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Abstract 

Background: The presence of a concomitant chronic total coronary occlusion (CTO) and a 

large collateral contribution might alter the fractional flow reserve (FFR) of an interrogated 

vessel, rendering the FFR unreliable at predicting ischaemia should the CTO vessel be 

revascularized and potentially affecting the decision regarding optimal revascularization 

strategy. We tested the hypothesis that donor vessel FFR would significantly change 

following percutaneous coronary intervention (PCI) of a concomitant CTO. 

Methods and Results:  

In consecutive patients undergoing PCI of a CTO, coronary pressure and flow velocity were 

measured at baseline and hyperaemia in proximal and distal segments of both non-target 

vessels, before and after PCI. Haemodynamics including FFR, absolute coronary flow and the 

coronary flow velocity-pressure gradient relation were calculated. After successful PCI in 34 

of 46 patients, FFR in the predominant donor vessel increased from 0.782 to 

0.810(difference 0.028(0.012-0.044,p=.001)). Mean decrease in baseline donor vessel 

absolute flow adjusted for rate-pressure product: 177.5 to 139.9ml/min(difference -37.6(-

62.6 to -12.6, p=.005)), mean decrease in hyperaemic flow: 306.5 to 272.9ml/min(difference 

-33.5(-58.7 to -8.3, p=.011)). Change in predominant donor vessel FFR correlated with 

angiographic(%) diameter stenosis severity (r=0.44, p=.009) and was strongly related to 

stenosis severity measured by the coronary flow velocity-pressure gradient relation(r=0.69, 

p<.001). 

Conclusions: Recanalization of a CTO results in a modest increase in the FFR of the 

predominant collateral donor vessel associated with a reduction in coronary flow. A larger 

increase in FFR is associated with greater coronary stenosis severity. 
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Introduction  

The presence of a chronic total coronary occlusion (CTO) is a strong predictor of 

treatment strategy1 and is found in almost one in five patients with significant coronary 

artery disease on angiography2. In the presence of a CTO,  collateral blood supply originating 

from a major epicardial vessel other than the occluded vessel is usually present and is often 

sufficient to maintain resting perfusion and contractility in the collateral dependent 

myocardium3. In this setting, we would expect coronary flow to be increased relative to the 

same vessel in the absence of collateral donation. Restoration of antegrade flow by PCI of a 

CTO has been shown to be associated with a rapid reduction in received collateral supply in 

the treated vessel4,5and is likely to be coupled by an associated rapid reduction in flow in 

the collateral donor vessel amounting to the flow donated to the collateral dependent 

myocardium prior to PCI. 

In the setting of both single and multi-vessel coronary disease, randomised trials 

support the use of fractional flow reserve to guide PCI6–8 with an established treatment 

threshold of <0.87,8. Revascularization strategy based upon angiographic assessment is 

frequently altered by FFR assessment9.  Although FFR is reported to be independent of 

changing haemodynamics10, it is intimately related to total coronary flow through a stenosis 
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which in turn is related to perfused myocardial mass11. In keeping with this, there have been 

a number of reports of large increases in collateral donor vessel FFR associated with PCI of a 

concomitant CTO and therefore reduction in perfused myocardium12–16. However, there is 

inherent variability to FFR measurement10, and therefore selective reporting and publication 

bias might have exaggerated the magnitude (or even presence) of this phenomenon in the 

reported cases. 

The purpose of this study is to serially investigate the changes in collateral donor 

vessel physiology, before and after successful PCI of a CTO and to test the hypothesis that 

there will be an associated significant change in collateral donor vessel FFR. 

Methods 

Study patients  

Forty-seven patients scheduled for PCI to a CTO for symptoms of angina (Canadian 

Cardiovascular Society (CCS) class 1-3) were recruited consecutively in a single tertiary 

centre between January 2013 and June 2014. A CTO was defined as complete coronary 

occlusion of >3 months duration with TIMI grade 0 flow17. Exclusion criteria were inability to 

provide consent, >1 occluded vessel, prior CABG with any patent grafts, left main stem 

stenosis considered to be haemodynamically significant and contra-indications to 

adenosine. Patient’s usual medications were continued and they were asked to abstain from 

caffeine for 48 hours prior to the procedure. 
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Ethics 

The study protocol was approved by the local research ethics committee 

(12/YH/0360). All subjects provided written informed consent. 

Catheter laboratory protocol 

Dual arterial access was used for all procedures. Femoral venous access was 

obtained for central administration of adenosine and measurement of central venous 

pressure(CVP) at the beginning and end of the procedure using a catheter positioned in the 

right atrium. Patients were anti-coagulated with 100 U/kg of unfractionated heparin to 

maintain an activated clotting time of >300 seconds. After a 200mcg bolus of intra-coronary 

glyceryl trinitrate(GTN), iso-centred coronary angiograms of both non-target vessels were 

taken.  

A dual sensor pressure-velocity 0.014” intracoronary wire (Combowire, Volcano 

Corp, San Diego, CA)18 was connected to a ComboMap console (Volcano Corp) and used for 

haemodymamic measurements. The wire was normalised to aortic pressure at the tip of the 

catheter, advanced to the distal segment of each non-target vessel and manipulated to 

obtain a good Doppler trace. After administration of 100mcg intra-coronary GTN, once the 

hyperaemic response had settled, continuous recordings from the ComboMap were taken. 

Hyperaemia was achieved by central venous administration of adenosine at 140 

mcg/kg/minute. Once steady state hyperaemia had been reached and a continuous 

recording of >20 beats taken, adenosine infusion was ceased. The Combowire was 

withdrawn into the segment of the vessel proximal to any major side-branches and 

measurements repeated as described. Samples were recorded at 200Hz and stored on disk 

for offline analysis. 
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After initial haemodynamic recordings, PCI of the CTO was undertaken at the 

discretion of the treating interventional cardiologist using an antegrade or retrograde 

approach. Once access to the vessel lumen distal to the point of occlusion was achieved, 

prior to restoration of antegrade flow, a microcatheter was placed into the distal vessel to 

facilitate delivery of the ComboWire. The ComboWire was positioned in a vessel segment 

angiographically free of a significant stenosis, then baseline and hyperaemic measurements 

taken as described. PCI success was defined as stenting of the target vessel with <30% 

residual stenosis and thrombolysis in myocardial infarction(TIMI) grade III flow. 

If PCI was successful, non-target vessel haemodynamic measurements were 

repeated as described pre-procedure, including repeated CVP measurement.  

Recorded data was analysed using dedicated custom software (Study Manager, 

Academic Medical Center, University of Amsterdam, The Netherlands; and a 

Matlab(Mathworks Inc., Natick, Massachusetts) environment for wave-intensity analysis, 

Imperial College London, UK).  

Angiographic assessment 

Maximal non-target vessel diameter stenosis(%) and proximal non-target vessel 

diameters (at the point of proximal haemodynamic measurement) measured in two 

orthogonal views were calculated by two independent observers using quantitative 

coronary angiography(QCA)(GE Centricity CA1000, GE Healthcare) using the guiding catheter 

luminal diameter as reference. Mean values from both observers were used for analysis. 

The non-target vessel making the largest collateral contribution (the predominant collateral 

donor vessel), vessel collateral connection(CC) grade19 and modified Rentrop score20 were 

assessed by two independent observers blinded to haemodynamic measurements and 
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agreed by consensus. The non-target vessel donating angiographically least/no collaterals to 

the occluded segment was considered the minor collateral donor vessel. 

Data analysis 

FFR was calculated as (Pd-CVP)/Pa-CVP), using mean pressures taken over 5 cardiac 

cycles at stable hyperaemia21. An FFR of <0.80 was considered haemodynamically 

significant. Flow velocity was measured in cm/s, mean values are expressed as average peak 

velocity(APV) and instantaneous values as instantaneous peak velocity(IPV). Hyperaemic 

microvascular resistance(HMR) was calculated as Pd/APV and hyperaemic stenosis 

resistance(HSR) as (Pa-Pd)/APV, both measured over five beats at stable hyperaemia. 

Absolute coronary flow was estimated as (x proximal vessel radius2)x(proximal vessel 

APV/2)22,23. As resting absolute myocardial blood flow is closely related to rate pressure 

product(RPP), values for resting absolute coronary flow were divided by the respective 

RPP/10,00024. Coronary flow reserve (CFR) was calculated as APV at steady state 

hyperaemia divided by APV at baseline, measured over 5 cardiac cycles. 

Fractional collateral flow reserve was calculated as for FFR, with Pd measured in the 

occluded segment of the artery, prior to restoration of antegrade flow. Collateral flow 

velocity reserve was calculated as for CFR with flow velocities in the occluded segment 

measured at rest and steady state hyperaemia. 

The diastolic flow-velocity pressure gradient relation (DFV-PGR) describes the 

relationship between pressure and flow for a given stenosis or vessel segment25,26. It was 

calculated using continuous recordings of 30 cardiac cycles measured in the distal vessel 

from baseline through to maximal hyperaemia27. Instantaneous pressures and flow 
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velocities were extracted from the Study Manager programme and Pa timings corrected to 

adjust for any time delay with respect to Pd. Instantaneous flow velocities from mid-diastole 

(after the diastolic upstroke in coronary flow velocity) to atrial activation(identified by the 

beginning of the p-wave on ECG) were plotted against instantaneous pressure gradient(Pa-

Pd). DFV-PGR was then calculated using Stata v.12(StataCorp, College Station, Texas), fitting 

the quadratic linear regression equation: P=(FxIPV)+(SxIPV2) where P is the pressure 

gradient in mmHg, F is the coefficient of pressure loss due to viscous friction and S is the 

coefficient of pressure loss due to flow separation or localized turbulence downstream from 

the stenosis25,26. The peak slope was defined as the gradient of the fitted values over the 

highest 10cm/s of measured IPV.  

Wave intensity represents the rate of energy per unit area transported by travelling 

waves in arteries and is derived from phasic changes in local pressure and flow velocity. The 

blood pressure and Doppler velocity recordings were filtered with a Savitzky-Golay filter28 

and ensemble averaged using the ECG R-wave for timing. Wave intensity was calculated 

from simultaneous baseline pressure and flow measurements taken in the proximal non-

target vessels over 20 cardiac cycles. The change in pressure was separated into wave 

components originating from the proximal vessel and from the microvasculature assuming 

the density of blood to be 1050 kg/m3, and estimating wave speed using the sum of squares 

method29,30. Cumulative wave energy was calculated for each wave by measuring the area 

under the curve. Coronary flow is predominantly diastolic and is proportional to perfused 

myocardial mass11. Because we were interested in the mechanism of any change in donor 

vessel flow, we focused our analysis on the change in cumulative wave intensity of the 

backwards expansion wave(BEW). 
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Measurement repeatability 

Based upon analysis of 26 repeated flow measurements at baseline and hyperaemia 

without any intervening treatment, coefficient of variation for average peak coronary flow 

velocity measurements was 17.4%. Analysis of 10 repeated measurements taken from 

repeated adenosine infusions gave a coefficient of variation for FFR, CFR and HMR of 3.6%, 

19.7% and 8.6% respectively.  

Statistical analysis 

Stata v.12(StataCorp) was used for statistical analysis. Continuous values are 

expressed as means±SD, or median(25th percentile-75th percentile) as appropriate. 

Assuming a standard deviation of the difference(SDD) of 0.04 and success rate of CTO PCI of 

70%; for the study to have 80% power to detect a two-tailed change in FFR of 0.02, we 

estimated that 48 participants were required with procedural success in 33. Continuous 

variables were compared using a paired t-test or Wilcoxon signed-rank test. Correlations 

were quantified using Pearson’s correlation coefficient. Probability values were 2-sided, and 

values of p<.05 considered significant. 

Results 

Of 47 patients recruited, 34 underwent successful CTO angioplasty, completed the 

study protocol and were included in analysis. One was excluded because of significant left 

main stem disease found at the time of PCI not apparent on initial angiography. The 

presence of viable myocardium in the CTO territory was confirmed in all patients by 

myocardial perfusion scintigraphy(n=26, 76.5%), dobutamine stress echocardiography(n=1, 

2.9%) or by the absence of a wall motion abnormality by echocardiography or left 

ventricular angiography without additional confirmation(n=7, 20.6%). Drug-eluting stents 
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were used for all procedures. Demographics, angiographic and procedural details are shown 

in Table 1.  

Haemodynamic indices 

Mean time in minutes from restoration of antegrade flow in the CTO vessel to post-

PCI FFR measurement was 70.1±23.1 for the predominant donor vessel and 71.5±25.3 for 

the minor donor vessel. Pre and post-procedural haemodynamic measurements for the 

predominant and minor donor vessels are detailed in Table 2. 

Pre-procedural predominant donor vessel FFR measured 0.782±0.117, which 

increased to 0.810±0.095 after CTO angioplasty (difference 0.028, 95% CI 0.012 to 0.044, 

p=.001). We found no significant difference in the minor donor vessel. Individual FFR 

measurements are detailed in Figure 1. The treatment threshold for the predominant donor 

vessel was crossed from <0.8 to >0.8 in 4 patients(11.8%), however 4 patients also crossed 

in the opposite direction from an FFR of >0.8 to <0.8. 

Coronary flow  

Satisfactory flow measurements were obtained in 32 of 34 subjects completing the 

study protocol.  Changes in baseline and hyperaemic absolute coronary flow are depicted in 

Figure 2. Predominant donor vessel absolute coronary flow under baseline conditions, 

adjusted for RPP was 177.5±87.2ml/min pre-procedure, and reduced to 139.9±68.2ml/min 

post-procedure(difference -37.6ml/min, 95% CI -62.6 to -12.6, p=.005). Predominant donor 

vessel hyperaemic absolute coronary flow also reduced, pre-procedure: 

306.5±149.0ml/min; post-procedure: 272.9±151.1ml/min (difference -33.5ml/min, 95% CI -

58.7 to -8.3ml/min p=.011). We found no statistically significant difference in baseline or 
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hyperaemic absolute coronary flow in the minor donor vessel. There was no statistically 

significant difference in the absolute size of reduction in coronary flow in the predominant 

donor vessel at baseline compared with hyperaemia(difference 4ml/min, 95% CI -29.6 to 

37.7ml/min, p=.60). There was also no statistically significant change in mean CFR or HSR in 

either the predominant donor vessel or minor donor vessel. 

HMR did increase after CTO PCI in the predominant donor vessel; pre-procedure:  

1.92±0.71mmHg/cm/s, post-procedure 2.47±1.35mmHg/cm/s(difference 0.55mmHg/cm/s, 

95% CI 0.12 to 0.99, p=.014); there was no statistically significant change in the minor donor 

vessel. 

It was possible to measure coronary flow velocity distal to the point of occlusion in 

30 patients, 4 of which through a retrograde approach. Mean collateral flow velocity reserve 

measured 1.09±0.25(excluding retrograde measurements: 1.08±0.26). We found no 

correlation between change in predominant donor vessel FFR and invasive measures of 

collateral perfusion measured distal to the occlusion; fractional collateral flow reserve: r=-

0.08, p=.66, collateral flow velocity reserve: r=-0.10, p=.62; or change in coronary flow 

velocity at the point of FFR measurement: r=0.11, p=.55. In the predominant donor vessel, 

there was a trend to a smaller reduction in flow in more severe stenoses measured by DFV-

PGR(r=0.33, p=.068). We did find a relationship between maximal angiographic stenosis 

severity in the predominant donor vessel and change in FFR in the predominant donor 

vessel: r=0.44, p=.009(Figure 3). 

Figure 4 shows an example of measurement and calculation of the DFV-PGR. There 

was a strong correlation between peak DFV-PGR slope in the predominant donor vessel and 

change in predominant donor vessel FFR; r=0.69, p<.001(Figure 5).  

Wave intensity analysis 
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Wave intensity analysis was performed in 32 of 34 patients using measurements 

taken from the proximal non-target vessels prior to any major branch; figure 6 shows typical 

examples. In the predominant donor vessel, mean cumulative wave energy of the BEW 

decreased from 79.7±44.3x105 Jm-2s-2 before PCI to 65.3±43.6x105 Jm-2s-2 after PCI 

(difference -14.3x105 Jm-2s-2, 95% CI -25.9x105 to -2.9x105, p=.016). We found no statistically 

significant difference in the minor donor vessel; Pre-PCI: 71.9±39.9x105 Jm-2s-2, post-PCI: 

67.1±42.3x105 Jm-2s-2 (difference -4.8x105 Jm-2s-2, 95% CI -18.5x105 to 9.0x105, p=.49). 

Change in cumulative wave energy correlated with change in resting coronary flow, 

unadjusted for RPP: r=0.43, p=.014. 

Discussion 

Our findings support the hypothesis that in a patient with a CTO, measurement of 

the FFR in an artery providing collateral supply to the myocardium beyond the occlusion is 

significantly lower than it would otherwise be in the absence of the CTO. Our estimate of 

the size of the effect in a group of unselected patients is smaller than suggested by case 

reports of the phenomenon12–16. A number of our findings are suggestive of a possible 

physiological mechanism  and reasons for variation in size of change, they are as follows: 

(1)there is an associated reduction in absolute coronary flow and increase in HMR; (2)the 

reduction in coronary flow is associated with a reduction in size of the BEW; (3)the 

magnitude of reduction in flow is similar at baseline and hyperaemia; (4) change in FFR is 

strongly related to donor vessel coronary stenosis severity;(5)there is no demonstrable 

association between invasive indices of collateral function and change in FFR.  
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Effect size 

The increase in predominant donor vessel FFR associated with CTO PCI of 

approximately 0.03 is consistent with a smaller study examining the same phenomenon31,32 

however case reports suggest the expected increase should be closer to 0.1012–16. This may 

be because measurement and re-measurement of an index such as the FFR is vulnerable to 

confounding by regression to the mean. If measurements are considered as a whole and not 

selected based upon their values, regression to the mean will not influence overall effect 

size. However individual measurement changes are much more likely to involve a 

contribution by regression to the mean33. It can be estimated that the SDD of repeated FFR 

measurements is 0.032 and coefficient of repeatability 0.0636; this measurement variability 

is sufficient for regression to the mean to explain the disparity if the case reports are subject 

to selective reporting and/or publication bias. In addition, there appears to be a greater 

change in FFR in more severely diseased vessels. Including angiographically unobstructed 

vessels is likely to have reduced our effect size. However it has been suggested that the 

phenomenon exists in unobstructed vessels34 and the mean pre-PCI FFR in the predominant 

donor vessel was 0.78, close to the widely practiced treatment threshold of 0.80 at which 

the phenomenon is most relevant.  

Reduction in donor vessel flow 

A likely explanation for the change in predominant donor vessel FFR is the associated 

reduction in absolute coronary flow(figure 2) and increase in HMR. Previous studies have 

shown a rapid reduction in recruitable collateral flow distal to the point of occlusion after 

CTO PCI4,5, we have shown a reduction in coronary donor vessel flow at a similar interval. 

The absence of this finding in the vessel donating no/fewer collaterals suggests the change 
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is related to reduced collateral donation.  A generalised effect of PCI on microvascular 

function seems less likely, whether mediated through an adrenergic effect35or through 

myocardial stunning and an elevation in left ventricular end-diastolic pressure36,37. An 

alternative mechanism that may work in synergy with the reduction in flow is that collateral 

contribution to distal pressure in the donor vessel might increase once the CTO is 

recanalized in the reverse direction to collateral flow prior to PCI.  

The mechanism of a reduction in donor vessel flow 

In support of the hypothesis that the observed reduction in donor vessel coronary flow is 

related to a reduction in collateral donation and perfused myocardial mass, we demonstrate 

a reduction in the size of the BEW in the predominant collateral donor vessel associated 

with CTO PCI. Moreover, the size of that reduction is related to the size of reduction in flow. 

A predominant pattern of 6 coronary waves measured by wave intensity analysis has been 

described. The BEW, caused by the relief of myocardial microcirculatory compression in 

early diastole, is responsible for the large increase seen in coronary flow in early 

diastole30(figure 6). Increased left ventricular contractility is associated with an increase in 

the size of the early backwards compression wave(eBCW)38. The size of the BEW, being 

driven by the reverse of the mechanism of the eBCW is likely to be related to the mass of 

myocardium relaxing in early diastole. A reduction in its size associated with a change in 

flow supports the hypothesis that a change in donor vessel antegrade flow is related to 

reduced collateral donation, rather than an increase in received collateral supply.  

We describe a similar fall in predominant donor vessel absolute flow after CTO PCI at 

baseline and hyperaemia. This is consistent with the fall in coronary flow being the 

component of pre-PCI flow donated to the collateral dependent myocardium. Flow in well 
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collateralised occluded vessel segments responds to an arteriolar vasodilatory stimulus in a 

similar fashion to flow beyond a severe stenosis39. The microcirculation beyond a severe 

stenosis is already maximally vasodilated, so a further vasodilatory stimulus is unlikely to 

increase flow40. Coronary flow distal to a CTO can actually diminish with adenosine infusion 

(a coronary flow reserve of <1), a phenomenon known as coronary steal34,41. The mean 

collateral flow velocity reserve measured in the occluded segment in this study was 1.09, 

with coronary steal evident in 9 patients (26%). The small relative proportion of donor 

vessel absolute flow attributable to the collateral circulation at hyperaemia may explain the 

relatively small increase in FFR. 

The change in FFR is related to stenosis severity 

We report an association between predominant donor coronary stenosis severity 

and change in FFR in the predominant donor vessel associated with CTO PCI, assessed both 

angiographically and haemodynamically(figures 3&5). Although functional stenosis severity 

assessment by angiography is limited, it is independent of individual variation in 

measurement  of FFR and therefore the relationship with pre/post measurement should not 

be confounded by regression to the mean33.  

The DFV-PGR describes the pressure gradient as a result of overall lesion severity, 

encompassing lesion length, diameter stenosis and induced turbulence as coronary flow 

velocity changes(figure 4). The slope of the curve is independent of the absolute difference 

in Pd and Pa and so in addition to describing the effect of a change in flow on pressure 

based physiological lesion indices, it should also be less susceptible to confounding by 

regression to the mean compared with indices dependent upon absolute values of Pa and 

Pd. The observed strong association between a steeper predominant donor peak DFV-PGR 
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slope and a greater change in predominant donor FFR(figure 5) is supportive of the 

hypothesis that any change in pressure gradient (and therefore FFR) is related to reduced 

flow.  

Relation of change in FFR and indices of collateral function in the occluded segment 

The absence of a relationship between the change in predominant donor flow and 

measured indices of collateral function is surprising. It may be that overall collateral 

dependent myocardial mass is more important than the measurement of collateral function 

for a given myocardial mass. This could be evaluated by comparing LAD with non-LAD CTOs, 

but would require a study population larger than reported here. The absence of a 

correlation between change in predominant donor vessel flow and change in predominant 

donor FFR may reflect an interaction between the effect of donor vessel stenosis severity on 

collateral flow and the effect of the change of flow. Coronary steal, and therefore reduced 

collateral flow at hyperaemia, is more prevalent if a collateral donor vessel has a lower 

FFR34. We report a trend towards a smaller change in hyperaemic flow associated with CTO 

PCI in predominant donor vessels with more severe stenoses. A smaller change in flow may 

therefore be associated with a steeper DFV-PGR slope, masking any relationship. 

Clinical implications 

This study confirms that the presence of a CTO is associated with a lower FFR in the 

predominant collateral donor vessel than if the CTO were absent. The change is smaller than 

might be expected and is closely related to lesion severity such that greater changes are 

largely confined to stenoses of severities that remain below the treatment threshold of <0.8 

in spite of a large increase in FFR. The number of patients in the study population that cross 
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the treatment threshold is small. A small number have also crossed the FFR treatment 

threshold in the opposite direction to that expected, most likely because of measurement 

variation and possibly short term PCI related effects upon the microvasculature. When 

planning multi-vessel revascularization in the presence of a concomitant CTO, physiological 

lesion assessment by FFR is reliable.  If measurements are close to the current established 

treatment threshold of <0.80, a probable small increase in FFR should be considered when 

deciding upon treatment strategy. 

Limitations 

This is a single centre study, and the number of patients with a significant lesion in 

the predominant donor vessel was small. The study population had a preponderance of 

right coronary CTOs, with fewer LAD CTOs. This is a reflection of practice and is in keeping 

with other publications in the field, but may have reduced the size of the observed effect.  

Measurements were repeated early after PCI, therefore transient procedural related 

changes such as microvascular dysfunction due to distal embolization, catecholamine 

release35, left ventricular stunning36,37 or a hyperaemic stimulus related to side-branch 

occlusion may have influenced donor vessel physiology. However, if the observed effect 

were due to transient global effects of PCI, we would expect a similar effect on the vessel 

donating no/less collaterals angiographically. In addition, other than the hyperaemic effect 

of side branch occlusion, these mechanisms would result in a larger reduction in donor 

vessel flow and larger increase in FFR. Given the smaller than expected change we observed, 

it seems unlikely that these additional mechanisms are contributing greatly to the overall 

change, however they may have contributed to individual variation. 



18 
 

Conclusions  

Recanalization of a CTO results in a modest increase in the FFR of the collateral 

donor vessel associated with a reduction in coronary flow. The magnitude of the change is 

closely related to lesion severity such that the largest changes are observed across stenoses 

which remain haemodynamically significant in spite of a large increase in FFR. In vessels 

with less severe stenoses, the effect is likely to be so small that it is masked by variations in 

physiology both related and unrelated to PCI as well as measurement variation. 
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 Tables 

Table 1. Baseline Characteristics, Angiographic, and Procedural Details 

Demographics(n=34)  
Male, n(%) 27(79.4) 
Age 60.8±9.6 y 
Left ventricular ejection fraction(%) 56.2±11 
Estimated occlusion duration(weeks) 53(30-104) 
CCS class I/II/III/IV 8/20/6/0 
Previous PCI, n(%) 9(26.5) 
Previous myocardial infarction, n(%) 10(29.4) 
Hypertension, n(%) 6(17.7) 
Diabetes Mellitus, n(%) 5(14.7) 
Current smoker, n(%) 10(29.4) 

Angiographic details  
CTO vessel(RCA/LCx/LAD) 21/4/9 
Predominant donor vessel(RCA/LCx/LAD) 10/11/13 
Rentrop collateral grade(1/2/3) 0/12/22 
Predominant donor vessel CC grade(0/1/2) 0/18/16 
Minor donor vessel CC grade(0/1/2) 17/15/2 
Predominant donor vessel stenosis severity(%) 39.1(25.2-47.7) 
Minor donor vessel stenosis severity(%) 39.4(26.8-46.1) 

Procedural details 

 

 
Number of stents 1/2/3/4/5 6/11/10/6/1 

Length 
Length of stent(mm) 74.5(44-101) 

 
Means of recanalization 

A 

 

 
Antegrade lumen-lumen, n(%) 

 

19(55.9) 
Antegrade dissection re-entry, n(%) 9(26.5) 
Retrograde lumen-lumen, n(%) 3(8.8) 
Retrograde dissection re-entry, n(%) 3(8.8) 

PCI indicates percutaneous coronary intervention; ACE-inhibitor, angiotensin converting 
enzyme inhibitor; ARB, angiotensin II receptor blocker; RCA, right coronary artery; LCx, 
left circumflex artery; LAD, left anterior descending artery 
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Table 2. Haemodynamic assessment pre and post CTO PCI 
 Pre-procedure Post procedure Difference  

(95% CI) 
p-value 

CVP 
(mmHg) 

5.6±2.9 6.1±3.1 0.5  
(-1.7 to 0.7) 

p=.39 

MAP 
(mmHg) 

121.7±18.8 124.2±19.7 -2.5  
(-9.9 to 4.9) 

p=.50 

Heart rate 
(beats/minute) 

69.7±12.4 70.4±11.2 -0.6  
(-3.5 to 2.3) 

p=.67 

Predominant donor 
vessel 

    

FFR 0.782±0.117 0.810±0.095 0.028  
(0.012 to 0.044) 

p=.001 

Baseline flow 
(ml/min)*

177.5±87.2 139.9±68.2 -37.6  
(-62.6 to -12.6) 

p=.005 

Hyperaemic flow 
(ml/min)† 

306.5±149.0ml 272.9±151.1 -33.5  
(-58.7 to -8.3) 

p=.011 

CFR† 2.24±0.93 2.33±0.78 0.10  
(-0.24 to 0.44) 

p=.57 

HMR 
(mmHg/cm/s)† 

1.92±0.71 2.47±1.35 0.55  
(0.12 to 0.99)  

p=.014 

HSR 
(mmHg/cm/s)† 

0.50±0.37 0.50±0.30 -0.002  
(-0.09 to 0.09) 

p=.95 

Minor  
donor vessel 

    

FFR 0.808±0.104 0.813±0.110 0.005  
(-0.015 to 0.023) 

p=.63 

Baseline absolute 
flow (ml/min)*† 

157.6±80.3 141.4±98.1 -16.2  
( -43.3 to 11.0) 

p=.23 

Hyperaemic flow 
(ml/min)† 

274.4±147.7 270.6±185.3 -3.7  
(-29.9 to 22.4) 

p=.77 

CFR† 2.25±0.67 2.24±0.72 -0.01  
(-0.24 to 0.27) 

p=.91 

HMR 
(mmHg/cm/s)† 

2.28±0.95 2.47±1.32  0.19  
(-0.11 to 0.49) 

p=.20 

HSR 
(mmHg/cm/s)† 

0.48±0.28 0.54±0.43 0.06  
(-0.03 to 0.15) 

p=.20 

CI indicates confidence interval; CVP, central venous pressure; MAP, men aortic pressure;FFR 
fractional flow reserve; CFR, coronary flow reserve; HMR, hyperaemic microvascular resistance; 
HSR, hyperaemic stenosis resistance. *adjusted for rate pressure product. †Satisfactory flow 
measurements were obtained in 32 patients 
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Figures 

 

Figure 1. The change in non-target vessel FFR before and after CTO PCI. Mean values are presented 

either side of the link-plots, error-bars represent 95% confidence intervals.  

 

Figure 2. Mean absolute coronary flow pre and post-PCI at baseline(adjusted for RPP) and 

hyperaemia for the predominant donor vessel(left) and the minor donor vessel(right). 
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Figure 3. Relationships with change in predominant donor vessel FFR. Top left: fractional collateral 

flow reserve distal to the chronic occlusion(n=31). Top right: collateral flow velocity reserve distal to 

the chronic occlusion(n=30). Solid markers represent measures taken by a retrograde approach. 

Bottom left: change in distal hyperaemic APV(n=32). Bottom right: angiographic(%) stenosis 

severity(n=34). 
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Figure 4. Top panel: simultaneous pressure and flow measurement for calculation of DFV-PGR, 

measurements are taken during the boxed diastolic periods. Bottom: calculation of the DFV-PGR 

2. In the above example F=0.91 and S=0.0001(black circles). 

Another example is shown with different coefficient values, but a similar peak gradient: F=0.31 and 

S=0.006(grey circles). 
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Figure 5. Relationship between peak DFV-PGR and change in predominant donor vessel FFR, before 

and after CTO PCI(n=32). 
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Figure 6. Wave intensity analysis, ensemble averaged coronary pressure (solid line) and flow velocity 

(dashed line) measured in the proximal predominant donor vessel pre(left) and post(right) PCI of a 

CTO. Top two panels: proximal RCA donating collaterals to a chronically occluded LAD. Bottom two 

panels: proximal LAD donating collaterals to a chronically occluded RCA. BEW are asterisked. 


