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Hydroclimate changes in eastern Africa over the
past 200,000 years may have influenced early
human dispersal
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Reconstructions of climatic and environmental conditions can contribute to current debates

about the factors that influenced early human dispersal within and beyond Africa. Here we

analyse a 200,000-year multi-proxy paleoclimate record from Chew Bahir, a tectonic lake

basin in the southern Ethiopian rift. Our record reveals two modes of climate change, both

associated temporally and regionally with a specific type of human behavior. The first is a

long-term trend towards greater aridity between 200,000 and 60,000 years ago, modulated

by precession-driven wet-dry cycles. Here, more favorable wetter environmental conditions

may have facilitated long-range human expansion into new territory, while less favorable dry

periods may have led to spatial constriction and isolation of local human populations. The

second mode of climate change observed since 60,000 years ago mimics millennial to

centennial-scale Dansgaard-Oeschger cycles and Heinrich events. We hypothesize that

human populations may have responded to these shorter climate fluctuations with local

dispersal between montane and lowland habitats.
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Reasons for the mobility and dispersal of Homo sapiens both
within and out of Africa are still a matter of debate1. Recent
discoveries of human fossils and related stone tools

between ~315 and 75 ka in age in several parts of Africa (e.g.,
northern Africa2, southern Africa3,4, and eastern Africa5,6) have
initiated a lively discussion of hypothesized multiregional origin
and development of Homo sapiens within Africa7. This hypoth-
esis includes a temporary availability of suitable, interconnected
habitats, providing sufficient resources for our species to succeed
and establish vital populations. Understanding human origins,
refugia and dispersal is therefore dependent on accurate recon-
structions of climatic and environmental conditions in time and
space.

Today, the climate of eastern Africa is controlled by the annual
migration of the tropical rain belt (TRB) following the zenith of
the sun with a 3–4 week lag. This intensive insolation causes the
build-up of mesoscale convective systems (MSCs), modulated by
the possible influence of the West African (WAM) and South
Asian (Indian) (SAM) monsoons, causing a unimodal to trimodal
distribution of rainfall. On an interannual time scale, zonal
atmospheric flow associated with the Walker Circulation (WC)
and anomalies of the Indian Ocean sea-surface temperatures
(SSTs) in combination with the Indian Ocean Dipole (IOD),
modulate the intensity of the rainy seasons in eastern Africa8,9

(Supplementary Fig. S1). These controls are subject to orbital and
millennial-to-centennial scale fluctuations, which have led to
significant past fluctuations in regional precipitation and to
habitat change, forcing the biota to adapt, migrate, or face local
extinction10–14.

Recently, geoscientists, climate experts, and paleoanthropolo-
gists have teamed up within the Hominin Sites and Paleolakes
Drilling Project (HSPDP) to examine the relationship of human
origin and climate change by drilling paleolake sequences near
important hominin fossil and artifacts sites in the East African
Rift15,16. In addition, other studies of this region have investigated
outcrops of lake sediment to reconstruct past climate variation
and possible influences on human evolution, expansion, and
technological innovation13,17. These studies found that eastern
African climate and environment have undergone repeated pro-
found wet-dry transformations during the Quaternary, including
the formation and disappearance of extensive lake systems
accompanied by regional vegetation change. These transforma-
tions are often linked to orbitally-controlled insolation variations
and millennial-to-centennial fluctuations associated with the
high-latitude Dansgaard-Oeschger cycles (D/O) and Heinrich
events (HEs)13,18–20. In addition to climate change, lakes also
fluctuate from non-climatic drivers, complicating reconstruction
of climate fluctuations from these deposits13.

Using archives of environmental change to test established
hypotheses of the evolution and expansion of H. sapiens is
complicated by the potentially complex and non-deterministic
response of humans to external natural factors21, which may vary
due to social factors (i.e. relation to neighboring groups) and
individual choices22. In addition, technological advances may
have facilitated the ability of humans to cope with and adapt to
climatic stress23,24. The refugial hypothesis suggests that H.
sapiens survived times of harsher living conditions, as small
populations were able to move into more suitable environments
with attendant consequences for genetic drift and natural
selection25. In eastern Africa, humans may have occupied
mountain refugia along the rift margins26–28.

To better understand the relationship between past climate
change and the behavioral and migratorial response of H. sapiens,
we reconstructed the last ~200 ka of eastern African climate
change based on a sediment drill core collected in the Chew Bahir
(CHB), a paleo-lake basin in southern Ethiopia (Fig. 1). Our

geochemical and sedimentological data set provides the first
continuous climate record from southern Ethiopia covering the
entire period of existence of H. sapiens in eastern Africa. Fossil
evidence from the key paleoanthropological sites at Omo Kibish6

and Herto5 show that humans have occupied parts of Ethiopia
during the last ~200,000 years. Our results can contribute to the
current discussion regarding the effect of environmental condi-
tions on the mobility and expansion of our species within and
beyond Africa1,29,30.

Results
The 292.87 m long composite sediment core from Chew Bahir
covers the last 617 ka of environmental change in the southern
Ethiopian rift. Based on our age model, the uppermost 99.3 mcd
(meters composite depth) encompass the last ~200 ka31,32. For
this study, we have combined sedimentological and geochemical
proxies of environmental change, including grain-size variability,
X-ray fluorescence (XRF) scanning-based elemental ratios (K/Zr,
Al/Si, Ca/Ti), as well as total organic carbon (TOC) and the
oxygen isotope composition (δ18O) of endogenic calcite (Sup-
plementary Figs. S2 and S3). Our results show that high amounts
of coarser-grained sediments (core sections with > 50% sand
marked as gray bars in Supplementary Fig. S2) mostly coincide
with lower K/Zr, higher Al/Si and Ca/Ti ratios, higher TOC,
lower δ18O values and vice versa.

Dry climate episodes at Chew Bahir, with increased evapora-
tion, increased lake water alkalinity and salinity, and lowered lake
levels have been inferred from the low-temperature illitisation of
smectites in other cores from the site33. During illitisation, also
called reverse weathering process, which is initiated by increasing
alkalinity and salinity in the pore water, Al-to-Mg substitutions
lead to excess octahedral layer charge, which in turn enhances the
K fixation in smectites34. Hence, we interpret high K values as
having developed during desiccation and low lake levels, similar
to modern conditions.

Hydrologic-balance modeling shows that during the last wet
phase, the so-called African Humid Period (AHP) at ~15–5 ka,
with significantly lower K values, a precipitation increase of
~20–30% may have raised the Chew Bahir lake level by up to ~45
m compared to the present seasonally dry playa35. Drier phases in
the record are also generally characterized by an increase of silt-
sized sediments, reduced chemical weathering (low Al/Si ratios),
less organic matter accumulation reflected in lower TOC values,
and higher δ18O (Supplementary Fig. S3).

Changing Ca/Ti-ratios in the profile could be explained by
processes dominating during contrasting hydrological conditions.
For example, Ti may increase through fluvial input during wet
episodes, or aeolian input during dry episodes. Additionally, the
increased formation of authigenic carbonates in the sediment
during dry phases could have raised Ca/Ti ratios while reduced
carbonate production by organisms with calcareous shells during
dry periods could have lowered them.

Clay-sized particles, indicative of deep lake conditions, are
generally only a minor component of the sediment (a mean of
~3% of all grain size samples). However, sand layers often
alternate with clay-rich beds (up to max. 39% clays) in the 61–100
mcd core interval (corresponding to ∼200–125 ka; Supplemen-
tary Figs. S2 and S3). Silt-sized particles are much more abundant
throughout the record (mean of 39%), but dominate (60–80%) in
the uppermost 31 mcd (last ∼60 ka). We interpret these medium-
coarse silts to represent predominantly aeolian transport during
more arid episodes.

Medium-grained sand layers are most common below 45 mcd
(older than ∼80 ka), indicative of more humid conditions when
rivers were active and transporting coarser material. In addition,
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Fig. 1 Location maps. a Map of Greenland and location of NGRIP ice core; b Map of northeastern Africa, the Near East, and southeastern Europe showing
important fossil and archeological sites; c Map of northeastern Africa showing the location of the Chew Bahir drill site as well as important fossil and
archeological sites. See text for details, data and references.
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we argue that very fine silt and lacustrine clays were deposited
during more humid periods when the precipitation/evaporation
ratio was >1, and a deep water body covered the sedimentary
deposits for extended periods of time. Individual layers of very
coarse sands are interpreted as reactivation products of the
extensive alluvial fans at the western shores and surrounding
ranges of the Chew Bahir basin, suggesting extreme rainfall events
during a generally drier climate with reduced vegetation cover in
the catchment36.

Based on similar trends in our multi proxy data, namely the
records of the K/Zr and Al/Si ratios, and the δ18O values, we
identify five distinct climate phases (Supplementary Fig. S3). The
first wet phase (Phase I) between 200–125 ka was followed by
Phase II which is characterized by a pronounced trend towards a
drier, but also more variable climate from 125 to 60 ka. There-
after, a dry phase (Phase III) between 60–14 ka can be observed
in the K/Zr ratios and in the δ18O values, which is succeeded
by a wet phase (Phase IV; 14-5 ka) spanning the Early to
Middle Holocene, which coincides with the well-established AHP
(~15–5 ka)36–38. During Phase V in the Late Holocene (between
~5–0 ka), the climate at Chew Bahir was persistently dry.

During Phases I and II (200–125 ka and 125-60 ka) we
observe periodic alternations between wet and dry episodes on
time scales of ~20 ka superimposed on the long-term drying
trend. This relatively low frequency climate variability is
superseded during the interval between 60–14 ka (Phase III) by
repeated millennial-to-centennial scale abrupt shifts back to
wetter climate conditions. Hence, we can distinguish between
two distinct modes of climate change with low and high fre-
quency climate variability at CHB, as can be seen particularly
well in the K/Zr ratios, but also in other proxies such as Al/Si
and Ca/Ti ratios. These observations are reiterated in the
wavelet time-series analysis (Supplementary Fig. S4), which
shows the strong influence of orbital precession between
200–125 ka, and which diminishes after about 80 ka, consistent
with modeling results for the region18.

Discussion
We observe five climate phases including two modes of climate
variability in the CHB during the last 200 ka (Supplementary
Fig. S3). To explain this variability, we first compared our results
to orbital eccentricity and precession (Fig. 2). Changes in these
orbital parameters have been previously argued to be the domi-
nant driver of eastern African climate variability21,39. Phase I
(200–125 ka) coincides with high eccentricity and strongly
precession-dominated insolation changes, potentially driving the
~20 ka paced alternations between the well expressed wet and dry
episodes during this time interval. In this scenario, precession
minima/maxima, associated with high/low summer insolation led
to a more/less northerly position of the African rainbelt, which
could channel moisture towards CHB. The increased eccentricity
thereby amplifies the effect of precession on the monsoonal
changes and leads to either strongly expressed wet or dry
episodes.

In contrast, during Phase II (125–60 ka), the gradual increase
in aridity was accompanied by a lowering of the precession
amplitude concurrent with decreasing eccentricity (Fig. 2; Sup-
plementary Fig. S4). This reduced precessional amplitude led to
an overall reduction in moisture transport towards CHB, causing
a long-term drying trend. During Phase III (60–14 ka) eccen-
tricity reaches its lowest value of the past 200 ka, with sub-
stantially subdued precessional amplitude and thus lower summer
insolation. Consequently, the overall low insolation levels led to a
contraction of the African rain belt and thus a precipitation focus
south of the CHB watershed.

During Phase IV (14-5 ka) eccentricity increased again, asso-
ciated with slightly wetter conditions before decreasing during
Phase V (5 ka to present) in alignment with a drier climate. The
close match between the hydroclimate at CHB and orbital
eccentricity clearly demonstrates that orbital-scale insolation
changes are the dominant driver of southern Ethiopian climate
during the last 200 ka. We also find indications that periods with
low insolation (low eccentricity) and reduced monsoonal impact
may also be subject to a different climate driving mechanism, as
suggested by the observed high-frequency climate variability
during Phase III.

In the wider regional context, a comparison of the CHB record
with the leaf-wax based vegetation and alkenone-based SST
record from Gulf of Aden core RC09-166 suggests that during
high eccentricity (Phase I; Marine Isotope Stage=MIS 7a to MIS
5e) the western Indian Ocean experienced a significant warming
that decreased with decreasing eccentricity during Phase II and
III (Fig. 2). As the Indian Ocean presents an important moisture
source for eastern Africa today40, arguably the warm SSTs during
Phase I might have led to increased oceanic convection. When the
African rain belt reached CHB during summer solstice (preces-
sion minimum), this increased oceanic convection may then have
fueled the transport of moisture charged air masses to CHB.
These findings underline the close link between hydroclimate in
eastern Africa and Indian Ocean SSTs throughout the time cov-
ered by our core.

In contrast, the comparison between the CHB K/Zr ratio and
the aridity indicated by the leaf wax proxy from the Gulf of
Aden41 shows remarkable differences during Phase I (MIS 6:
Fig. 2). In fact, the overall persistent humid conditions at CHB
during this interval are seemingly opposite to persistent aridity in
regions adjacent to the Gulf of Aden. The proposed aridity in this
region seems peculiar as the neighboring Indian Ocean was
relatively warm and should provide sufficient moisture for
increased rainfall41. A possible explanation could be that
convection-based precipitation during this period was more
effective south of the Gulf and further inland. In this manner, the
discrepancy in the moisture regime between CHB and the Gulf of
Aden relates to changes in large-scale atmospheric circulation
patterns41. Alternatively, it is possible that δDleaf wax, which was
used as the basis for the aridity proxy, records changes in
moisture source rather than precipitation amount42,43. Due to the
contraction and widening of the tropical rain belt in correspon-
dence with glacial-interglacial periods, it is possible that the
moisture source changed43 in the Gulf of Aden during Phase I
(MIS 6).

Regional climate records from the African mainland support
the humidity record from CHB. For example, the wet-dry index
from an ocean core at ODP site 967 in the eastern Mediterranean
Sea, which is a record of terrestrial dust flux and riverine inflow
from the Nile river44, parallels the CHB record. This is antici-
pated, since the upper Nile and Chew Bahir catchments are in
close spatial proximity17, thus should record similar climate sig-
nals. The match between both proxy records and the sapropel
layers emphasizes this tight coupling (Fig. 2) and suggests that
increased humidity during Phase I at CHB was also reflected in
the Nile River basin, hence into the Mediterranean realm.

Lake Tana, close to the source of the Blue Nile in northern
Ethiopia, shows increased moisture availability at least during late
Phase I, in line with CHB climate results45. The repeated wet
phases during Phase II (MIS 5e-5c) are also in agreement with
wet phases inferred from the stalagmite record of the Mechara
caves situated in the highlands northeast of the Chew Bahir
basin46 (Figs. 1 and 2). The authors also argue for a northern
displacement of the African tropical rain belt caused by stronger
summer insolation during times of stalagmite growth. The
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Fig. 2 Comparison of the log(K/Zr) record of the last 200 ka from the Chew Bahir basin (CHB) with other environmental records. a Detrended log(K/
Zr) record from Chew Bahir; b Rectangles = Mechara cave stalagmite growth phases46; c Alkenone-based SST and d Leaf wax based vegetation record
from core RC09-166 from the Gulf of Aden41; e Indian Ocean sea-surface temperatures (SST)70; f Detrended log(Ca/Ti) record from Lake Tana45; g Wet-
dry index from ODP 96744; h Rectangles = sapropel layers51; i Insolation at 5°N and j Eccentricity variation71. Gray and white bars correspond to Marine
Oxygen-Isotope Stages (MIS) according to72.
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profound aridity during Phase III in Chew Bahir, at a time of
reduced insolation levels, is also recorded in the Mediterranean
realm and at Lake Tana from 60 to 55 ka, from 50 to 42 ka as well
as after 35 ka45.

The high-frequency climatic shifts during Phase III resemble
northern hemisphere climate oscillations known as D/O cycles
and HEs (Fig. 2 and Supplementary Fig. S5)19,20,47. If the con-
tinental African site of CHB is indeed responding in phase with
these oscillations, it suggests that at times of low eccentricity and
hence diminished precessional amplitude, high-latitude processes
increasingly influenced the climate at CHB. During HEs, the
increased discharge of meltwater from the Northern Hemisphere
ice cover led to a reduction of northward heat transport via the
global oceanic conveyer belt48. Consequently, heat and warm
water accumulated in the tropics and subtropics of the southern
hemisphere and the equatorial Atlantic, which led to a strong
contraction or southward shift of the monsoonal rainbelt around
the globe49. This may have resulted in a reduction in monsoonal
precipitation at CHB, thus explaining the observed millennial-
scale dry spells coincident with HEs. The increased humidity
during late Phase IV, corresponding to the AHP, is similar to the
moisture variability during Phase I, in alignment with increased
eccentricity and precession amplitude. The latter led to a more
northward position of the African tropical rainbelt and thus
increased humidity at CHB. The inferred moisture increase is
again recorded at Lake Tana45, the Mechara stalagmites46 and the
Mediterranean realm44.

The significant precipitation changes inferred from the Chew
Bahir record would have had a decisive influence on the living
conditions of H. sapiens present in eastern Africa for at least the
last 200 ka. Those profound transformations of the habitat of H.
sapiens would have required adaptations in behavior or cultural
development. The humid conditions observed in the oldest parts
of the CHB record presented here (Fig. 3) coincide with the
earliest H. sapiens fossils recovered to date in eastern Africa at
~195 ka, at Omo Kibish (~430 m asl), 90 km west of the Chew
Bahir basin6. During this wettest episode of the record (~200–125
ka), with at least 20–30% more precipitation compared to
today35, extensive lakes and connected hydrological networks
developed along the East African Rift System (EARS). This may
have facilitated the long-distance movement of early modern
humans, gathering food and finding sufficient water nearly
everywhere in the lowlands of southern Ethiopia and the adjacent
regions.

Between 200–190 ka and 185–170 ka, wetter conditions, and
thus an expansion of favorable living conditions in large parts of
northern and northeastern Africa and the Arabian Peninsula, are
suggested by sapropel S7 and S6 at ODP site 967 in the Medi-
terranean Sea44,50,51. This time interval also coincides with the
first documented appearance of modern humans in the Levant, at
Misliya Cave, with fossils dated at 194–177 ka29. We therefore
suggest that regions with favorable conditions were episodically
connected from southern Ethiopia as far north as the Levant,
opening early dispersal routes for H. sapiens out of eastern
Africa52 as early as MIS 7a and during some intervals of MIS 6
(Fig. 3). The alignment between wet phases in the CHB record
and other paleoclimate records to the NE44 suggest that these
favorable living conditions existed at multiple times not only in
the lowlands of eastern Africa but also along the course of the
Nile River, providing a pathway for early modern humans to
move north.

Pronounced wet conditions were also prevalent during MIS 5e
and 5c (Fig. 2) in the highlands northeast of the Chew Bahir
basin, as interpreted from the stalagmite δ18O record from the
Mechara caves46, implying favorable living conditions for
humans over nearly all of northeastern Africa. Modern human

fossils have been recovered in northeastern Africa and the Levant
that date back to these times4,5. Moreover, human occupation
layers in the Sodmein cave in the Eastern Egypt desert53 and
artefacts and human fossils from Al Wusta in Saudi Arabia54,
Skhul and Quafzeh55 as well as human footprints in ancient lake
sediments56 also fall into MIS 5. These time windows have also
been proposed by population modelers as possible episodes for
early modern human expansion57 (Fig.3).

Genetic evidence points to the interval 70–60 ka for the most
recent common ancestor (TMRCA) of mitochondrial haplogroup
L3 from eastern Africa58, fitting reasonably well to the subsequent
60–50 ka interval proposed as the oldest genetically based interval
for dispersal from Africa of H. sapiens carrying L3 subtypes59,60.
The genetic time frame of 70–50 ka for “last long-range dispersal”
coincides both with a more arid phase at CHB and overlaps with
only a brief pronounced return to humidity in eastern Africa
(60–62 ka, Fig. 3). This wet event may have offered a sufficiently
long interval of suitable habitat in the lowlands of the EARS to
facilitate dispersal of our species16.

The pronounced high-frequency climate fluctuations since ~60
ka, modulating the predominant trend towards an increasingly
drier climate, could have repeatedly pushed H. sapiens popula-
tions to respond to the decrease of available surface water and
food resources. These abrupt and frequent fluctuations may have
exerted a level of climatic stress on humans that prompted new
coping strategies and technological innovation, possibly reflected
in the transition from Middle Stone Age (MSA) to late Stone Age
(LSA) tool assemblages22. In addition, during this interval, H.
sapiens employed other strategies to respond to environmental
boundary conditions in the rift system: groups moved up to the
Ethiopian highlands on both sides of the rift, as cave archeological
records at Goda Buticha61, Mochena Borago26,62, Fincha
Habera28, and Sodicho63 suggest (Fig. 3).

Although chronological uncertainties in these records includ-
ing CHB do not allow a precise comparison, the timing of the
driest episodes in the CHB record generally agree with those of
the highland occupations by H. sapiens. Settlement in higher-
elevation sites persisted longer, encompassing the intervening
short wet phases. The paucity of archeological and fossil records
older than ~80 ka on the Ethiopian highlands limits our ability to
test the refugia hypothesis during 80–200 ka. However, the oldest
known high-elevation archeological site in the region shows
evidence of Acheulian-aged occupation at Dendi volcano64

(Fig. 1) in the northwestern Ethiopian highlands. This under-
scores that high mountain areas have long been tapped as
favorable habitats by hominins.

This strategy of orographic mobility has been previously dis-
cussed in more detail for the much wetter southwestern Ethiopian
highlands for several dry pulses during the youngest (15–5 ka)
AHP27. Generally, these findings support the idea that H. sapiens
sought refuge at higher elevations as a potential coping strategy
for fading resources and increasingly precarious living conditions
in the rift valley. Thus, living in higher altitude zones could have
been a climatically-triggered response to millennial scale droughts
in the EARS. However, during the very dry Last Glacial Max-
imum (~20 ka), the highlands of Ethiopia seem to have remained
largely unpopulated, possibly due to reaching an environmental
threshold27.

Documented wet phases at CHB, comparable to other sedi-
mentological records of northeastern Africa during the last
200–60 ka, indicate recurrent availability of favorable living
conditions in the lowlands of the EARS and adjacent regions for
H. sapiens, which would have provided opportune corridors for
our species to disperse into the Levant and Arabia. Increasing
aridity in the lowlands of the southern Ethiopian rift valley
starting during MIS 4 and intensifying aridity since 60 ka may
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Fig. 3 Environmental record of the last 200 ka from the Chew Bahir basin (CHB). a Grain size distribution; b Chronological range of archeological/fossil
sites with corresponding elevation of sites (for archeological/fossil sites location, see Fig. 1; for references see text); cModeled Human Migration Windows
(HMW= green rectangles)57, genetic evidence (TMRCA= time to most recent common ancestor58 and LD= last dispersal of Homo sapiens59, 60; d Record
of K/Zr ratio from the Chew Bahir basin; Marine Oxygen-Isotope Stages (MIS) according to72.
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have induced H. sapiens to develop, test and use new strategies to
survive, including occupation of high mountain refugia and the
development of new tools.

Methods
During the CHB deep drilling campaign in Nov. 2014, two sediment cores were
recovered: HSPDP-CHB14-2A and −2B (Fig. 1; N 4.7612° E 36.7668° and N
4.7613° E 36.7670°; 500 m asl) reaching down to 278.58 mbs (= meters below
surface) and 266.38 mbs, respectively15. The cores were collected ~20 m apart
and a composite record of 292.87 mcd (= meters composite depth) was con-
structed using a multi-parameter approach31,32. Technical difficulties during
coring through sand layers (Supplementary Fig. S2; white bars in the grainsize
column) led to some core loss at ~78–80, 58–59 and 55–57 mcd, and to a lesser
extent also at 13, 15.5, 33.5, 49, 87.5 and 90.5 mcd. Core recovery rate in the
upper 100 m is ~89.5%.

A total of 743 discrete samples collected every ~32 cm through the whole core
were analyzed for their particle size distribution, 250 samples from 0.6 to 99.2 m
depth represent the uppermost 200 ka. Prior to grainsize measurements the organic
and carbonate components were removed. For this purpose, the samples (fine-
grained fraction, <2 mm) were pretreated with H2O2 (30%) and with 15% HCl. For
the final aggregate dispersion 0.5 N Na4P2O7 (55.7 g/l) was added. The particle size
distribution of each sample was measured three times with a Beckman Coulter LS
13320 laser particle analyzer with 116 particle size classes from 0.04–2000 μm using
the Fraunhofer optical model. The calculation of the univariate statistical particle
size values was performed with the software GRADISTAT65.

Elemental variations were determined by X-ray fluorescence (XRF) core scan-
ning at 5 mm resolution along the CHB composite profile with an Itrax core
scanner at the Large Lakes Observatory (LLO) of the University of Minnesota
Duluth. Following HSPDP protocols, a Chromium (Cr) tube was used with a tube
voltage of 30 kV, current of 30 mA and scanning time of 10 s66. All XRF data were
normalized by dividing elemental counts by coherence scattering and multiplied by
a correction factor to compensate for e.g. the aging of the Cr tube. Subsequently, all
data sets have been cleaned sub-cm wise to avoid coring artifacts such as cracks and
voids32,67. According to the age model, the 5 mm spacing of the XRF data corre-
sponds to ~10 years31. High K values have been established as an aridity proxy for
paleolake Chew Bahir, controlled by increasing pore water alkalinity under dry
conditions16,32,33. The XRF K values are normalized with Zr as a proxy for detrital
influx into the lake. For better comparison to other records we also used the log K/
Zr (detrended) values.

High Al/Si ratios are interpreted as indicator for the intensity of chemical
weathering of feldspars, micas, amphiboles and pyroxenes in the catchment under
generally wetter conditions that showed more uniformly distributed rainfall. Ca/Ti
is used as a proxy for both biogenic calcite production in the water column and
precipitation of authigenic calcite in the sediment, normalized for Ti as a proxy of
the influx of clastic material into the lake68.

The concentration of total carbon (TC) was measured in a total of 842 samples
(32 cm intervals; 239 samples represent the uppermost ~200 ka) with a non-
dispersive infrared sensor (Dimatec Ltd.) to analyze the thermic-catalytic oxidation
process for both total inorganic carbon (TIC) and total carbon. To determine the
content of total organic carbon (TOC), the difference between TC and TIC was
calculated. Higher TOC values indicate more organic material in the sediments due
to higher production in wetter climate conditions. An elemental analyzer (vario
MICRO cube, Elementar Ltd.) was used to verify the TC values. Where reproduced
values differed by > 5% samples were remeasured.

Excluding calcite nodules and dolomite in the bulk sediment samples, the δ18O
composition of bleached endogenic calcite was analyzed using a Thermo Finnigan
MAT 253 mass spectrometer at the British Geological Survey, UK, following
standard vacuum techniques69. Data are given as per mil (‰) deviations from the
VPDB standard. Based on standard materials, analytical reproducibility was <
0.1‰. Lower δ18O values indicate wetter conditions. 152 δ18O samples represent
the uppermost ~200 ka of the CHB record.

Prior to time-series analysis, the data were interpolated to an evenly-spaced time
axis with 0.012 ka resolution. We calculate a continuous wavelet transformation
(CWT) from the log(K/Zr) record using the MATLAB function cwt. We chose
Morlet as the mother wavelet, which is very well suited to reproduce the cyclical
characteristics of environmental variability in the Chew Bahir record.

Data availability
The proxy data of CHB is available online for download at LacCore Institute
(Minneapolis USA, http://lrc.geo.umn.edu/laccore/; https://doi.org/10.17605/OSF.IO/
M8QU5) and at the Collaborative Research Centre 806 Database (Cologne, Germany:
http://www.crc806db.uni-koeln.de; https://doi.org/10.5880/SFB806.66).

Code availability
The script to compute the wavelet power spectrum will be made available through the
MRES blog of M.H. Trauth, hosted at the University of Potsdam (http://mres.uni-
potsdam.de).
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