

4.1. Neutrophil and monocyte phagocytosis  

Previous studies using various methodologies have evaluated some therapeutic 

opioids in vitro and in vivo and have yielded a range of effects on phagocytosis. 

Morphine has generally inhibited phagocytosis [27-32], whereas tramadol [31], 

fentanyl [33] and methadone [32, 34] generally had no effect on phagocytosis. 

Although none of the opioids in the current study had any statistically significant 

effects, there was a trend for morphine, tramadol, fentanyl and buprenorphine to 

inhibit neutrophil and monocyte phagocytosis.  

 

4.2. Neutrophil and monocyte oxidative burst reaction 

Previous in vitro and in vivo studies have generally shown morphine [30, 32] and 

methadone [30, 34] to inhibit oxidative burst, whereas fentanyl has been reported to 

have no effect on neutrophil oxidative burst responses in healthy volunteers [16]. 

Although no opioid tested had a consistent effect on oxidative burst responses in the 

current study, there was a trend for morphine, tramadol, fentanyl, buprenorphine and 

methadone to inhibit oxidative burst responses.  
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4.3. Natural killer cell cytotoxicity 

The previous literature using differing methodologies is often conflicting, however 

in general morphine [35], fentanyl [7, 36], methadone [37] and diamorphine [38] 

decrease NK cell cytotoxicity, whereas buprenorphine has no effect [36] and 

tramadol enhances it [6, 39]. In the current study, none of the opioids had any effect 

on the activation status or cytotoxicity of unstimulated and stimulated human NK 

cells in PBMC preparations. This suggests that the reported in vivo manifestations of 

opioids on NK cells are mediated indirectly through central pathways.  

 

4.4. Effect of opioids on IL-2 and anti-CD3/anti-CD28 mAb-induced T cell activation 

and cytokine secretion 

This is the first in vitro study to have assessed the effect of opioids on the 

activation status of human T cells on the basis of CD25 and CD69 expression. Anti-

CD3/anti-CD28 mAb stimulation activated CD4+ and CD8+ T cells, which was not 

affected by any of the opioids. Previous in vitro studies, using proliferation or cytolytic 

assays, are generally consistent with the current study, in that clinically relevant 

concentrations of morphine, methadone and diamorphine had no effect [40-42].  

Cytokine secretion from PBMCs was used as another measure of lymphocyte 

activation. There are several heterogeneous studies relating to the effects of opioids 

on cytokine secretion in the literature. In general, morphine has been reported to 

decrease IL-1β, IL-2, IL-4, IL-6, IL-12 and IFN-γ production [9, 27, 43], but to have 

mixed effects on IL-10 and TNF levels [9, 43]. Fentanyl has been demonstrated to 
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decrease IL-2 and IFN-γ production, whereas buprenorphine has been reported to 

have no effect [36]. Codeine has been shown to increase IL-8 and TNF-α production 

[8]. In post-operative studies, morphine has been reported to inhibit IL-2 production, 

which was unaffected by fentanyl and either unaffected or increased by tramadol [44, 

45]. 

The only significant effect which was been observed in the current study was 

that methadone, oxycodone and diamorphine significantly decreased IL-6 secretion 

from IL-2 stimulated PBMCs. IL-6 has a range of pro- and anti-inflammatory effects 

and its levels correlate with the acute phase reactant C-Reactive Protein [46]. IL-6 

also influences lipid and bone metabolism [47]. Any inhibition of IL-6 production 

could therefore have multiple downstream effects on several organ systems. 

The findings of this systematic evaluation indicate that further studies are 

needed with larger numbers of subjects to evaluate the effects of morphine, 

tramadol, fentanyl, buprenorphine and methadone on neutrophil and monocyte 

phagocytosis and oxidative burst. As NK and T cells are likely to be modified by 

indirect effects of opioids, these also need further evaluation in in vivo models. 

However, all of these aspects of immune defence need to be investigated in human 

clinical models with disease outcomes as endpoints in order to better inform clinical 

practice.   

 

4.6. Limitations of present study 

The use of in vitro models meant that only the direct effects of the opioids were 

measured on immune cells. However, clinically used opioids also have indirect 
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effects via the SNS and HPA axis, which may modulate or negate these direct 

effects in whole animals. The sample size was small, as the primary aim of this study 

was to screen for immune effects of many opioids and a larger sample may have 

shown greater differences between opioids. Thus caution is needed as to not over-

interpret the results. However, retrospective power and sample size calculations 

have been performed for those assays for which opioids potentially showed an effect 

and some of these calculations have a power greater than 80% with a sample size 

compatible with that performed. Only healthy volunteers were included and although 

the immune cells were activated in vitro this might not truly reflect effects that could 

be present on cells from different patient groups, especially those with immune 

activation or suppression from other biological or therapeutic causes. Further 

confirmatory studies should therefore employ larger samples, using the same opioids 

in all subjects and using a test-retest method to look for variations within individuals 

as well as between subjects. 

 

4.7. Conclusion 

Opioids are currently prescribed for pain on the basis of their reported efficacy, 

their clinically recognisable toxicities and economic factors. The findings of this 

small, but systematic healthy volunteer preliminary investigation indicate that opioids 

might differentially influence IL-6 production by a direct effect on the cells, with 

methadone, oxycodone and diamorphine being suppressive. There might also be 

direct effects of morphine, tramadol, fentanyl, buprenorphine and methadone on 

neutrophil and monocyte phagocytosis and oxidative burst, which warrant further 
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investigation with more subjects. However, further investigation in human clinical 

models with disease outcomes as endpoints is paramount.   

Despite the potential negative impact of certain opioids on aspects of immune 

function in vitro, optimal pain control remains the key clinical goal, as pain itself might 

be immunosuppressive [6, 48]. In keeping with the move towards personalised 

medicine, including for pain management [49], with more comprehensive clinical 

data, we could more rationally select the opioid to administer to an individual patient 

with cancer, in order to optimise pain control without potentially negatively impacting 

on their immune function. However, with currently available data, opioid choice 

should principally be on efficacy and more clinically overt toxicities in the individual 

patient. 
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Figure legends: 

 

Figure 1 Effect of morphine, tramadol, fentanyl, buprenorphine and oxycodone 

on neutrophil and monocyte phagocytosis. The proportion of neutrophils and 

monocytes phagocytosing FITC-E.coli (left panel) and the intensity of the phagocytic 

response (median channel of fluorescent intensity, MFI; right panel). Data are 

means ± SEM from 5 subjects (n=4 for monocytes at 20 and 100 ng/ml of morphine) 

and are presented as absolute differences from the no opioid control. No opioid 

(baseline) values (mean ± SEM) are included at the top of the graphs. No statistically 

significant differences between the responsiveness of opioid-treated and untreated 

cells were detected (paired Student t-test) 

 

Figure 2 Effect of morphine, tramadol, fentanyl, buprenorphine and oxycodone 

on neutrophil oxidative burst responses. The proportion of neutrophils 

undergoing the oxidative burst reaction (left panel) and the intensity of this response 

in these positive cells, median channel of fluorescent intensity (MFI, right panel), to 

fMLP, PMA and E.coli. Data are means ± SEM from 5 subjects and are presented as 

absolute differences from the no opioid control. No opioid control (baseline) values 

(mean ± SEM) are included at the top of the graphs. Statistically significant 

differences between the responsiveness of opioid-treated and untreated cells is 

indicated (* = P<0.05, paired Student t-test) 
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Figure 3 Effect of morphine, tramadol, fentanyl, buprenorphine and oxycodone 

on monocyte oxidative burst responses. The proportion of monocytes undergoing 

the oxidative burst reaction (left panel) and the intensity of this response in these 

positive cells, median channel of fluorescent intensity (MFI, right panel), to fMLP, 

PMA and E.coli. Data are means ± SEM from 5 subjects and are presented as 

absolute differences from the no opioid control. No opioid control (baseline) values 

(mean ± SEM) are included at the top of the graphs. Statistically significant 

differences between the responsiveness of opioid-treated and untreated cells is 

indicated (* = P<0.05, paired Student t-test) 

 

Figure 4 Representative figure illustrating the effect of morphine on IL-2 

induced NK cell cytotoxicity of K562 target cells. Isolated PBMCs, without 

platelets, were incubated for 3 days with IL-2 and opioid. Controls comprised 

unstimulated and IL-2 stimulated cells cultured in the absence of opioid. The 

adjusted area under the cytotoxic curve (AUCC) was calculated using the formula 

presented in the methods. Values for the adjusted AUCC for each of the 

experimental conditions are indicated in the legend. No statistical difference in the 

NK cell cytotoxicity of untreated and morphine-treated PBMCs was observed (paired 

Student t-test). Data are means ± SEM of 3 subjects 
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Figure 5 Representative figure illustrating the effect of morphine on CD69 

expression by CD4+ and CD8+ T cells. The proportion (%) of CD4+ and CD8+ cells 

expressing CD69 (upper panel) and the intensity of CD69 expression on positive 

cells (median channel of fluorescent intensity, MFI; lower panel). PBMCs were 

incubated with the indicated concentrations of morphine for 3 days prior to assessing 

CD69 expression. All cells, other than the unstimulated control, were activated with 

anti-CD3/anti-CD28 mAb coated beads for 3 days, added at the same time as the 

opioid. No statistical difference between the responsiveness of opioid-treated and 

untreated anti-CD3/anti-CD28 mAb stimulated cells was observed (paired Student t-

test). Data are means ± SEM from 5 subjects  

 

Figure 6 Effect of morphine, methadone, oxycodone and diamorphine on IL-6 

secretion by IL-2 stimulated cells. Effect of methadone, oxycodone and 

diamorphine on IL-6 production by IL-2 (left Y-axis, blue) and Miltenyi anti-CD3/anti-

CD28 mAb coated bead (right Y-axis, red) stimulated PBMCs. IL-6 concentrations 

are presented on the Y-axes, in pg/ml. Unstimulated (unstim) and stimulated (stim) 

controls without opioid are included. IL-6 levels in IL-2 stimulated PBMCs were 

decreased by methadone at all concentrations, 4, 20 and 500 ng/ml of 

oxycodone, and 10, 50 and 1250 ng/ml of diamorphine decreased  levels 

(P<0.05; paired Student t-test). Data are means ± SEM from a minimum of 3 

subjects 
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