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Abstract
The joint bilateral filter is a variant of the standard bilateral filter, where the range kernel is evaluated using
a guidance signal instead of the original signal. It has been successfully applied to various image processing
problems, where it provides more flexibility than the standard bilateral filter to achieve high quality results. On
the other hand, its success is heavily dependent on the guidance signal, which should ideally provide a robust
estimation about the features of the output signal. Such a guidance signal is not always easy to construct. In this
paper, we propose a novel mesh normal filtering framework based on the joint bilateral filter, with applications
in mesh denoising. Our framework is designed as a two-stage process: first, we apply joint bilateral filtering to
the face normals, using a properly constructed normal field as the guidance; afterwards, the vertex positions are
updated according to the filtered face normals. We compute the guidance normal on a face using a neighboring
patch with the most consistent normal orientations, which provides a reliable estimation of the true normal even
with a high-level of noise. The effectiveness of our approach is validated by extensive experimental results.

The definitive version is available at http://diglib.eg.org/ and http://onlinelibrary.wiley.com/.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

The bilateral filter, introduced in [TM98], is a nonlinear fil-
ter for smoothing images while preserving sharp features
such as edges. It replaces the intensity value at a pixel by
a weighted average of the intensity values from neighbor-
ing pixels. The weights depend on the distance as well as
the intensity difference between the pixels. In this way a
pixel is only influenced by nearby pixels with similar in-
tensity, which prevents averaging pixel values across sharp
edges and preserves image features [PKTD07]. Due to its
success in image processing and computational photography,
many attempts have been made to adapt bilateral filtering to
geometry processing such as mesh denoising and smooth-
ing [FDCO03, JDD03, ZFAT11, SCBW14].

Extending the capability of bilateral filtering, the joint
bilateral filter was proposed simultaneously in [PSA∗04]
and [ED04] for processing flash/no-flash image pairs. The
basic idea is that the filtering weights can be determined
using the intensity difference from another image, called the
guidance, instead of the input image. When the guidance
provides more reliable information about the image structure
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than the input image, joint bilateral filtering leads to better
results than the classical bilateral filter. For example, this
is the case for flash/no-flash image pairs, where the flash
image can be used as the guidance for filtering the image
without flash, since the flash image contains more information
about the high-frequency features [PSA∗04, ED04]. Thus by
incorporating the guidance, the joint bilateral filter provides
more flexibility in controlling the filtering process.

Although joint bilateral filters have been successfully ap-
plied to image processing, it is not easy to adapt them to
geometry signals. The main difficulty lies in the construc-
tion of the guidance, which needs to be defined in the same
domain as the input signal while providing enough informa-
tion about the desired output. Unlike image signals which
are defined over rectangular domains with regular sampling,
geometry signals can be defined on surfaces with arbitrary
topology and irregular sampling, which requires compatible
surface topology and discretization between the input and the
guidance signals [SCBW14]. Compared to the case of images,
such guidance geometry is not easily available from measure
devices, but often has to be constructed computationally.

In this paper, we tackle the problem of constructing the
guidance for joint bilateral filtering of geometry signals. We
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Figure 1: The pipeline of our denoising method, using two faces close to sharp features on the ground truth mesh (shown in
blue) to demonstrate our patch-based construction of the guidance normals. The ground truth normals and the guidance normals
are shown in red and green, respectively. The color coding shows the angles between the ground truth and the guidance normals,
which gradually decrease during the iterations.

focus on feature-preserving denoising of triangle meshes,
done via face normal filtering in a two-stage process: in the
first stage, we apply joint bilateral filtering to the face nor-
mals, which are considered as a signal defined over a mesh
surface; afterwards, the mesh vertices are updated to match
the filtered face normals. The sensitivity of the normals with
respect to the mesh shapes enables us to effectively control
the features of the output mesh via normal filtering. The key
to the success of this approach is a properly constructed guid-
ance normal field for filtering the face normals, such that the
joint bilateral filter averages normals that belong to a common
smooth region, while preserving sharp changes of normals
that indicate features. To do so, we compute the guidance
normal in a patch-based approach (see Fig. 2): for a given
face, we search among a set of candidate patches that contain
the face, and pick the one with the most consistent normal
directions; the average normal of the chosen patch is then
used as the guidance normal for the face. Such guidance pro-
vides a robust estimation for the true normal in the presence
of noise, enabling our denoising algorithm to handle highly
noisy meshes. The effectiveness of our approach is illustrated
by extensive experimental results. Moreover, we provide the
source code to ensure reproducibility of our results.

1.1. Related work

Bilateral and joint bilateral filters. Due to its simplicity
and feature-preserving capability, the bilateral filter [TM98]
has been used in numerous applications in image process-
ing [OCDD01, DD02, CLKL14], video processing [BM05,
WOG06], and computer vision [XCS∗06]. An overview of bi-

lateral filtering and its applications can be found in [PKTD07].
As an extension of the bilateral filter, the joint bilateral fil-
ter can achieve even better results by employing a proper
guidance signal. It has been successfully applied for im-
age processing applications such as flash/no-flash image fil-
tering [PSA∗04, ED04] and image upsampling [KCLU07].
The feature-preserving capability of the standard bilateral
filter has also been utilized in geometry processing such
as mesh denoising [FDCO03, JDD03, ZFAT11], normal im-
provement for point rendering [JDZ04], surface reconstruc-
tion [DDD04], and mesh feature enhancement [Wan06]. Re-
cently, [SCBW14] propose a framework for applying the
bilateral and joint bilateral filters to signals with general do-
mains and codomains.

Our construction of guidance normals is closely related
to the joint bilateral filtering approach of [CLKL14] for ex-
tracting image structures, which also computes the guidance
image via patch-based analysis of the input image. In particu-
lar, we extend the patch selection criteria from [CLKL14], to
make them applicable for multi-dimensional signals defined
on non-planar domains with irregular sampling.

Mesh denoising. Meshes obtained from 3D scanning de-
vices often contain high-frequency noises. Thus mesh denois-
ing is an important tool in geometry processing, and has been
an active research topic for a long time [BPK∗08]. Due to the
large amount of research work in this domain, here we only
review the work that are the most relevant to our method.

A major challenge in mesh denoising is to remove the
noise without destroying the true features. Due to the feature-
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Figure 2: Patch-based construction of a guidance normal. For a given face (in blue), the face normals from each candidate patch
that contains the given face are shown, together with the consistency measure H computed from Equation (7). The patch with the
smallest value of H (highlighted in red) is chosen, and its average normal is used as the guidance normal for the given face.

preserving property of the bilateral filter, it is adopted
in [FDCO03] and [JDD03] for mesh denoising, where
the bilateral filter is applied to the mesh vertex positions.
[ZFAT11] employ the bilateral filter to the face normals
instead, followed by a vertex update according to the nor-
mals. [SCBW14] also perform mesh denoising by filtering
the face normals, using a general formulation of the bilateral
filter. Our denoising algorithm follows a similar approach,
iterating between normal filtering and vertex update. Our
method differs from [ZFAT11] and [SCBW14] as we apply
a joint bilateral filter on the normals, using a proper com-
puted guidance normal field that is robust for noisy meshes.
In comparison, [ZFAT11] and [SCBW14] can be considered
as applying the joint bilateral filter, with the guidance being
the input face normals. Such guidance can be corrupted by
the noises on the mesh and lead to unsatisfactory results.

The approach of filtering face normals and updating
vertex positions has also been adopted by many previous
work [YOB02, CC05, SRML07, SRML08]. The difference
between these methods is in their normal filtering strate-
gies: [YOB02] apply the mean and median filters, [CC05]
select filters based on local sharpness, while [SRML07]
and [SRML08] adopt trimmed quadratic weights and random
walk based weights for averaging the normals respectively.
Similar ideas have also been applied in point cloud consolida-
tion [WXL∗13,HWG∗13,SSW15], where they first construct
reliable normals for all points especially for points around
the edges, and then update the point positions accordingly.

Another type of mesh denoising methods is to first clas-
sify the vertices according to their incident features such as
corner, edge, and flat areas, and then apply specific denoising
strategies to each type of vertices. Different vertex classifica-
tion criteria have been proposed before, such as volume inte-
gral invariant [BT11], distribution of dihedral angles [CC05],

quadric surface fitting [FYP10], difference between face nor-
mals [WZY12] and normal tensor voting [WYP∗15].

Recently, sparsity optimization is also gaining popularity in
denoising, due to the fact that sharp features are usually sparse
on the ground truth mesh. [HS13] employ L0 minimization to
induce sparsity for an edge-based Laplacian operator, which
is effective for preserving the sharp features; on the hand, the
optimization is in favor of piecewise flat shapes, and may
not be suitable for non-CAD models. A similar approach is
employed in [SSW15] for denoising point clouds. Recently,
[WYL∗14] perform L1 optimization to recover sharp features
from noisy meshes. This method is only guaranteed to work
for independent and identically distributed noises, and is
computationally expensive for large meshes.

2. Guided filters for meshes

In this section, we provide an overview of our guided mesh
normal filtering framework, starting from a review of the
classical bilateral and joint bilateral filters.

2.1. Classical bilateral and joint bilateral filtering

Suppose we are interested in signals that are defined on do-
main Ω and with values in domain Γ. In its general form, the
bilateral filter for a signal I : Ω 7→ Γ can be written as

Jp =
1

Wp

∫
N (p)

Ks(p,q) Kr(Ip, Iq) Iq dq, for p ∈Ω. (1)

Here J : Ω 7→ Γ is the output signal, Jp and Ip are the values
of the signals J and I at point p, respectively; N (p)⊂ Ω is
a neighborhood of p; Ks : Ω×Ω 7→ R and Kr : Γ×Γ 7→ R
are non-negative kernel functions for the spatial and range
weights respectively, and Wp =

∫
N (p) Ks(p,q) Kr(Ip, Iq) dq

is a normalization factor. Intuitively, Jp is a weighted aver-
age of I within the neighborhood N (p). The spatial kernel
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Figure 3: Comparison between our method and the bilateral filtering scheme from [ZFAT11], which can be considered as joint
bilateral normal filtering with the input face normals as guidance. The histograms show statistics of the angle error function θ(·)
in Equation (12) across all edges. The robustness of our guidance normal field helps to correctly preserve sharp features even for
highly noisy meshes. The intensity σE of the Gaussian noise is from left to right 0.2, 0.4, 0.6, 0.8, and 1.0 (see Equation 14).

Ks is monotonically decreasing with respect to the distance
between p and q, while the range kernel Kr is monotonically
decreasing with respect to the distance between Ip and Iq.
A classical choice of the kernels are the Gaussian functions
evaluated from the Euclidean distance [TM98]:

Ks(p,q) = exp(−‖p−q‖2

2σ2
s

),

Kr(Ip, Iq) = exp(−‖Ip− Iq‖2

2σ2
r

), (2)

where σs, σr are variance parameters. As the kernel values fall
off quickly with increasing distance values, the filtered signal
Jp is influenced by the input signal value Iq only if points
p and q are close to each other in terms both their spatial
distance and their input signal value difference. As a result,
unlike the Gaussian filter which smooths the whole signal, the
bilateral filter is able to perform smoothing while preserving
high-frequency features such as image edges [PKTD07].

The effectiveness of the bilateral filter relies on the range
kernel that relates the averaging weights to the signal intensity
difference. In the classical scheme (1), the weight functions
are evaluated from the input signal I. In doing so, it makes
an implicit assumption that for nearby points p and q, the
proximity between the input signal values Ip and Iq provides

reliable prediction for the proximity between the desired
output signal values Jp and Jq. However, this assumption
is not always valid. For example, when recovering a signal
from a noisy measurement, the noise in the input signal may
render it unreliable for predicting the features of the output
signal, which can lead to erroneous denoising results using
the scheme (1). This issue can be resolved using the joint
bilateral filter [ED04, PSA∗04], which evaluates the range
kernel using a guidance signal G : Ω 7→ Γ such that

Jp =

∫
N (p) Ks(p,q) Kr(Gp,Gq) Iq dq∫
N (p) Ks(p,q) Kr(Gp,Gq) dq

. (3)

The idea is that the guidance G can provide more reliable
information about the structure of the desired output, thus
producing more suitable range weights that direct the filter
towards desirable results. On the other hand, the effectiveness
of the joint bilateral filter depends on how well the guidance
indicates the features of the desired output. While some previ-
ous work such as [ED04,PSA∗04] use the same measurement
device in different settings to produce the input signal and
the guidance, for many applications it is not straightforward
to find a suitable guidance. This is exactly the problem we
tackle in this paper, within the context of mesh denoising.
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Figure 4: Denoising results using the Euclidean distance and
the geodesic distance for the joint bilateral filter, respectively.
The color coding shows the closest distance from the vertices
of the Euclidean result mesh to the surface of the geodesic
result mesh, normalized by the bounding box diagonal length
of the input mesh.

2.2. Filtering mesh geometry

Given a noisy triangle mesh, our goal is to smooth the surface
while preserving the sharp features. We achieve this in a
two-stage process similar to [ZFAT11]:

• First, we apply a joint bilateral filter to the face normals, by
considering them as a signal defined over the mesh surface.
• Afterwards, the vertex positions are updated according to

the filtered face normals.

One benefit of filtering the normals instead of the vertices is
that the normals provide convenient descriptors for geometric
features of a mesh. For example, a sharp edge is indicated by a
large difference between the normals of its two incident faces.
To achieve desirable results, it is crucial to employ a proper
guidance for the joint bilateral filtering of face normals. In
the following, we provide an overview of our guided normal
filtering framework. Details of our method for constructing
the guidance can be found in Section 3.

Filtering face normals. For a face fi of an orientable tri-
angle mesh, its outward unit normal can be computed as

ni =
(vi2 −vi1)× (vi3 −vi1)

‖(vi2 −vi1)× (vi3 −vi1)‖
, where vi1 ,vi2 ,vi3 are the po-

sitions of its vertices in a fixed orientation. We consider ni as
a signal associated with the face centroid ci. To filter the face
normals,we first find a unit vector gi for each face fi as the
guidance. Then a filtered normal ni for face fi is computed
from joint bilateral filtering:

ni =
1

Wi
∑

f j∈Ni

A j Ks(ci,c j) Kr(gi,g j) n j, (4)

where Ni is the set of faces in a neighborhood of fi;
A j is the area of f j; Ks,Kr are the Gaussian kernels
as defined in (2); and the normalization factor Wi =
‖∑ f j∈Ni

A j Ks(ci,c j) Kr(gi,g j) n j‖ ensures that ni is a unit
vector. The setNi consists of the fi and a set of surrounding
faces, and can be defined in different ways:

• A simple choice is a topological neighborhood, consisting

Algorithm 1 Guided mesh normal filtering framework.
Input: Initial mesh Min, number of iterations kiter.
Output: Filtered mesh Mout.
1: M(0) = Min;
2: for s = 1 to kiter do
3: Compute face normals {ni} of mesh M(s−1);
4: Construct guidance normals {gi};
5: Compute filtered normals {ni} according to (4);
6: Compute updated mesh M(s) according to {ni};
7: end for
8: Mout = M(kiter).

of all faces that share at least one vertex with fi:

Ni = { fk | vi1 ∈ fk or vi2 ∈ fk or vi3 ∈ fk}, (5)

where vi1 , vi2 , vi3 are the vertices of fi. This definition is
similar to [ZFAT11].

• Alternatively, we can choose a geometrical neighborhood,
defined as the maximal set of faces that contains fi and
satisfies the following conditions:

1. For each face in Ni, its centroid is within distance r
from the centroid of fi, where r is a parameter specified
by the user: ∀ fk ∈Ni,‖ck− ci‖ ≤ r;

2. The faces inNi form a single connected component via
shared vertices between neighboring faces.

Such a neighborhood can be computed using breadth-first
search starting from fi.

For meshes with highly non-uniform sampling, the geometri-
cal neighborhood can provide better results, since it is able to
include all neighboring faces with similar spatial weights.

Remark. Using the Gaussian kernels in (2), the weights for
n j in our filtering scheme depends on the proximity between
the centroids ci,c j and the proximity between the guidance
normals gi,g j, both measured using the Euclidean distance.
Since ci,c j lie on the mesh surface, and gi,g j lie on the unit
sphere, we can also evaluate the kernels Ks,Kr using the
geodesic distance instead of the Euclidean distance. In our
experiments, using the geodesic distance does not make a
significant difference to the final results (see Fig. 4), while the
evaluation of geodesic distance can be much more involved.
Thus in this paper, the kernels are always evaluated from the
Euclidean distance, unless stated otherwise.

Updating vertices. After filtering the face normals, the ver-
tex positions need to be updated to match new normal direc-
tions {ni}. We adopt the iterative scheme from [SRML07]
for the vertex update. Specifically, for a face fi, we compute
its updated vertex positions vi1 ,vi2 ,vi3 via the iteration

v(t+1)
i = v(t)i +

1
|Fi| ∑

j∈Fi

n j

[
n j ·
(

c(t)j −v(t)i

)]
, (6)
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Figure 5: Comparison between joint bilateral normal filtering for denoising, using different guidance normal fields. Our
patch-based guidance normals produce similar results as using the ground truth normals for guidance.

where v(t)i is the value of vi in the t-th iteration,Fi is the index

set of the incident faces for vi, and c(t)j = (v(t)j1 +v(t)j2 +v(t)j3 )/3.
This scheme is actually a gradient descent process for the
`2 error of the compatibility conditions ni · (vik − ci) = 0
(k = 1,2,3) across all faces. In our experiments, 10 to 20
iterations are sufficient for the mesh to approximately satisfy
the above conditions while being close to the initial shape. We
iterate between the face normal filtering step and the vertex
update step, until a desired result is obtained. A summary of
our framework is given in Algorithm 1. In the next section,
we present a method for computing guidance normals that
are suitable for mesh denoising.

3. Guidance normals for mesh denoising

Many meshes used in computer graphics are piecewise
smooth, i.e., their surfaces contain smooth regions separated
by sharp edges. When filtering the normal on a face incident
with a sharp edge, we should avoid combining it with the
face normal across the edge, since a sharp edge is indicated
by a large difference between its two incident face normals.
When no noise is present, the input face normals {ni} can
provide good guidance for joint bilateral filtering: across a
sharp edge, the large difference between the two face normals
results in a small value of the range kernel, which inhibits
the two normals from influencing each other. However, with
more and more noise on the mesh, the noisy normals will
become less and less reliable for indicating the features of the
ground truth shape, eventually leading to erroneous results if
the input normal field is employed as the guidance (Fig. 3).
It is thus necessary to compute a guidance normal field that
provides robust indication of features in the presence of noise.

Our method is based on the following observation: a tri-
angle mesh can be decomposed into many small patches,
each consisting of multiple faces with similar normal di-
rections. Thus for each face fi, we can search for such a
small patch that contains fi, and choose its average normal
as the guidance normal at fi. Specifically, for each face fk,
we define a patch Pk as the union of fk with all surrounding
faces that share vertices with it. To compute the guidance
normal at a face fi, we search among all patches that con-
tain fi, and pick the one with the most consistent normal
directions. More specifically, the set of candidate patches is

C( fi) = {Pk | fi ∈ Pk}. For each candidate patch P ∈ C( fi),
we measure the consistency of its normals using a function

H(P) = Φ(P) ·R(P). (7)

Here Φ(P) measures the maximum difference between two
face normals from the patch:

Φ(P) = max
f j , fk∈P

‖n j−nk‖. (8)

And R(P) is a relative measure of edge saliency in the patch:

R(P) =
maxe j∈EP ϕ(e j)

ε+∑e j∈EP ϕ(e j)
, (9)

where EP is the set of mesh edges with both incident faces
contained in patch P , ϕ(e j) measures the saliency of an
edge e j using the difference between the normals of the two
incident faces f j1 , f j2 :

ϕ(e j) = ‖n j1 −n j2‖, (10)

and ε is a small positive value for avoiding division by zero.
Note that a small value of Φ(P) indicates similar face nor-
mals within the patch, while a small value of R(P) indi-
cates similar saliency among all interior edges of the patch.
Thus the consistency function H(P) in Equation (7) is in
favor of patches with a small range of normal directions, and
without edges that are much ‘sharper’ than other edges. Fi-
nally, among all candidate patches for fi, we pick the one
P∗ with the smallest consistency function, and compute its
area-weighted average normal as the guidance gi for face fi:

gi =
∑ f j∈P∗ A jn j

‖∑ f j∈P∗ A jn j‖
, (11)

where A j is the area of face f j. This construction process is
illustrated in Fig. 2. Algorithm 2 provides the pseudocode for
efficient computation of the guidance normals for all faces of
a mesh. The pipeline of our denoising method is illustrated
in Fig. 1. The zoom-in parts show the chosen patches and the
guidance normals, for two faces that are adjacent to sharp
features on the ground truth mesh. The color coding shows
that across the whole mesh, the guidance normals get gradu-
ally closer to the ground truth normals during the iterations,
which helps to recover the original shape. Fig. 3 further shows
the effectiveness of our guidance construction method in the
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Algorithm 2 Computation of guidance normals on a mesh.
Input: A mesh with faces F .
Output: A guidance normal gi for each face fi ∈ F .
1: For each face fi ∈ F , initialize the minimum consistency

function value Hi
min =+∞;

2: for each face fk ∈ F do
3: Construct a patch

Pk = { f j | f j shares a vertex with fk};
4: Compute the consistency function H(Pk) and the aver-

age normal n̂k for patchPk, according to Equations (7)
and (11), respectively;

5: for each face f j ∈ Pk do
6: if H(Pk)<H

j
min then

7: H
j
min =H(Pk), g j = n̂k;

8: end if
9: end for

10: end for

presence of noise. For a given guidance normal field {ði},
we evaluate its robustness at an edge e j by comparing the
angle between the guidance normals g j1 ,g j2 on its incident
faces against the angle between the corresponding ground
truth face normals n j1 ,n j2 , using a function

θ(e j) =
∣∣∠(g j1 ,g j2)−∠(n j1 ,n j2)

∣∣ . (12)

Smaller values of the function θ implies better consistency
between the guidance and the ground truth normals for indi-
cating feature edges. Fig. 3 provides histograms of the func-
tion θ among all edges, for the same ground truth mesh with
different levels of noises, and using the input noisy normals
and our patch-based normals as the guidance respectively.
The histograms show that our patch-based normals provide
more robust indication of feature edges even for highly noisy
models. This leads to more accurate results using our guid-
ance normals, as shown in Figs. 3 and 5. More results for our
denoising algorithm can be found in Section 4.

Remark. Our guidance construction method is similar to the
patch-shift approach proposed in [CLKL14] for separating
textures from structures in images using joint bilateral filter-
ing. At each pixel, they select a neighboring square patch,
and use the average intensity of the patch as the guidance
intensity for the current pixel. One of their patch selection cri-
teria is the so-called modified relative total variation (mRTV).
Our consistency function H(·) can be considered as a gen-
eralization of mRTV, from scalar signal defined on regular
grids, to vector-valued signals defined on surfaces with ir-
regular samples. In particular, our angle range function Φ(·)
generalizes the image tonal range function in mRTV, while
our saliency function R(·) corresponds to the image gradient
norm. Indeed, there is a natural analogy between mesh denois-
ing and texture extraction: the underlying mesh surface can
be considered as structure, while the high-frequency noise
can be considered as texture. Interestingly, the consistency

σr  = 0.01 σr  = 0.25 σr  = 0.8Noisy

Figure 6: Denoising results using different values of σr, with
other parameters fixed.

function R(·) can also be interpreted using sparsity. Ignoring
the small constant ε, we can see that R(P) is the reciprocal
of the `1-norm of a vector

Ψ(P) =
(

ϕ(e1)

ϕmax
,

ϕ(e2)

ϕmax
, . . . ,

ϕ(em)

ϕmax

)
, (13)

where ϕ(·) is the edge saliency function in Equation (10),
e1,e2, . . . ,em are the interior edges with respect to the patch
P , and ϕmax = maxe j∈EP ϕ(e j). Namely, the components
of Ψ(P) are the saliency values for the interior edges, nor-
malized by the maximum edge saliency across the patch P .
It is well known that the `1-norm for a vector is related to
its sparsity, i.e., the property that many of its components
are close to zero [BJMO12]. Thus a small `1-norm of Ψ(P)
indicates that a small number of edges are much more salient
than the others. The function R(P), being the reciprocal of
the reciprocal of the `1-norm for Ψ(P), inhibits such patches
from being chosen for the guidance normal computation.

4. Implementation and results

4.1. Choice of parameters

Our method involves a set of parameters: the number of nor-
mal filtering iterations kiter, the number of iterations viter for
vertex update (6) according to a given normal field, the ra-
dius parameter r for finding a geometrical neighborhood, and
the variance parameters σs and σr for the spatial and the
range kernels, respectively. We observe in our experiments
that kiter ≤ 75 and viter ≤ 20 are enough for achieving nice
results while avoiding unnecessary iterations. We always set
the spatial variance σs as the average distance between neigh-
boring face centroids across the whole mesh, as suggested
in [ZFAT11]. The range variance σr controls the denoising
effect and the smoothness of the final results (Fig. 6): if σr is
too small, some noise may not be removed; if σr is too large,
the results may be over-smoothed and lose some features.
We observe that σr ∈ [0.2,0.6] provides a good compromise
between noise removal and feature preservation. For all re-
sults in this paper, we employ geometrical neighborhoods
for applying the filter unless stated otherwise. To achieve
desirable results, we choose r ∈ [2×σs,3×σs] to ensure
the geometrical neighborhood includes all faces with large
enough spatial kernel values. Setting r to a larger value does
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Figure 7: Comparison of denoising algorithms for meshes with additive Gaussian noise. The intensity σE of the noise is from top
to bottom 0.7, 0.3, 0.2 and 0.2.

Noisy [FDCO03] [JDD03] [SRML07] [ZAFT11] (local) [ZAFT11] (global) [HS13] [WYP*15] Ours

Figure 8: Denoising a mesh with non-uniform sampling. For the resulting meshes, regions with denser triangulation are
highlighted with colored rectangles. The intensity σE of the Gaussian noise applied to this model is 0.4.

not make a significant difference but increases the computa-
tional cost, because the additionally included faces have very
small spatial kernel values and make almost no contribution
to the filtering.

4.2. Results and comparisons

In the following, we show denoising results computed
using our framework, and compare them against the re-
sults using other methods. We provide the source code
of a program that implements our method as well as
other denoising algorithms [FDCO03, JDD03, SRML07,
ZFAT11, HS13], on https://github.com/bldeng/

GuidedDenoising. Note that [ZFAT11] propose two de-
noising schemes: a local scheme that directly applies bilateral
filtering to the face normals, and a global scheme that filters
the face normals by solving a global optimization problem.
Both schemes are compared in our examples. Note that each
method involves a set of parameters that need to be set by
the user, and the best parameters often depend on the input
model. For a fair comparison, for each method we enumerate
a dense set of samples in its parameter space, and choose the
best result from the sample parameters. The parameter values
we choose can be found in the supplementary material. For
models whose ground truth shapes are known, we evaluate
the quality of a denoising result using three error metrics:

https://github.com/bldeng/GuidedDenoising
https://github.com/bldeng/GuidedDenoising
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Noisy [FDCO03] [JDD03] [SRML07] [ZAFT11] (local) [ZAFT11] (global) [HS13] [WYP*15] Ours

Figure 9: Comparison of denoising algorithms on a mesh with impulsive noise.

Noisy [SRML07] [ZFAT11] (local) [ZFAT11] (global) [HS13] [WYP*15] Ours[JDD03][FDCO03]

Figure 10: Comparison of denoising algorithms applied on real world 3D objects.

• δ: the angle between the ground truth face normals and the
resulting face normals, averaged over all faces.
• Dmean: the average distance from the resulting mesh ver-

tices to the ground truth mesh surface, weighted by the
associated area for the vertices on the ground truth mesh.
• Dmax: the maximum distance from the resulting mesh

vertices to the ground truth mesh surface.

In Figures 7, 8, 9, and 10 we compare our denoising
algorithm against other methods based on normal filter-
ing [FDCO03, JDD03, SRML07, ZFAT11, WYP∗15] and L0
minimization [HS13]. In Figs. 7 and 8, the input noisy model
is generated by adding Gaussian noise to the vertices of a
ground truth mesh along the vertex normals. More compar-
ison for such models can be found in the supplementary
material. In this paper, the intensity of the noise is described
using a relative variance parameter

σE =
σ

Emean
, (14)

where σ is the variance of the Gaussian function, and Emean
is the average edge length of the ground truth mesh. For most
of the models, our method achieves better results according to
the error metrics shown in Table 1, with a notable exception of
the sphere model. Although our method successfully recovers
the sharp features of the ground truth mesh, it also induces

sharp features in the concave regions that are smooth on the
ground truth, which causes higher error metric values.

Fig. 8 also shows the benefit of using geometrical neigh-
borhoods for the filtering normals in our framework. Here
some regions of the input mesh are of higher triangulation
density. By applying the filter in geometrical neighborhoods,
our method ensures successfully recover the shape regardless
of the triangulation density. In comparison, the other normal
filtering methods rely on 1-ring neighbors for filtering face
normals, which leads to undesirable results in the regions
with denser triangles.

Our method can also work for meshes with non-Gaussian

Noisy [SCBW14] 
(bilateral)

[SCBW14] 
(mean-shift)

Ours

Figure 11: Comparison between our method and [SCBW14].
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Model Error [FDCO03] [JDD03] [SRML07] [ZFAT11](l) [ZFAT11](g) [HS13] [WYP∗15] Ours

Fandisk
Fig 7

δ 22.49 27.55 13.19 15.05 14.25 6.22 17.27 6.05
Dmean 2.91·10−2 3.03·10−2 1.76·10−2 2.09·10−2 1.93·10−2 1.61·10−2 1.96·10−2 1.02·10−3

Dmax 4.74·10−1 4.22·10−1 3.65·10−1 3.24·10−1 3.84·10−1 2.83·10−1 4.05·10−1 2.57·10−1

Sphere
Fig 7

δ 12.58 17.36 11.89 6.70 9.70 12.96 8.74 11.57
Dmean 1.08·10−1 7.01·10−2 7.36·10−2 3.58·10−2 3.92·10−2 1.05·10−1 3.69·10−2 6.62·10−2

Dmax 8.38·10−1 6.68·10−1 6.86·10−1 4.82·10−1 5.58·10−1 5.72·10−1 5.72·10−1 5.97·10−1

Bunny
Fig 7

δ 6.93 5.81 5.89 5.67 5.57 6.33 5.95 5.28
Dmean 1.20·10−3 7.60·10−4 7.69·10−4 7.24·10−4 6.78·10−4 7.60·10−4 6.93·10−4 6.00·10−4

Dmax 1.47·10−1 7.01·10−2 8.31·10−2 8.08·10−2 8.41·10−2 6.96·10−2 8.42·10−2 7.89·10−2

Julius
Fig 7

δ 7.70 7.63 7.01 6.21 6.11 7.98 6.15 6.10
Dmean 8.44·10−4 6.20·10−4 5.02·10−4 4.39·10−4 4.48·10−4 6.91·10−4 4.26·10−4 4.44·10−4

Dmax 7.78·10−2 6.81·10−2 6.76·10−2 5.45·10−2 5.71·10−2 9.32·10−2 5.63·10−2 5.25·10−2

Block
Fig 8

δ 12.71 13.85 6.39 5.31 8.13 4.97 5.25 3.60
Dmean 1.43·10−1 1.06·10−1 7.33·10−2 5.08·10−2 7.29·10−2 9.83·10−2 4.81·10−2 4.31·10−2

Dmax 9.16·10−1 7.77·10−1 7.84·10−1 7.17·10−1 6.74·10−1 6.20·10−1 7.32·10−1 5.31·10−4

Twelve
Fig 9

δ 11.72 11.09 7.45 7.37 7.27 8.46 8.23 3.31
Dmean 1.41·10−2 1.34·10−2 8.99·10−3 9.34·10−3 9.26·10−3 1.55·10−2 8.22·10−3 4.99·10−3

Dmax 3.68·10−1 3.27·10−1 2.39·10−1 2.65·10−1 2.37·10−1 3.19·10−1 3.02·10−1 1.99·10−1

Table 1: Error metrics for different methods. For each model, the best error metric value is highlighted in bold.

additive noise, as well as real scanned models. This is illus-
trated in Fig. 9 (for meshes with additive impulsive noise),
and in Fig. 10, respectively.

In Figs. 11 and 12 , our method is compared against
[SCBW14] and [WYL∗14], using input models and denois-
ing results provided by the authors of the respective papers.
In both figures, our method successfully smooths the meshes
while retaining the features.

Table 2 provides the timing of our method for the shown
examples, on a PC with an Intel i7-3770K CPU. Even with

Noisy [WYL*14] Ours

Figure 12: Comparison between our method and [WYL∗14].

our naïve implementation, our method is able to denoise a
large mesh efficiently.

4.3. Limitations and discussion

Although the effectiveness of our method has been verified by
the extensive experiments, it still has some limitations: First,
for models with extremely irregular sampling, our method
can produce undesirable results (Fig. 13), because neither the
topology neighborhood nor the geometrical neighborhood
can properly account for the contribution from nearby faces
in the normal filtering. Second, for very noisy models, the
sharp features recovered with our method might not be as
smooth or straight as expected, although already better than
other methods (Fig. 3); this is partly because the vertex up-
date is driven by the filtered normals instead of the target
feature lines. Moreover, our vertex update step only aims at

Model Vertices Faces Time (ms) kiter

Fandisk (Fig 7) 6475 12946 76 50
Sphere (Fig 7) 10443 20882 162 30
Bunny (Fig 7) 34834 69451 698 4
Julius (Fig 7) 36201 71912 452 5
Block (Fig 8) 8771 17550 104 40

Twelve (Fig 9) 4610 9216 42 75
Angel (Fig 10) 24566 48090 783 3
Rabbit (Fig 10) 37394 73679 699 4

Iron (Fig 10) 85574 168285 1571 20

Table 2: Time per iteration and number of iterations used for
the different results. The timings have been measured on an
Intel i7-3770K.
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Original Noisy Ours

Figure 13: Our method may fail on meshes with extremely
irregular sampling.

the orthogonality between the filtered normals and the new
edges without considering the face orientation, which can
introduce flipped triangles in some cases. To improve the
results, we can potentially incorporate other criteria into the
filtering process, such as shape priors of the feature lines
and the quality of triangulation. Third, our method can be
sensitive to the resolution of the models, as shown in Fig. 14:
here we employ mesh decimation to create four ground truth
meshes with the same underlying shape but different resolu-
tions, and add the same Gaussian noise on the four models.
Our method decreases the error metrics for all models ini-
tially, but increases the error metrics for models of lower
resolutions during further iterations. This is because for such
models, the normals are filtered using larger neighborhoods
and the guidance normals are computed on larger patches,
which can lead to over-smoothing. In the future, we would
like to investigate how to make our method adaptive to mesh
resolutions. Finally, similar to the local scheme of [ZFAT11],
our method does not guarantee convergence (see Fig. 14), and
requires parameter tuning to achieve nice results. The main
issue is that we apply local operations to filter the normals,
while all face normals are indeed globally coupled by certain
integrability conditions. One potential solution is to apply a
global filtering scheme like [ZFAT11].

The success of our method lies on the construction of
guidance normals that provide reliable estimation for the
ground truth. In Fig. 15, we modify our denoising method, by
performing the vertex update based on the guidance normals
instead of the filtered normals. Interestingly, such a variant is
able to remove high frequency noises, although it also leads
to undesirable flat regions due to the discrepancy between the
guidance and the ground truth normals. In comparison, the
joint bilateral filter from our method makes the final results
smoother while retaining the sharp features. This observation
sheds lights on a rigorous proof for the effectiveness of our
method, which will require further investigation.

5. Conclusion

In this paper, we propose a guided normal filtering framework
for denoising triangular meshes. Our framework applies a
joint bilateral filter to the face normals, followed by an update
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Figure 14: Convergence plots of error metrics δ and Dmean
on bunny models with different resolutions. The values of
Dmean are normalized by the bounding box diagonal length of
the ground truth model. Our method achieves desired results
on lower resolution models faster than higher resolution ones.

of vertex positions according to the filtered normals. Since
the quality of the result depends heavily on the guidance for
the joint bilateral filter, we propose a method for constructing
a suitable guidance normal field that reliably indicates sur-
face features in the presence of noise. Our method extends
previous work on image filtering to the domain of geometry
processing, and their effectiveness is validated by extensive
experimental results. Our work shows the potential of joint
bilateral filtering as a tool for geometry processing, thanks to
its flexibility via the guidance signal. Indeed, such flexibility
allows the joint bilateral filter to be applied for other geome-
try processing tasks as long as a proper guidance is provided,
which also provides interesting avenues for further research.
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