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Abstract 8 

The ratio of magnesium to calcium (Mg/Ca) in carbonate minerals in an abiotic setting is 9 

conventionally assumed to be predominantly controlled by (Mg/Ca)solution and a temperature 10 

dependant partition coefficient. This temperature dependence suggests that both marine (e.g. 11 

foraminiferal calcite and corals) and freshwater (e.g. speleothems and surface freshwater 12 

deposits, “tufas”) carbonate deposits may be important archives of palaeotemperature data. 13 

However, there is considerable uncertainty in all these settings. In surface freshwater deposits 14 

this uncertainty is focussed on the influence of microbial biofilms. Biogenic or “vital” effects 15 

may arise from microbial metabolic activity and / or the presence of extracellular polymeric 16 

substances (EPS). This study addresses this key question for the first time, via a series of 17 

unique through-flow microcosm and agitated flask experiments where freshwater calcite was 18 

precipitated under controlled conditions. These experiments reveal there is no strong 19 

relationship between (Mg/Ca)calcite and temperature, so the assumption of thermodynamic 20 

fractionation is not viable. However, there is a pronounced influence on (Mg/Ca)calcite from 21 

precipitation rate, so that rapidly forming precipitates develop with very low magnesium 22 

content indicating kinetic control on fractionation. Calcite precipitation rate in these 23 

experiments (where the solution is only moderately supersaturated) is controlled by biofilm 24 

growth rate, but occurs even when light is excluded indicating that photosynthetic influences 25 

are not important. Our results thus suggest the apparent kinetic fractionation arises from the 26 

electrochemical activity of EPS molecules, and are therefore likely to occur wherever these 27 

molecules occur, including stromatolites, soil and lake carbonates and (via colloidal EPS) 28 

speleothems. 29 

1. Introduction 30 

The potential of the (Mg/Ca)calcite palaeothermometer was first observed in the 1950’s when a 31 

link between latitude and magnesium content was recognised in a study on the 32 
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biogeochemistry of marine skeletal calcites (Chave, 1954). The use of (Mg/Ca)calcite ratios as 33 

a palaeothermometer has since become widespread in marine settings with many studies on 34 

benthic and planktonic foraminifera (Delaney et al., 1985, Nurnberg et al., 1996, Rosenthal et 35 

al., 1997, Anand et al., 2003, Elderfield et al., 2006, Kisakurek et al., 2008, Bousetta et al., 36 

2011, Martinez-Boti et al., 2011) and to a lesser extent in corals (Mitsuguchi et al., 1996, 37 

Shirai et al., 2005, Wei et al., 2000; Yu et al., 2005, Reynaud et al., 2007). Surface 38 

freshwater carbonates (“tufa”) are ambient temperature freshwater deposits which have been 39 

considered, but not thoroughly investigated, as potential archives of terrestrial 40 

palaeotemperature data through their Mg/Ca ratios (Garnett et al., 2004; Rogerson et al., 41 

2008, Brasier et al., 2010, Lojen et al., 2009).  42 

A number of divalent cations are able to substitute for the position of Ca2+ in the calcite 43 

crystal structure. The degree to which this substitution occurs is generally expressed through 44 

a partition coefficient (Kd). The heterogeneous partition coefficient for the partitioning of 45 

Mg2+ between a carbonate mineral and the aqueous solution is given by the equation (Oomori 46 

et al., 1987): 47 

𝑙𝑜𝑔
(𝑚𝑀𝑔2+)

𝑖
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 48 

Where m is the concentration of the subscripted species and i and f represent the initial and 49 

final solutions respectively.  In the carbonate literature the partition coefficient is usually 50 

expressed in the general simple form: 51 
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(𝑇𝑟 𝐶𝑎𝐶𝑎𝐶𝑂3

⁄ )
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                                                52 

Where Tr is the trace cation and Kd is the partition coefficient.  Mg/Ca palaeothermometry 53 

therefore relies on the thermodynamic control of the partitioning of trace elements in the 54 

carbonate crystal lattice being sufficiently dominant from other effects so as to reduce them 55 

to “noise”. Studies on inorganic calcite have confirmed that, under controlled conditions, the 56 

dominant control on Mg partitioning in carbonates is indeed temperature, with other factors 57 

such as precipitation rate having little influence (Mucci, 1987, Morse and Bender, 1990). 58 

However, evidence from natural (i.e. non-controlled) conditions shows the value of Kd to be 59 

dependent on significant complicating factors arising from precipitation rate, crystal 60 
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morphology and spatially / temporally variable solution composition (Fairchild and Treble, 61 

2009). 62 

1.1 Mg/Ca in Tufa carbonates and the conjectured role of Extracellular 63 

Polymeric Substances. 64 

To date very few studies have had any real focus on utilising tufa (Mg/Ca)calcite ratios as a 65 

palaeothermometer. Incorporation of Mg2+ into tufas deposited in the summer was found to 66 

be higher than in winter (Chafetz et al., 1991) and a seasonal temperature change in stream 67 

water of ~ 10 °C appeared to be the dominating influence on Mg2+ incorporation into a 14 68 

year (1985 – 1999) tufa record from Queensland Australia, although there were considerable 69 

discrepancies in the correlation between the tufa (Mg/Ca)calcite ratios and water temperature 70 

(Ihlenfeld et al., 2003). Although these studies show support for the potential of tufa 71 

(Mg/Ca)calcite palaeothermometry they do not take into account the presence of microbial 72 

biofilms and the significant impact they may have on trace element incorporation into tufa 73 

carbonates. The discrepancies observed by Ihlenfeld et al., (2003) may be due to the presence 74 

of a spatially inconsistent and heterogeneous microbial biofilm with its associated 75 

metabolism and/or the chemoselective chelation of cations from the river water by EPS 76 

molecules.  77 

Unlike corals and foraminifera, where all precipitation is biogenic (Elderfield et al., 1996, 78 

Yoshimura et al., 2011) and speleothems where precipitation is usually assumed to be 79 

abiogenic (although biogenic precipitation has been demonstrated, e.g. (Cacchio et al.,  80 

2004), the role of biology in determining tufa carbonate chemistry is poorly understood 81 

(Pedley et al., 2009). Recent research efforts have been focussed on the impact of the 82 

presence of extracellular polymeric substances (EPS), which have the capacity to be a first-83 

order control on the precipitation chemistry (Dittrich et al., 2003, Bissett et al., 2008). EPS 84 

has demonstrated the ability to bind divalent cations, resulting from the fact that most EPS 85 

molecules have negatively charged functional groups which deprotonate as pH increases 86 

(Konhauser, 2007, Dittrich and Sibler, 2010). Studies on cyanobacteria and sulphate reducing 87 

bacteria (SRB) have revealed that the functional groups include carboxylic acids (R-COOH), 88 

hydroxyl groups (R-OH), amino groups (R-NH2), sulphate  (R-O-SO3H), sulphonate (R-89 

SO3H), and sulphydryl groups (-SH), all of which bind metal ions including Ca2+ and Mg2+ 90 

(Dupraz et al., 2009 and references therein). It has been demonstrated that chelation strongly 91 

favour ions with low charge density thus favouring Ca2+ over Mg2+ (Rogerson et al., 2008). 92 
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This influence could be transmitted to solid carbonate chemistry by altering the M2+ / Ca2+ 93 

ratios within the biofilm interstitial waters from which carbonates are precipitated and also by 94 

directly influencing the precipitation mechanism itself. Variations in trace element chemistry 95 

within hyper-alkaline lacustrine carbonate have recently been identified, with high calcium 96 

carbonates presented in close proximity to cells (Couradeau et al., 2013). However, the direct 97 

link to EPS intermediary states remains untested.  98 

The primary mechanism by which EPS electroselectivity can be transmitted to precipitates 99 

arises from the fact that chelation of ions is not a permanent state, ions constantly move 100 

between bound states and solution. The ratio of ions in the solution in the immediate vicinity 101 

of the chelation sites is consequently determined by the binding preferences of the EPS. As 102 

Ca2+ is selectively favoured over Mg2+ by EPS molecules then the (Mg/Ca)solution in this 103 

environment will be reduced relative to the bulk water. Therefore, calcite precipitation 104 

initiated on a calcite surface covered in biofilm will occur at the nucleation sites enriched 105 

with calcium ions relative to magnesium. Any precipitates forming in the immediate 106 

environment of the EPS will therefore have a (Mg/Ca)calcite lower than would be expected 107 

given the bulk water (Mg/Ca)solution.  108 

The generation of low (Mg/Ca)calcite within the EPS matrix will be accentuated by the low 109 

Mg2+ concentrations in this microenvironment. It has been demonstrated that calcite 110 

precipitation rates are reduced in the presence of Mg2+ (Morse and Mackenzie, 1990, 111 

Paquette et al., 1996, Zhang and Dawe, 2000) and that this reduction is approximately 112 

proportional to the (Mg/Ca)solution (Morse and Mackenzie, 1990, Zhang and Dawe, 2000). 113 

Therefore the lower (Mg/Ca)solution in the immediate microenvironment of the EPS molecules 114 

created by the chemoselectivity for Ca2+ will result in a faster precipitation rate in these 115 

regions of the biofilm compared to other areas where the (Mg/Ca)solution is greater.  This effect 116 

will become cumulative at higher precipitation rates, driving down the mean (Mg/Ca)calcite of 117 

precipitates generated within the biofilm. 118 

This study tests the hypothesis that the presence of biofilm results in precipitation of reduced 119 

Mg/Ca(calcite) for the first time, and also tests whether this effect is sufficient to suppress 120 

classic thermodynamic controls for the first time.  121 
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2. Methods 122 

2.1 Experimental design 123 

The microcosm system was based on the recirculating flume system developed at the 124 

University of Hull (Rogerson et al., 2010, Pedley et al., 2009). It was designed to allow the 125 

flow through of experimental water through a series of four identical micro-flumes. The 126 

design is shown in Figure 1 (which also includes the experimental design of the additional 127 

conical flask experiments (see section 2.4)). The apparatus was housed in a windowless, air 128 

conditioned laboratory where the ambient laboratory air temperature was maintained between 129 

16 and 20 °C by an ‘Airforce Climate Control’ air conditioning unit (10,000 BTU hr-1; 2.9 130 

kW cooling capacity, Airconwarehouse, Stockport, UK). This provided the experiments some 131 

buffering from variations in room temperatures due to seasonal and diurnal changes. 132 

Experiments were performed for a period of 28 days and consisted of four replicates which 133 

were run within identical Perspex micro-flumes with dimensions of 20 cm by 8 cm and a 134 

depth of 2.5 cm. Each flume was constructed with a 7 mm wide flow channel with a Perspex 135 

lid providing a water tight seal. For the duration of the experimental runs the flumes were 136 

submerged in a metallic water bath to ensure tight control on precipitation temperature. 137 

Experiments were conducted at 12 ± 0.2, 14 ± 0.2, 16 ± 0.2, 18 ± 0.2 and 20 ± 0.5 °C 138 

(Saunders et al., in press).  139 

The water bath temperature was controlled via a Titan 150 mini cooler chiller unit (Aqua 140 

Medic, Bisendorf, Germany).Water was re-circulated through the chiller unit via a submerged 141 

pump in the sump and the bath itself was surrounded by sheets of thermal aluminium foil 142 

(thermal resistance 1.455 m2 K W-1) to provide additional thermal buffering and exclude 143 

incoming UV from the water bath. Only the micro-flumes were left exposed to the lighting 144 

unit to allow photosynthesis. Sheets of thermal aluminium foil were placed over piping which 145 

was external to the water bath to prevent heating from the lighting unit. The chiller unit was 146 

able to provide temperature control at 12, 14, 16 and 18 °C. The unit was unable to maintain 147 

the water temperature at 20 °C so additional heating was provided by a thermostatically 148 

controlled Aqua One 100 W fully submersible aquarium heater (Aqua Pacific Ltd., 149 

Southampton, UK) placed in the sump. The temperature of the water bath was monitored at 150 

ten minute intervals via a calibrated thermometer probe (range -50 to 200 °C) (Thermometers 151 

Direct, Aldershot, UK) inserted next to the microcosms.  The digital output from the 152 

thermometer was recorded to a PC via a webcam system, so each experiment is represented 153 
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by over 4000 individual recorded water temperature measurements. Photosynthetic light was 154 

supplied to the system via a single ‘Thorn Lopak 250 W HPS-T’ sodium lamp on a 7 hour on 155 

and 17 hour off cycle to avoid excessive light incidence, which previous experiments had 156 

demonstrated bleached the biofilm. 157 

 158 

2.2 Biofilm  159 

Biofilm was sourced from the River Lathkill, Derbyshire (UK grid reference SK 225 645). 160 

Initial colonisation was onto carbon fabric secured to house bricks which were submerged in 161 

an active tufa precipitating reach on the 3rd of April 2009 and recovered on the 5th of August 162 

2009. To ensure a constant supply of a common biofilm, which was free of “inheritance” 163 

calcite, the colonised carbon fabric was detached from the bricks and secured within a 1 164 

metre long, 112 mm wide polycarbonate gutter within a mesocosm (see Rogerson et al., 2009 165 

and Pedley et al., 2009). 30 L of deionised (15 MΩ) water was circulated between the 166 

colonising gutter and a sump via a Titan 150 in line chiller set at 12 °C. The colonising flume 167 

was illuminated by a single ‘Thorn Lopak 250 W HPS-T’ hydroponic lamp on a 7 hour on 168 

and 17 hour off cycle. This “colonisation” flume was used to colonise clean plastic mesh 169 

pads, after which the source biofilm was removed and the water replaced with fresh, 15 M 170 

water. The colonisation process was continued for a further 3 months to achieve a sustainable 171 

amount of completely sediment-free and carbonate-free biofilm for all future experiments. To 172 

avoid nutritional deprivation a 30 ml dose of an organic liquid was added at monthly 173 

intervals. The organic liquid was obtained from the decomposition of tree leaves from Welton 174 

Beck catchment (water source for the colonising flume). This nutritional regime had proved 175 

successful in previous experiments within the same laboratory (see Pedley et al., 2009), and 176 

minimises the change in the balance of diatoms and cyanobacteria inevitable once a biofilm 177 

body is removed from its natural environment.  178 

Prior to the first experiment a sample of the newly colonised biofilm was taken and prepared 179 

for examination by scanning electron microscopy (SEM). No calcite precipitates could be 180 

observed, and the culture visually resembled the source biofilm in terms of its biological 181 

composition.. Ecologically, the biofilms comprised a mixed diatom and cyanobacterial mat 182 

associated with a variety of bacterial taxa not possible to identify visually. EPS found in 183 

cultured films were similar in appearance and density as those found in the field. 184 

Experimental biofilm was recovered via standard glass microscope slides cut to 5 mm wide 185 
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strips and frosted with corundum glass frosting powder which were secured to the colonised 186 

mesh pads and could be removed and imported into the micro-flumes immediately and 187 

without further alteration. 188 

2.1 Trace element analysis 189 

All water chemistry analyses was undertaken on a Perkin Elmer Optima 5300DV (Perkins-190 

Elmer, Waltham, MA, USA) inductively coupled optical emission spectrometer (ICP – OES). 191 

The selection of the analytical lines used in the results was based on the Perkin Elmer 192 

recommendations for the Optima 5300 DV spectrometer, 393.366 nm for calcium and 193 

280.271 nm for magnesium. Calibration standards were prepared using 1000 ppm standard 194 

stock solutions (99.9% pure or greater, PrimAg, Xtra, Romil, Cambridge) of calcium and 195 

magnesium. Mixed standards of calcium and magnesium were prepared through dilution with 196 

2% ultrapure HNO3 to give calibration standards of 1, 2, 3, 4 and 5 ppm for calcium and 0.1, 197 

0.2, 0.3, 0.4, and 0.5 ppm for magnesium. Samples for analysis were diluted with 5 % 198 

ultrapure HNO3 to bring the expected concentrations to within or very near the linear 199 

calibration of the standards.  200 

2.2 Experimental solution 201 

Initial water for the experiments was collected from a spring sourced by a Cretaceous chalk 202 

aquifer at Welton Beck, East Yorkshire (UK grid reference SE 965 275). Although there were 203 

variations in springwater chemistry, the concentrations of Mg2+
(aq)  and Ca2+

(aq)  in the spring 204 

water were fairly stable  ranging from 2.6 – 5.1 mg L-1 for magnesium and 82.9 – 141.2 mg L-205 

1 for calcium. To ensure the water for all experiments had equal levels of Mg2+
(aq) and Ca2+

(aq) 206 

acetates of calcium (Ca(C2H3O2)2 and magnesium (Mg(C2H3O2)2 (Alfa Aesar, 207 

Massachusetts., USA) were added to the spring water to bring the concentrations of Mg2+
(aq)  208 

and Ca2+
(aq)  to 8.0 and 160 mg L-1 respectively giving a constant (Mg/Ca)solution  molar ratio 209 

of 0.082. The pH of the source water was rather invariable at 8.2 ±0.2, and bicarbonate 210 

alkalinity 180 ± 22 mg L-1. The solution was analysed before and after addition to ensure 211 

minimum variance in this composition, and therefore changes in solution chemistry 212 

throughout the experiments described herein are negligable. Acetates were used to avoid 213 

contaminating the solution with variable levels of exotic counter-ions; organic acids were 214 

already present in high concentrations in the dissolved components of the EPS and 215 

considered the most “inoffensive” counter ion in our context. The saturation state was 216 
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determined using the aqueous geochemical modelling software PHREEQC. Saturation index 217 

values for the experimental solutions were 0.95, 0.98, 1.01, 1.04 and 1.07 for the 218 

temperatures, 12, 14, 16, 18 and 20 °C respectively 219 

2.3 Precipitate recovery 220 

At the end of each experiment the glass slides containing the biofilm and experimental 221 

precipitates were removed from the microcosms and the biofilm covering of the glass slide 222 

was added to 20 mL sterilin tubes and centrifuged in a Centaur 2 non refrigerated bench top 223 

centrifuge (MSE, London, UK) at 3300 rpm for 20 minutes. The supernatant water was 224 

discarded. Prior to dissolution of the calcite precipitates in the biofilm it was necessary to 225 

‘clean’ the biofilm of Mg2+ and Ca2+ cations that had been chelated by the EPS of the biofilm 226 

complex. Ultrapure water (18 MΩ) was added to each tube containing the biofilm pellet. The 227 

tube was shaken vigorously to ensure full mixing of the biofilm with the water and left to 228 

stand for two hours. It was then centrifuged at 3500 rpm for 15 minutes. A sample was taken 229 

of the supernatant and immediately acidified with 5 % ultrapure HNO3 for analysis of the 230 

Mg2+
(aq)  and Ca2+

(aq)  levels by ICP – OES. This process was repeated five or six times to 231 

ensure all practical chelated Mg2+ and Ca2+ cations were washed from the biofilm (as 232 

confirmed by ICP – OES analyses). The biofilm pellet was then oven dried. The dissolution 233 

of calcite precipitates held within the dried biofilm pellet was achieved by gravimetrically 234 

adding 10% ultrapure HNO3 to the sample. The samples were sonicated for three minutes in 235 

an Ultra 8000 bench top ultrasonic cleaner (Ultrawave, Cardiff, UK) left to stand for two 236 

hours, shaken vigorously, sonicated again and centrifuged for 15 minutes at 3300 rpm. A 237 

sample of the supernatant was taken and immediately acidified with ultrapure 5 % HNO3 for 238 

analysis of Mg2+
(aq) and Ca2+

(aq)  levels and determination of the precipitate (Mg/Ca)calcite 239 

ratios. 240 

2.4 Additional experiments 241 

Additional experiments were conducted in 150 ml conical flasks. Experiments were 242 

conducted at 12 ± 0.5, 14 ± 0.2, 16 ± 0.3, 18 ± 0.2 and 20 ± 0.5 °C. The flasks were secured 243 

to a Stuart SF1 flask shaker (Bibby Scientific Limited, Staffordshire, UK) which was set to 244 

100 oscillations per minute for all experiments to promote oxygenation of the solutions. 245 

Eight 150 mL conical flasks were used with two replicates each of three different treatments 246 

and two controls. The treatments consisted of biofilm exposed to solar spectrum light (BFL) 247 
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and biofilm with light excluded (BFD). The biofilm used was taken from the same colonising 248 

flume as the microcosm experiments. Each flask for the biofilm treatments received 3 g of 249 

biofilm and 50 mL of prepared solution. The two flasks from which light was excluded were 250 

thoroughly wrapped in reflective thermal aluminium foil (thermal resistance 1.455 m2 K W-1) 251 

to exclude all light. Foam bungs were used to prevent microbial invasion and reduce 252 

evaporative loss from the flasks whilst allowing gas exchange. The flasks were clamped to 253 

the shaker and further thermal aluminium foil (thermal resistance 1.455 m2 K W-1) was used 254 

to cover the sections of the water tank containing the light excluded replicates. Solution 255 

preparation, the removal of chelated cations and precipitate recovery followed the procedures 256 

described for the microcosm experiments.  257 

3. Results 258 

3.1 (Mg/Ca)calcite and precipitation temperature 259 

Binary plots of (Mg/Ca)calcite ratios and temperature for the microcosm and agitated flask 260 

experiments are shown in Figure 2. In all cases, control data (where precipitation is solely 261 

physical) shows a positive correlation to temperature, approximately conforming to the 262 

expected exponential correlation with Mg/Ca = 0.0029e0.1568T (R2 = 0.90, P < 0.05). 263 

However, the microcosm data (Fig 2 (a)) does not conform to the expected relationship, 264 

instead it reveals a weak negative linear correlation between Mg/Ca and temperature in the 265 

presence of biofilm (P < 0.05, R2 = 0.44) so that (Mg/Ca)calcite generally decreases as 266 

temperature increases. Apart from the 20 °C experiment there is considerable variation of 267 

(Mg/Ca)calcite ratios at a given temperature; at 14 °C there is nearly an order of magnitude 268 

range. The flask experiment data for both BFL and BFD follow an almost identical pattern to 269 

that of the microcosm data (Fig. 2 (b & c)), although again with considerable scatter. Two 270 

replicates have plots well off the general pattern; both are at 18 °C, one from the BFL and 271 

one from the BFD. The presence of the potentially anomalous data points at 18 °C results in 272 

no significant correlation between temperature and (Mg/Ca)calcite for the BFL or BFD 273 

experiments (R2 = 0.13, and R2 = 0.16 respectively). The exclusion of the anomalous data 274 

points results in a significant negative power relationship at the 95 % confidence level for 275 

both BFL (R2 = 0. 76) and BFD experiments (R2 = 0.88) respectively. Combining the data 276 

generated from the microcosm and agitated flask experiments (Fig. 2 (d) gives no correlation 277 

between (Mg/Ca)calcite and temperature for precipitates generated in the presence of biofilm. 278 

© 2014, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/



3.2 Temperature and precipitation rate 279 

Binary plots of precipitation rates and temperature are presented in Figure 3.  The microcosm 280 

data (Fig 3 (a)) present a significant (P < 0.05) exponential correlation (R2 = 0.86). No 281 

significant correlation was found between precipitation rate and temperature for BFL 282 

precipitates (Fig 3 (b)) as data at 18 °C do not follow the general trend of increasing rate at 283 

higher temperatures observed at the other temperatures (excluding these points reveals a 284 

linear correlation; P < 0.05, R2 = 0.70). The BFD precipitates (Fig. 3 (c)) reveal a linear 285 

correlation significant at the 95 % confidence level (R2 = 0.48). The strength of this 286 

correlation is again reduced by the apparently anomalous data point at 18 °C, and removing 287 

this data point again strengthens the correlation (R2 = 0.74). Combining the data from the 288 

microcosm and agitated flask experiments (Fig 3 (d)) results in an exponential relationship 289 

between precipitation rate and temperature (P < 0.05, R2 = 0.45).  290 

 291 

3.3 (Mg/Ca)calcite and precipitation rate 292 

Figure 4 shows the relationship between (Mg/Ca)calcite and precipitation rate.  The control 293 

data shows a significant linear correlation whereby (Mg/Ca)calcite increases as precipitation 294 

rates rise, which is consistent with theoretical expectations which predict that Mg2+ 295 

partitioning increases with increasing precipitation rate (Rimstidt et al., 1998). In complete 296 

contrast, the results from the microcosm experiments (Fig. 4 (a)) show a negative power 297 

correlation between the parameters (R2 = 0.52, P < 0.05) with (Mg/Ca)calcite falling as 298 

precipitation rates increases. Similarly, the relationship between the (Mg/Ca)calcite ratios and 299 

precipitation rate for the BFL and BFD experiments (Fig. 4 (b & c)) takes the form of a 300 

negative power regression (R2 = 0.89 and 0.83 respectively), and for both sets of data 301 

combined (R2 = 0.79) all of which are significant at the 95 % confidence level. Figure 4 (d) 302 

plots the data from the microcosm, BFL and BFD experiments, the negative power 303 

correlation observed individually in the experiments is still held (P < 0.05, R2 = 0.67), 304 

although there is a clear separation of the 20 °C data. 305 

4. Discussion 306 

4.1 Precipitation temperature and (Mg/Ca)calcite 307 

The experimental results reveal that the presence of a microbial biofilm overrides the 308 

expected thermodynamic control on (Mg/Ca)calcite in a freshwater environment, and that use 309 
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of tufa derived (Mg/Ca)calcite as a palaeothermometer would be ill-advised. The data is not 310 

random however, and the structure of relationships between the parameters clearly indicates 311 

some form of significant microbial control. However, the coherent response of experiments in 312 

the microcosms and flasks both in light and dark indicates that some other (non-313 

thermodynamic) controls are in operation. Other than at 20oC, the microcosm data show wide 314 

variations in the (Mg/Ca)calcite indicating that these controls are not simple. The agitated flask 315 

experiments generally present a tighter relationship between (Mg/Ca)calcite and temperature, 316 

with the exception of two of the data points at 18 °C in both the BFL and BFD treatments. 317 

Examination of all the original ICP – OES outputs do not reveal anything that may make 318 

these values obviously erroneous, furthermore it cannot arise from some unexpected 319 

ecological change as the systems are fundamentally dissimilar one being largely 320 

heterotrophic and the other photosynthetic. The only common factor is that these flasks were 321 

seeded with the same aliquot of biofilm, and it is possible that this aliquot had a significantly 322 

different microbial or EPS composition which altered the behaviour of the biofilm in terms of 323 

calcite precipitation.  324 

4.2 Temperature and calcite precipitation rate  325 

At a given saturation state, calcite precipitation should increase with increasing temperature 326 

due to calcite solubility decreasing with increasing temperature (Morse and Mackenzie, 327 

1990). Higher temperatures also increase precipitation rates through the increased kinetic 328 

energy of the species, a higher number of collisions between ionic species at higher energies 329 

will increase the likelihood of precipitation reactions overcoming the activation energy 330 

barrier and going to completion. Increased calcification rates at higher temperatures have 331 

been observed in laboratory experiments involving precipitation in the presence of bacterial 332 

isolates (Cacchio et al., 2003, Cacchio et al., 2004, Baskar et al., 2006), however, no studies 333 

appear to have been conducted which examine precipitation rates as a function of temperature 334 

in the presence of a full microbial biofilm. 335 

We find no consistent relationship between the mean precipitation rates at a given 336 

temperature (Table 1) and the precipitation environment (e.g. the flow-through microcosms 337 

or the agitated flasks), but also no consistent differences between the three types of system 338 

(microcosm, BFL and BFD). At the commencement of the experiments the Ω values were the 339 

same for both microcosm and agitated flask experiments, and only marginally different 340 

within the entire range of conditions ( = 0.95 to 1.07), although in the agitated flasks there 341 
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was no replenishment of ions to the experimental solution so Ω values will have fallen over 342 

time as precipitation took place. In the absence of other reasons to explain the breakdown of 343 

the expected physicochemical behaviour, we again conclude that Mg/Cacalcite is controlled by 344 

microbial activity or the presence of EPS. 345 

4.3 (Mg/Ca)calcite and precipitation rate 346 

The negative power relationship between (Mg/Ca)calcite and precipitation rate derived from the 347 

microcosm and agitated flask experiments is contradictory to theoretical expectations 348 

suggesting that the presence of the biofilm has a strong influence on the correlation between 349 

the parameters. Distribution coefficients (K) were calculated for both microcosm and agitated 350 

flask precipitates using the standard equation 𝐾 = (𝑀𝑔 𝐶𝑎⁄ )𝑐𝑎𝑙𝑐𝑖𝑡𝑒/(𝑀𝑔 𝐶𝑎⁄ )𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 and are 351 

presented as a function of precipitation rate in Figure 5 (P < 0.05, R2 = 0.67). However, 352 

empirical distribution coefficients differ from theoretical coefficients which are determined 353 

from a system assumed to be at equilibrium. Experimental conditions can only approximate 354 

equilibrium, furthermore kinetic effects result in non uniform trace element partitioning in 355 

precipitates from actual experiments (Rimstidt et al., 1998). For the purposes of the following 356 

discussion empirical coefficients will be designated by (Kem) and equilibrium coefficients by 357 

(Keq). Table 2 shows the Kem Keq and ionic radii for selected divalent cations. Experimental 358 

evidence shows that a relationship exists between precipitation rates and Kem which is 359 

dependent on the value of Keq (Rimstidt et al., 1998) where: 360 

for elements with a Keq < 1 (e.g. Mg2+) the value of Kem is larger than Keq and decreases 361 

towards Keq as precipitation rates fall. 362 

 363 

for elements with Keq > 1 the value of Kem is smaller than Keq and increases towards Keq as 364 

precipitation rates fall. 365 

These relationships have been observed experimentally (e.g. Lorens, 1981, Mucci 1987, 366 

Pingitore et al., 1988, Tesoriero and Pankow, 1996) in abiotic precipitates. Accordingly, at 367 

faster precipitation rates the value of Kem for Mg2+ into calcite should increase as precipitation 368 

rates rise. The Kem values obtained in the experiments described here are in complete contrast 369 

to this and also to the Kem values obtained in experiments on inorganic calcite. Clearly, 370 

normal chemical evolution of the solid from the solution is being prevented by the biofilm.  371 

4.4 The potential of biofilms to influence calcite precipitation chemistry 372 
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The presence of a microbial biofilm in these experiments has shifted the (Mg/Ca)calcite ratios 373 

as a function of both temperature and precipitation rate away from theoretical expectations 374 

but also from the type of relationships seen in other biogenic carbonates such as ostrocodes, 375 

foraminiferal and coral carbonate. This indicates that trace element ratios and precipitation 376 

rates must be influenced by some aspect of the biofilm not present in other settings; these 377 

must be specific microbial metabolic processes, structural components of the biofilm (EPS) 378 

or a combination of both.  Temperature variations have been shown to have an impact on 379 

both biofilm microbial diversity and growth rates from photosynthesis and heterotrophic 380 

metabolism within the temperature range of the experiments described here (Blanchard et al., 381 

1996, Watermann et al., 1999, Defew et al., 2004, Hancke and Glud, 2004, Salleh and 382 

McMinn, 2011). The diversity of microorganisms held in a laboratory grown biofilm exposed 383 

to specific light and temperature conditions is strongly dependant on species specific growth 384 

rates and any species within the biofilm complex can only acclimatise to the imposed 385 

environment within their individual genetic limits (Defew et al., 2004). In 386 

diatom/cyanobacterial biofilms such as those used in this work it has been observed that at 10 387 

°C diatoms are the dominant organism but at 25 °C filamentous cyanobacteria dominate 388 

(Watermann et al., 1999). Others have observed that between 10 and 18 °C changes in 389 

diatom species composition were minimal, but at 18 °C there was a significant change in the 390 

species composition, with a significant shift to low diversity (Defew et al., 2004). In light of 391 

these observations it is assumed that over the range of 12 – 20 °C of the described 392 

experiments considerable variation will have been induced in both genus and species 393 

variations during the course of each experimental run. 394 

Such changes in ecological structure will likely result in the changes in biogeochemical 395 

behaviour found during our experiments. The finding of Waterman et al., (1999) that 396 

cyanobacteria are the dominant organisms in biofilms at higher temperatures may explain the 397 

dramatic increase in precipitation rates at 20 °C seen in the microcosm experiments. Biofilm 398 

microprofiles of pH, O2, Ca2+ and CO3
2− obtained by Shiraishi et al. (2008) showed that bright 399 

green cyanobacteria dominated biofilms had a higher photosynthetic capacity and thus 400 

exerted more influence on the carbonate system at the tufa surface. The enhanced creation of 401 

an alkaline environment through the greater photosynthetic capacity of a cyanobacterial 402 

dominated biofilm at 20 °C in the experiments described here may have enhanced 403 

precipitation rates significantly over those at the lower temperatures where cyanobacteria 404 

were not the dominant microorganism.  405 
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However, faster precipitation arising from ecological changes effect provides no mechanism 406 

to provide the trend reversal in the Krem compared to the Kreq; this requires first-order 407 

alteration of the cationic biogeochemical system.  408 

4.4.1 Impact of EPS on (Mg/Ca)calcite 409 

Involvement of a metal-organic phase at precipitation sites, which are actively exchanging 410 

ions with ambient water (Rogerson et al, 2010), does provide a means of altering apparent 411 

partition coefficients. The wide variations in (Mg/Ca)calcite ratios seen in the precipitates 412 

generated within the biofilms of the microcosm experiments thus are likely to be a 413 

consequence of heterogeneity in the composition of the functional groups within the biofilm 414 

matrix. 415 

Variations in species diversity have been shown to have a large impact on the composition 416 

and amount of EPS produced (Di Pippo et al., 2009), this is important given its ability to 417 

chelate Ca2+
(aq)  and Mg2+

(aq)  from the bulk water of a calcite precipitating experimental 418 

solution or natural system (Rogerson et al., 2008). The chelating ability of EPS molecules 419 

depends on the availability of binding sites on negatively charged functional groups, which 420 

may be reduced by interactions between EPS molecules by causing them to become sterically 421 

inhibited or blocked (Dupraz et al., 2009). The nature of these interactions will vary 422 

alongside changes in biofilm composition.  It has been suggested that the physical state of 423 

EPS also influences the binding abilities, whereby EPS in a gel state may bind more strongly 424 

with a particular cation than one in a loose slime state (Decho, 2000).  425 

In addition to changes in binding abilities (i.e. the amount of a specific cation) there is a 426 

further potential influence on (Mg/Ca)calcite arising from EPS through chemoselectivity, 427 

especially as pervasive EPS has been found associated with carbonate precipitates down to 428 

the nm scale (Benzerara et al., 2006). The favouring for the chelation of Ca2+
(aq)  over Mg2+

(aq) 429 

will ensure that water in the immediate microenvironment of the EPS will have a lower 430 

(Mg/Ca)solution than that of the bulk water and the water held within the biofilm matrix which 431 

is not in the immediate microenvironment of the EPS molecules. Although it has been shown 432 

that chelation exhibits an overall selectivity across a full biofilm based on charge density 433 

(Rogerson et al., 2008) it has also been demonstrated that some anionic groups differ in their 434 

chelation affinities for Ca2+ and Mg2+ with some favouring calcium over magnesium and vice 435 

versa (Table 3) (Wang et al., 2009).  436 
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The complexity of these interactions would suggest that these influences would be rather 437 

unpredictable and “noisy”, but we find a rather well organised relationship between 438 

precipitation rate and Mg/Ca(calcite). We propose that the very high calcium contents exhibited 439 

at high precipitation rate is most likely to arise from utilisation of the metal pool chelated to 440 

the EPS molecules (dominated by Ca2+ due to chemoselectivity). The bound cations may 441 

form either unidentate or bidentate bonds with anionic functional groups on the EPS 442 

molecules. Bidentate bonds form when both positive charges on the Ca2+
(aq)  are linked to 443 

anionic groups, forming bidentate bridges between EPS molecules (Geesey and Yang, 1989). 444 

Such an arrangement would be an inhibiting factor to calcite precipitation as free Ca2+ ions 445 

have been removed from solution reducing the saturation index with respect to calcite 446 

(Kawaguchi and Decho, 2002).  However, if only one of the positive charges on a Ca2+
(aq) 447 

cation is complexed with an anion (unidentate bonding) it leaves the other positive charge 448 

free to bind with a CO3
2− ion and initiate CaCO3 precipitation by providing a nucleation site 449 

for further precipitation (Shiraishi et al., 2008, Decho, 2010). A further mechanism by which 450 

Mg/Ca(calcite) ratios may be reduced from expectation is through the incorporation unidentate 451 

Ca2+ - ligand complexes into the precipitating solid. Figure 6 provides a schematic illustration 452 

of unidentate/bidentate bonding and how nucleation sites may develop on the free positive 453 

charge of a unidentate bonded Ca2+.  454 

5 Conclusion 455 

The experimental results indicate that microbial metabolism and/or the presence of EPS 456 

molecules overrides the expected thermodynamic control on Mg/Ca(calcite) in ambient 457 

temperature freshwater carbonate deposits. This was observed in both the flow through 458 

microcosm and agitated flask precipitates. A significant relationship was found between 459 

(Mg/Ca)calcite ratios and precipitation rate for both the microcosm and agitated flask 460 

experiments.  461 

It has previously been reported that EPS preferentially chelates Ca2+ over Mg2+ resulting in 462 

the microenvironment around the EPS molecules being enriched in calcium over magnesium  463 

generating low (Mg/Ca)calcite compared to that expected from the bulk water (Mg/Ca)solution 464 

ratio (Rogerson et al., 2008). This chemoselectivity favours the formation of Ca2+ - ligand 465 

complexes, and the incorporation of some of these complexes into the precipitating solid will 466 

both decrease precipitation activation energy (via “gel templating”) (Decho, 2010) and drive 467 

the (Mg/Ca)calcite ratio down from that expected from the bulk water (Mg/Ca)solution ratio at a 468 
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given temperature. Our data implies that this process is fundamental in controlling the trace 469 

element geochemistry of tufa carbonate.  470 

Although several calibrations of the Mg/Ca palaeothermometer have been constructed for 471 

foraminiferal and coralline calcite the findings here strongly suggest that the calibration of a 472 

palaeothermometer is not a realistic prospect for tufa carbonates precipitated in the presence 473 

of microbial biofilms. The finding that metal inclusion into precipitated calcite is accentuated 474 

at low precipitation rates, and that the specific bonding character of cations and EPS 475 

molecules are the primary regulator of this relationship, has impact well beyond 476 

palaeothermometry. Generally, geoengineering practices where pollutants are extracted from 477 

solution into carbonates aim at acceleration of the precipitation process. Our finding is that 478 

this may always not be appropriate.  479 

6. Acknowledgements 480 

This research was supported by a University of Hull 80th Anniversary PhD scholarship. Mark 481 

Anderson and Mike Dennett are thanked for their technical assistance and for assisting in the 482 

running of the experiments. Tony Sinclair and Bob Knight are thanked for their assistance in 483 

running the SEM and ICP – OES instruments respectively. 484 

7. References  485 
 486 
Anand,  P.,  Elderfield,  H.,  Conte,  M.H.  (2003)  Calibration  of  Mg/Ca  thermometry in 487 
planktonic foraminifera from sediment trap time series. Paleoceanography, 18 (2), 1050.  488 

 489 

Beer, T. (1996) Environmental Oceanography. CRC Press, Florida.  490 

 491 

Benzerara, K., Menguy, N., Lopez-Garcia, P., Yoon, T.-H., Kazmierczak, J., Tyliszczak, T., 492 
Guyot, F. & Brown, G. E., Jr. 2006. Nanoscale detection of organic signatures in carbonate 493 
microbialites. Proceedings of the National Academy of Sciences 103, 9440-9445. 494 

 495 

Bhaskar PV, Bhosle NB (2006) Bacterial extracellular polymeric substance (EPS): a carrier 496 
of heavy metals in the marine food chain. Environment Inernational, 32, 191–198.  497 

 498 

Bissett,  A.,  Reimer,  A.,  de  Beer,  D.,  Shiraishi,  F.  and  Arp,  G.,  (2008)  Metabolic 499 
microenvironmental control by photosynthetic biofilms under changing macroenvironmental 500 
temperature and pH conditions. Applied Environmental Microbiology, 74(20), 6306-6312.  501 
 502 
Blanchard, G.F, Guarini, J.M, Richard, P., Gros, P., Mornet, F. (1996) Quantifying the short-503 
term temperature effect on lightsaturated photosynthesis on intertidal microphytobenthos. 504 
Marine Ecology Progress Series, 134, 309–313.  505 

© 2014, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/



 506 

Boussetta, S., Bassinot, F., Sabbatini, A., Caillon, N., Nouet, J., Kallel, N., Rebaubier, H., 507 
Klinkhammer,  G.,  Labeyrie,  L.  (2011)  Diagenetic  Mg‐ rich  calcite  in  Mediterranean 508 
sediments: Quantification and impact on foraminiferal Mg/Ca thermometry. Marine Geology, 509 
280 (1–4), 195–204.  510 

 511 

Brasier, A.T., Andrews, J.E., Marca-Bell, A.D., Dennis, P.F. (2010) Depositional continuity 512 

of seasonally laminated tufas: Implications for δ
18

O based palaeotemperatures. Global and 513 

Planetary change, 71 (3-4)160 – 167.  514 

 515 

Cacchio P, Ercole C, Cappuccio G, Lepidi A. (2003) Calcium carbonate precipitation by 516 
bacterial  strains  isolated  from  limestone  cave  and  from  a  loamy soil.  Geomicrobiology 517 
Journal, 20, 85–98.  518 
 519 

Cacchio P., Contento R., Ercole C., Cappuccio G., Martinez M. P. and Lepidi A. (2004) 520 
Involvement of microorganisms in the formation of carbonate speleothems in the Cervo Cave 521 
(L‘Aquila—Italy). Geomicrobiology Journal, 21, 497–509.  522 

 523 

Chafetz, H., Rush, P.F. and Utech, N.M. (1991) Microenvironmental controls on mineralogy 524 
and habit of CaCO precipitates: an example from an active travertine system. Sedimentology, 525 
38, 107-126  526 
 527 
Chave,  K.E.  (1954)  Aspects  of  the  biogeochemistry  of  magnesium:  Calcareous  marine 528 
organisms. Journal of Geology, 62. 266–283.  529 

 530 

Couradeau, E., Benzerara, K., Gérard, E., Estève, I., Moreira, D., Tavera, R. & López-García, 531 
P. 2013. Cyanobacterial calcification in modern microbialites at the submicrometer scale. 532 

Biogeosciences, 10, 5255-5266. 533 

 534 

Decho, AW. (2000) Microbial biofilms in intertidal systems: an overview. Continental Shelf 535 
Research, 20, 1257–1273.  536 

 537 

Decho,  A.W. (2010)  Overview  of  biopolymer-induced  mineralization:  What  goes  on  in 538 
biofilms? Ecological Engineering, 36(2), 137-144.  539 

 540 

Defew, E. C., Perkins, R. G., Paterson, D. M. (2004) The influence of light and temperature 541 

interactions on a natural estuarine microphytobenthic assemblage. Biofilms, 1, 21–30.  542 

 543 

Delaney, M.L., Be, A.W.H. and Boyle, E.A. (1985) Li, Sr, Mg and Na in foraminiferal calcite 544 
shells   from   laboratory  culture,   sediment   traps,   and   sediment   cores.   Geochimica 545 

Cosmochimica Acta, 49, 1327-1341. 546 
 547 

Di  Pippo,  F.;  Bohn,  A.;  Congestri,  R.;  De  Philippis,  R.;  Albertano,  P.  Capsular 548 

polysaccharides of cultured phototrophic biofilms. Biofouling, 25, 495-504 549 

 550 

Dittrich,  M.,  Muller,  B.,  Mavrocordatos,  D.  and  Wehrli,  B.,  2003.  Induced  calcite 551 
precipitation  by  cyanobacterium  Synechococcus.  Acta  Hydrochimica  Et  Hydrobiologica, 552 

© 2014, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/



31(2), 162-169.  553 

 554 

Dittrich,  M.  and  Sibler,  S.  (2010)  Calcium  carbonate  precipitation  by  cyanobacterial 555 

polysaccharides.  In:  H.M.  Pedley  and  M.  Rogerson  (Editors),  Speleothems  and  Tufas: 556 

Unravelling  Physical  and  Biological  controls.  Geological  Society  Special  Publication. 557 

Geological Society of London, London, 336, pp. 65-81. 558 

 559 

Dupraz, C., Reid, P.R., Braissant, O., Decho, A.W. Norman, S.R. and Visscher, P.T. (2009). 560 
Processes of carbonate precipitation in modern microbial mats. Earth Science Reviews, 96(3) 561 
141-162.  562 

 563 

Elderfield,  H.,  Bertram,  C.J.  and  Erez,  J.  (1996)  Biomineralization  model  for  the 564 
incorporation of trace elements into foraminiferal calcium carbonate, Earth and Planetary 565 

Science Letters, 142, 409–423.  566 

 567 

Fairchild,  I.J.  and  Treble,  P.C.  (2009)  Trace  elements  in  speleothems  as  recorders  of 568 
environmental change. Quaternary Science Reviews, 28, 449–468  569 

 570 

Garnett, E.R., Andrews, J.E., Preece, R.C., Dennis, P.F. (2004). Climatic change recorded by 571 
stable isotopes and trace elements in a British Holocene tufa. Journal of Quaternary Science, 572 
19, 251–262.  573 
 574 

Geesey, G.G., Jang, L. (1989) Interactions between metal ions and capsular polymers. In: 575 
Beveridge, T.J., Doyle, R.J. (Eds.), Metal ions and bacteria. Wiley, New York, pp. 325–357.  576 

 577 

Hancke, K. and Glud, R.N. (2004) Temperature effects on respiration and photosynthesis in 578 
three diatom-dominated benthic communities. Aquatic Microbial Ecology, 37, 265-281.  579 

 580 

Ihlenfeld C., Norman M., Gagan M., Drysdale R., Maas R. and Webb J. (2003) Climatic 581 
significance of seasonal trace element and stable isotope variations in a modern freshwater 582 

tufa. Geochimica et Cosmochimica Acta, 67, 2341–2357  583 

 584 

Kawaguchi,  T.  and  Decho,  A.W.  (2002)  Isolation  and  biochemical  characterization  of 585 
extracellular polymeric secretions (EPS) from modern soft marine stromatolites (Bahamas) 586 

and its inhibitory effect on CaCO3 precipitation. Biochemistry and Biotechnology, 32, 51–63.  587 

 588 

Konhauser, K. (2007) Introduction to Geomicrobiology. Blackwell Publishing, Oxford.  589 

 590 

Kısakürek, B., Eisenhauer, A., Böhm, F., Garbe-Schönberg, D. and Erez, J. (2008) Controls 591 
on  shell  Mg/Ca  and  Sr/Ca  in  cultured  planktonic  foraminiferan,  Globigerinoides  ruber 592 
(white). Earth and Planetary Science Letters, 273, 260–269.  593 

 594 

Lojen, S., Trkov, A., Ščančar, J., Vázquez-Navarro, Y.A. and Cukrov, N. (2009) Continuous 595 
60-year stable isotopic and earth-alkali element records in a modern laminated tufa (Jaruga, 596 
river Krka, Croatia): Implications for climate reconstruction. Chemical Geology, 258, 242– 597 

© 2014, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/



250.  598 

 599 

Lorens, R. B. (1981) Sr, Cd, Mn and Co distribution coefficients in calcite as a function of 600 
calcite precipitation rate. Geochimica et Cosmochimica Acta, 45, 553–561.  601 

 602 

Martínez-Botí, M.A., Mortyn, P.G., Schmidt, D.N., Vance, D.,  Field, D.B. (2011) Mg/Ca in 603 
foraminifera from plankton tows: Evaluation of proxy controls and comparison with core 604 
tops. Earth and Planetary Science Letters, 307, 113-125.  605 

 606 

Mitsuguchi, T., Matsumoto, E., Abe, O., Uchida, T., Isdale, P.J., (1996) Mg/Ca thermometry 607 
in coral skeletons. Science, 274, 961–963.  608 

 609 

Morse, J. W. and Bender, M. L. (1990) Partition coefficients in calcite: Examination of 610 
factors  influencing  the  validity  of  experimental  results  and  their  application  to  natural 611 

systems. Chemical Geology 82, 265–277. 612 
 613 
Morse,  J.W.  and  Mackenzie,  F.T.  (1990)  Geochemistry  of  Sedimentary  Carbonates 614 
(Developments in Sedimentology). Elsevier Science, London.  615 

 616 

Mucci,  A.  (1987)  Influence  of  temperature  on  the  composition  of  magnesian  calcite 617 
overgrowths precipitated from seawater. Geochimica et Cosmochimica Acta, 51, 1977-1984.  618 

 619 

Nurnberg, D., Bijma, D. and Hemleben, C. (1996) .Assessing the reliability of magnesium in 620 
foraminiferal calcite as a proxy for water mass temperatures, Geochimica et Cosmochimica 621 
Acta, 60, 803– 814.  622 

 623 

Oomori T., Kaneshima H., and Maezato Y. (1987) Distribution coefficient of Mg
2+

  ions 624 

between calcite and solution at 10–50°C. Marine Chemistry 20, 327–336.  625 

 626 

Pedley, H. M., Rogerson, M. and Middleton R. (2009) The growth and morphology of 627 
freshwater calcite precipitates from in vitro mesocosm flume experiments. Sedimentology, 628 
56, 511 – 527.  629 

 630 

Pingitore,  N.E.,  Eastmen,  M.P.,  Sandidge,  M.,  Oden,  K.,  and  Freiha,  B.  (1988)  The 631 
coprecipitation of manganese (II) with calcite: An experimental study. Marine Chemistry, 25, 632 
107–120.  633 
Reynaud, S., Ferrier-Pages, C., Meibom, A., Mostefaoui, S., Mortlock, R., Fairbanks, R. and 634 
Allemand,  D.  (2007)  Light  and  temperature  effects  on  Sr/Ca  and  Mg/Ca  ratios  in  the 635 
scleractinian coral Acropora sp. Geochimica et Cosmochimica Acta, 71, 354 – 362.  636 

 637 

Rimstidt  J.  D.,  Balog  A.,  and  Webb  J.  (1998)  Distribution  of  trace  elements  between 638 
carbonate minerals and aqueous solutions. Geochimica et Cosmochimica Acta 62, 1851– 639 
1863.  640 

 641 

Rogerson, M., Pedley, H.M., Wadhawan, J.D. and Middleton, R. (2008) New insights into 642 
biological influence on the geochemistry of freshwater carbonate deposits. Geochimica et 643 
Cosmochimica Acta, 72, 4976 – 4982.  644 

© 2014, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/



 645 

Rogerson,  M.,  Pedley,  H.M.,  and  Middleton,  R.  (2010)  Microbial  influence  on 646 

macroenvironment chemical conditions in alkaline (tufa) streams: perspectives from in vitro 647 

experiments.  In:  H.M.  Pedley  and  M.  Rogerson  (Editors),  Speleothems  and  Tufas: 648 

Unravelling  Physical  and  Biological  controls.  Geological  Society  Special  Publication 649 

Geological Society of London, London, pp. 65-81. 650 
 651 
Rosenthal,  Y.,  Boyle,  E.A.  and  Slowey,  N.  (1997)  Environmental  controls  on  the 652 
incorporation of Mg, Sr, F and Cd into benthic foraminifera shells from Little Bahama Bank: 653 
Prospects for thermocline paleoceanography. Geochimica et Cosmochimica Acta, 61, 3633– 654 
3643, 1997.  655 

 656 

Salleh,  S.  and  McMinn,  A.  (2011)  The  effects  of  temperature  on  the  photosynthetic 657 
parameters and recovery of two temperate benthic microalgae, amphora cf. coffeaeformis and 658 
cocconeis cf. sublittoralis (bacillariophyceae). Journal of Phycology, 47, 1413-1424.  659 

 660 

Saunders, P.V., Moulin, F.Y., Eiff, O., Rogerson, M. (In press) Biofilms. In: L.E Frostick, 661 
M.F. Johnson, R.E. Thomas, S.P. Rice and S.J.McLelland (Editors). .A Users Guide to 662 
Ecohydraulic Experimentation. IAHR book series, CRC Press, London.  663 

 664 

Shirai K, Kusakabe M, Nakai S, Ishii T, Watanabe T, Hiyagon H, Sano Y. (2005) Deep-sea 665 
coral geochemistry: implication for the vital effect. Chemical Geology, 224, 212–222  666 

 667 

Shiraishi, F., Bissett, A., de Beer, D., Reimer, A., Arp, G. (2008a) Photosynthesis, respiration 668 
and exopolymer calcium-binding in biofilm calcification (Westerhöfer and Deinschwanger 669 
Creek, Germany). Geomicrobiology Journal, 25, 83–94.  670 
 671 

Shiraishi,  F.,  Okumura,  T.,  Takahashi,  Y.,  Kano,  A.,  (2010)  Influence  of  microbial 672 
photosynthesis  on  tufa  stromatolite  formation  and  ambient  water  chemistry,  SW  Japan. 673 
Geochimica et Cosmochimica Acta, 74, 5289–5304.  674 

 675 

Tesoriero, A. and Pankow, J. (1996) Solid solution partitioning of Sr
2+

, Ba
2+

, and Cd
2+

  to 676 

calcite. Geochimica et Cosmochimica Acta, 60, 1053–1063.  677 

 678 

Wang,  D.B.,  Wallace,  A.F,  De  Yoreo,  J.J.,  Dove,  P.M.  (2009)  Carboxylated  molecules 679 
regulate  magnesium  content  of  amorphous  calcium  carbonates  during  calcification. 680 

Proceedings of National Academy of Sciences U.S.A., 106, 21511–21516 681 
 682 
Watermanm  F.,  Hillebrand,  H.,  Gerdes,  G.,  Krumbein,  W.E.,  Sommer,  U.  (1999). 683 

Competition between benthic cyanobacteria and diatoms as influenced by different grain 684 
sizes and temperatures. Marine Ecology Progress Series, 187, 77-87.  685 

 686 

Wei, G., Sun, M., Li, X., Nie, B., (2000) Mg/Ca, Sr/Ca and U/Ca ratios of a porites coral 687 
from Sanya  Bay, Hainan  Island, South China sea and their relationships  to sea surface 688 
temperature. Palaeogeography Palaeoclimatology Palaeoecology, 162, 59–74.  689 

 690 

© 2014, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/



Wolfaardt,  G.M.,  Lawrence,  J.R.,  Robarts,  R.D.,  Caldwell,  D.E.  (1998)   In  situ 691 

characterization  of  biofilm  exopolymers  involved  in  the  accumulation  of  chlorinated 692 
organics. Microbiolial Ecology, 35, 213–223.  693 

 694 

Yoshimura, T., Tanimizu, M., Inoue, M., Suzuki, A., Iwasahi, N., Kawahata, H. (2011) Mg 695 
isotope fractionation in biogenic carbonates of deep-sea coral, benthic foraminifera, and 696 
hermatypic coral. Analytical and bioanalytical chemistry, 401(9), 2755 – 2769.  697 

 698 

Yu, K.F., Zhao, J.X., Wei, G.J., Cheng, X.R., Chen, T.G., Felis, T., Wang, P.X., Liu, T.S. 699 

(2006)   δ
18

O, Sr/Ca and Mg/Ca records of Porites lutea corals from Leizhou Peninsula, 700 

northern   South   China   Sea,   and   their   applicability   as   palaeoclimatic   indicators. 701 
Palaeogeography, Palaeoclimatology, Palaeoecloogy,, 218, 57–73.  702 

 703 

Zhang, Y. and Dawe, R.A. (2000) Influence of Mg
2+

  on the kinetics of calcite precipitation 704 

and calcite crystal morphology. Chemical Geology, 163, 129-138.  705 

 706 

Captions 707 

 708 
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design. Arrows indicate direction of water flow. 710 
 711 
Fig. 2. (Mg/Ca)calcite ratios as a function of temperature: (a) Microcosms; (b) BFL; (c) BFD; (d) 712 
Combined data. Error bars represent 1 σ. 713 
 714 
Fig. 3. Precipitation rate versus temperature. (a) Microcosms; (b) BFL; c) BFD; (d) Combined data. 715 
 716 
Fig. 4. (Mg/Ca)calcite as a function of precipitation rate (a) Microcosms; (b) BFL; (c) BFD; (d) Combined 717 
data. 718 
 719 
Fig. 5. (a) Mean precipitation rates of all replicates from the microcosm, BFL and BFD experiments as 720 
a function of temperature. (b) Mean precipitation rate as a function of temperature excluding the 20 721 
°C data. 722 
 723 
Fig. 6. Distribution coefficients as a function of precipitation rate from the microcosm and agitated 724 
flask experiments combined. 725 
 726 
Fig. 7. Schematic representation of unidentate and bidentate bonding of cations on anionic groups 727 
of EPS molecules (represented by the two wavy lines). Nucleation sites are created on unidentate 728 
bonded Ca2+673 . The large arrows represent the continuous diffusion of ionic species into and out of 729 
the microenvironment of the EPS molecules. 730 
 731 
Table 1. Empirical and equilibrium distribution coefficients for selected divalent cations along with 732 
ionic radii. The ionic radii are in six-fold coordination from Shannon and Prewitt, 1969. For reference 733 
the ionic radii of Ca2+

 is 1.00 (Table adapted from Rimstidt et al., 1998). 734 
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Table 2. Binding constants for multicarboxylic acids. The Binding constant K is for the generalised 736 
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Table 1. Empirical and equilibrium distribution coefficients for selected divalent cations along with ionic radii. 

The ionic radii are in six-fold coordination from Shannon and Prewitt, 1969. For reference the ionic radii of Ca2+ 

is 1.00 (Table adapted from Rimstidt et al., 1998). 

 

 

 

 

 

Cation Ionic radius Kexp Keq 

Ba2+ 1.36 0.020 1.95 x 10-2 

Cd2+ 0.95 188 6.92 x 103 

Co2+ 0.65 10.9 4.68 x 101 

Cu2+ 0.73 80.2 1.55 x 103 

Fe2+ 0.61 27.7 2.40 x 102 

Mg2+ 0.72 0.022 8.71 x 10-4 

Mn2+ 0.67 20.5 1.41 x 102 

Pb2+ 1.18 17.2 2.63 x 103 

Ra2+ 1.44 0.020 1.91 x 10-3 

Sr2+ 1.16 0.073 1.82 x 10-1 
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Table 2. Mean precipitation rates from lowest to highest as related to experimental conditions. 

Experiment type Temperature (°C) 
Precipitation rate 

 (µmol cm-2 hr-1) 

Microcosm 12 0.027 
Microcosm 14 0.047 
Microcosm 16 0.007 
Microcosm 18 0.065 
Microcosm 12 0.027 

BFL 12 0.012 
BFL 14 0.107 
BFL 16 0.113 
BFL 18 0.023 
BFL 20 0.177 
BFD 12 0.006 
BFD 14 0.056 
BFD 16 0.034 
BFD 18 0.036 
BFD 20 0.116 
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Figure 1. Schematic visualisation of the addition of the agitated flask experiment to the microcosm 

design. Arrows indicate direction of water flow. 
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Figure 2. (Mg/Ca)calcite ratios as a function of temperature: (a) Microcosms; (b) BFL;  (c) BFD; (d) 

Combined data.  Error bars represent 1 σ. 

 

a) b) 

c) d) 
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Figure 3. Precipitation rate versus temperature. (a) Microcosms; (b) BFL; c) BFD;  (d) Combined data. 

Fig. 3. Precipitation rate versus temperature. (a) Microcosms; (b) BFL; c) BFD; (d) Combined data. 
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Figure 4. (Mg/Ca)calcite as a function of precipitation rate (a) Microcosms; (b) BFL; (c) BFD; (d) 

Combined data. 
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Fig. 5. (a) Mean precipitation rates of all replicates from the microcosm, BFL and BFD experiments as 
a function of temperature. (b) Mean precipitation rate as a function of temperature excluding the 20 
°C data. 
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Figure 6. Distribution coefficients as a function of precipitation rate from the microcosm and 

agitated flask experiments combined. 
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