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Abstract: The goal of this paper is to describe a novel fault tolerant tracking control (FTTC) strategy 

based on robust fault estimation and compensation of simultaneous actuator and sensor faults. Within the 

framework of fault tolerant control (FTC) the challenge is to develop an FTTC design strategy for nonlinear 

systems to tolerate simultaneous actuator and sensor faults that have bounded first time derivatives. The 

main contribution of this paper is the proposal of a new architecture based on a combination of actuator and 

sensor Takagi-Sugeno (T-S) proportional state estimators augmented with proportional and integral 

feedback (PPI) fault estimators together with a T-S dynamic output feedback control (TSDOFC) capable of 

time-varying reference tracking.  Within this architecture the design freedom for each of the T-S estimators 

and the control system are available separately with an important consequence on robust ��  norm fault 

estimation and robust �� norm closed-loop tracking performance. The FTTC strategy is illustrated using a 

nonlinear inverted pendulum example with time-varying tracking of a moving linear position reference.  

Keywords: Active fault tolerant control, Dynamic output feedback control, LMI formulation, Fault 

estimation, Tracking control, T-S fuzzy systems. 

 

1. INTRODUCTION
1
 

Due to the increased demand for maintaining required 

system performances in different conditions of operation, 

there has been a rapidly growing interest in the field of 

FTC in the last two decades [1-3]. As a specific defintion 

the FTC system is control system (or control loop) that 

has the ability to maintain required system closed 

performance and stability (within acceptable degradation) 

even if faults occur in different parts of the system under 

control. In this way the FTC system is said to tolerate 

faults acting within the control system feedback structure. 

Following this, FTC includes most attributes of robust 

control and is a wider subject in which the robustness is 

extended to encompass faults as well is exogenous 

disturbance and modelling uncertainty. Comprehensive 

surveys describing research activities on FTC methods 

covering the last 15 years are to be found in [4, 5]. 

Traditionally safety critical systems have provided 

much of the main motivation for the development of the 

subject of FTC, however research during the last decade 

has shown that FTC methods represent promising 

approaches to handle several practical fault scenarios for 

real system applications. For example, in [6], FTC is 

utilised to compensate the effect of existing friction in 

mechatronic systems. In [7] FTC is used to enhance the 

performance of electromagnetic suspension system 

through tolerating the effect of air gap sensor fault and an 

accelerometer fault. In [8] a way of tolerating the effect of 

a faulty thruster is proposed through reallocation of 

thruster forces of an autonomous underwater vehicle. [9] 

describes the application of FTC methods for flight 

control of unmanned airborne vehicles. Recently FTC has 

been considered as a viable approach to ensure offshore 

wind turbine sustainability in terms of power 

maximization and fault tolerance [10, 11]. 
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The recent FTC literature shows a steady increase in 

interest of developing strategies for nonlinear systems 

[12-15]. The last five years have witnessed the 

publication of a number of research studies on FTC that 

make use of multiple-model strategies for nonlinear 

systems that can be used for both modelling and control, 

for example via the use of T-S fuzzy inference modelling 

[16-18]. T-S models are usually considered for fault 

estimation in nonlinear systems since the approach 

provides an opportunity to handle system nonlinearity via 

well developed modern linear systems optimisation and 

design tools.  However, most of the work on this subject 

employing T-S fault estimation are focussed on the 

actuator fault estimation and compensation problem [16-

18] and do not consider simultaneous actuator and sensor 

faults. 

The paper presents a new approach for AFTC for 

nonlinear systems with simultaneously acting actuator and 

sensor faults. The ideas focus on the design of an 

observer-based fault tolerant tracking controller for 

nonlinear systems described in T-S model form. It is 

assumed that the system is affected by both sensor and 

actuator faults simultaneously tolerated using the fault 

estimation and compensation concept.  

The proposed strategy involves the design of (i) a 

TSDOFC responsible for minimising the tracking error 

between the reference and system output signals during 

nominal operation, and (ii) two T-S fuzzy observers 

dedicated to provide separate estimates of the actuator and 

sensor faults for the purpose of fault compensation. The 

nonlinear example of an inverted pendulum with time-

varying cart position reference is used to illustrate the 

proposed FTTC strategy. Both additive and parametric 

fault scenarios are considered for simultaneous actuator 

and sensor faults. The tracking system is introduced to 

induce significant nonlinearity in the inverted pendulum 

system. 

The paper is organised as follows. Section 2 outlines 

the advantages and limitations of the use of a fault 

estimation and compensation strategy for AFTC and 



based on this the proposed methodology is outlined and a 

suitable architecture is given.  Section 3 enters into a 

description of the observer based FTTC approach 

followed by three subsections illustrating the stability and 

performance design conditions for (i) sensor fault 

estimate observer, (ii) the actuator fault estimate observer, 

and (iii) the TSDOFC. In Section 4, the results are given, 

using the inverted pendulum example to illustrate the 

importance and effectiveness of the proposed FTTC 

scheme with simultaneous actuator and sensor faults. 

Section 5 provides a concluding discussion. 

2. THE PROPOSED ARCHITECTURE FOR 

ACTIVE FTC 

The goal of this work is to develop a novel FTC 

strategy based on robust fault estimation and 

compensation of simultaneous actuator faults (�� ) and 

sensor faults ( �� ) to maintain the performance and 

stability of the “baseline” or nominal control system 

during both faulty and fault-free cases. An FTC scheme is 

proposed that is based on the combination of (a) robust 

control and (b) independent estimates of the each of the 

actuator faults (���) and sensor faults (���). The controller is 

required to be robust against expected actuator and sensor 

fault estimation errors as well as the bounded reference 

signal. It is clear from the architecture shown in Fig. 1 

that the scheme includes dedicated fault estimation 

observers in order to ensure accurate estimation and 

compensation of each of the actuator and sensor faults. 

Moreover, as the accuracy of fault estimation is of 

paramount importance the original PPI observer 

formulation of [19] has been extended to the multi-model 

case within a T-S fuzzy inference modelling structure.  In 

the sensor fault estimator design the actuator fault signal 

is considered as an unknown input signal that can be 

compensated directly in the sensor fault estimation. 

Conversely, the effect of the sensor fault can be 

compensated in the estimated actuator fault. Hence, based 

on the architecture of Fig. 1 the actuator and sensor fault 

estimation errors must each be bounded (as well as the 

first time derivative of each fault).  

Remark 1:  AFTC systems in general are designed to 

handle the occurrence of system faults in real-time by 

using fault estimation/compensation methods, adaptive 

control or controller reconfiguration mechanisms with 

various advantages and disadvantages. Fault estimation 

and compensation methods obviate the need for the use of 

an FDI unit. However, the performance of these methods 

is highly affected by fault estimation accuracy and the 

presence of any simultaneous faults. On the other hand, 

the philosophy of adaptive control fits well with the 

AFTC approach due to the ability of adaptive control 

systems to adjust controller parameters online based on 

measured signals [20-23]. Clearly, the use of adaptive 

control methods as an approach to AFTC obviates the 

need for FDI. However, in this method, sensor faults 

represent the most challenging of fault scenarios for 

AFTC and have rarely been considered in fault tolerant 

adaptive control methods. For example, output feedback 

adaptive tracking control can tolerate actuator and/or 

system faults. On the other hand if sensor faults have 

occurred the adaptation will force the faulty output to 

follow the reference signals and hence the control signal 

will no longer be suitable for the system under control. 

The CR-based FTC approach can handle more general 

faults and or failure cases through either off-line or online 

variation of the structure and/or the parameters of the 

controller based on the information delivered from an FDI 

unit. However, the main challenge of this method is that 

the time required to reconfigure the control system must 

be as low as possible. This is important in practice where 

the time windows during which the system remains 

stabilisable in the presence of a fault are very short[24, 

25]. 

Based on Remark 1, the main motivation to use the 

fault estimation and compensation approach is to 

overcome the reconfiguration time problem arising in CR-

based FTC. Furthermore, the inability of adaptive control-

based FTC to tolerate sensor faults means that fault 

estimation and compensation represents the all round 

most appropriate method for the sensor fault case of FTC.  

Section 3 deals with the extension of the above concept 

to include a TSDOFC controller as a special case of the 

robust baseline controller of Section 2 (see Fig. 1) and 

develops the theory for applying the proposed strategy to 

nonlinear systems described via T-S fuzzy models.  

3. ACTIVE FTC FOR NONLINEAR SYSTEMS 

VIA T-S FUZZY MODELLING 

This section describes the proposed strategy for active 

actuator and sensor fault tolerant TSDOFC. The TSDOFC 

is designed to force specific outputs to follow a given 

reference input (in both faulty and fault-free cases) with 

robustness against exogenous inputs/outputs 

(actuator/sensor fault estimation error). The T-S PPI 

observers are used as a form of analytical redundancy 

responsible for robustly compensating the effects of 

actuator and sensor faults from the system inputs and 

outputs and hence ensure the robustness of the overall 

closed-loop system.  

The T-S fuzzy controller and T-S fuzzy observer 

designs are model-based methods and hence the first 

design step involves the derivation of the fuzzy model of 

the plant corresponding to different operating conditions. 

In the fuzzy control design, each “control rule” is 

designed from the corresponding rule of a T-S fuzzy 
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Fig. 1 Proposed AFTC system architecture 



model and the fuzzy controller design problem is to 

determine the local feedback gains within a parallel 

distributed compensation structure [26]. Although the 

fuzzy controller is constructed using the local design 

structure, the feedback gains should be determined using 

global design conditions. It is reported in [26] that for the 

fuzzy state estimate feedback  “the global design 

conditions are needed to guarantee the global stability 

and control performance”. Hence, the fuzzy control 

designer does not have freedom to assign the local system 

closed-loop poles anywhere in the stable complex plane. 

Therefore, the observer based T-S state feedback control 

system suffers a major drawback in that the observer 

dynamics may not be assigned freely to satisfy closed-

loop performance requirements. The TSDOFC has been 

proposed in this strategy to overcome the limitation of T-

S observer-based state feedback control. 

To illustrate the basic idea of representing a dynamic 

system in T-S fuzzy model form consider the following 

general form of a nonlinear system with no exogenous 

inputs, i.e. disturbances or faults.:  

( ) ( )( )
( )( )

,  
 

           

x f x t u t

y g x t

= 


= 

ɺ

 (1) 

where �(�) ∈ ℛ�  is the state vector,	�(�) ∈ ℛ�  is the 

input vector and �(�) ∈ ℛ�  is the output vector. The 

mathematical representation, i.e. fuzzy nonlinear 

approximation, for the system is given as follows in terms 

of blending of appropriate local model systems: 

( ) ( ) ( )
( )

 
 

                    

x A p x B p u t

y C p x

= + 
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= 

ɺ
 (2) 

The matrices 	�(�) ∈ ℛ�∗�(= ∑ ℎ#	(�)�#$#%& ) , 	'(�) ∈ℛ�∗�(= ∑ ℎ#	(�)'#$#%& )  and 	((�) ∈ ℛ�∗�(=∑ ℎ#	(�)(#$#%& ), are the known system matrices, )  is the 

number of fuzzy rules and the term ℎ#	(�) is the weighting 

function that depends on the variable that assumed to be 

measured, the so-called “premise variable (�) ” (or 

scheduling variable). The weighting function must satisfy 

the following properties for all time t. 
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the term *#+(	�+)  is the grade of membership of �+ 
in	*#+  

3.1 Sensor fault hiding observer design 

Consider a T-S fuzzy model with actuator and sensor 

fault signals, described as follows: 

( ) ( )( )    

                       

a

f s

x A p x B p u f

y Cx D f

= + + 


= + 

ɺ
 (4) 

where the matrices �(�)  and '(�)  are as defined in 

Eq.(2), ( ∈ ℛ�∗�is the output matrix,  ,- ∈ .�∗/ is known 

matrix, 	�� ∈ ./ , and 	�� ∈ .�  are sensor and actuator 
faults, respectively. 

To avoid the direct multiplication of the sensor and/or 

noise by the observer gain, an augmented system state 

with output filter states is constructed. The filtered output 

is given as follows: 

 s s s s s f sx A x A Cx A D f= − + +ɺ  (5) 

where −�� ∈ .�∗� 	 is a stable matrix. The augmented 

state system is given as: 

( ) ( )( )
                                           

a f sx A p x B p u f D f

y C x

= + + +
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ɺ
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As illustrated in Fig. 1 the proposed control strategy 

requires the estimation of the fault effects on the closed-

loop system. To ensure ability to deal with time-varying 

fault scenarios for which the first time derivative of each 

fault is assumed bounded,  T-S fuzzy proportional state 

estimators augmented with proportional and integral 

feedback (PPI) for sensor fault estimation are designed as 

an extension to the work of [19] for linear systems. 

Remark 2:  

• In the literature, several FTC strategies have been 

proposed under the constraint that fault signals are 

constant (i.e. the fault first time derivative is zero) [16, 

17]. The work in this paper focuses on the design of an 

AFTC system that has the capability of tolerating wide 

range of fault scenarios (i.e. time varying faults).   

• The first stage of the development of a fault-tolerant 

system requires Failure Mode and Effective Analysis 

(FMEA) which aims to provide a complete coverage of 

possible occurring faults  in the closed-loop as well as 

the corresponding remedial measures [1, 27]. Hence, 

information about fault time varying behaviour (and 

hence fault time derivative) can be anticipated during 

FMEA. This FMEA phase of FTC system design is 

beyond the scope of this paper.  

Following the work of [19] assume that the signal (��1 ) 
is bounded. Then the following fuzzy observer is 

proposed to simultaneously estimate the system states and 

sensor fault: 

� � � � �

�

.

. .
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where �̅� ∈ ℛ�3�  is the estimation of the state vector	�̅, 

��� is the actuator fault estimate delivered by the other 

observer,  �4(�) ∈ ℛ(�3�)×�  and 6(�) ∈ ℛ/×�  are the 

observer gains to be designed, and 78	 is the state 

estimation error defined as: 

�
xe x x= −  (8) 

The state estimation error dynamics are then given as: 

( ) fx x f fs a

.

e A(p) L(p)C e D e B (p)e= − + +  (9) 

where 7-9 ∈ ℛ/  and 7-: ∈ ℛ�  are the sensor and 

actuator fault estimation errors defined as: 

�

�
sf ss

af aa

e f f
     
e f f

= −


= − 
 (10) 

Using (7) and (9) the fault estimation error dynamics 

are as follows: 

( )s xfs

. .

e f F(p)C A(p) L(p)C I e= − − + −  

f f fs a
F(p)C D e F(p)C B (p)e−  

(11) 

The augmented estimator will then be of the following 

form: 

asas s

.
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e F(p)C B p I f

   
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The objective now is to compute the gains �4(�) and 6(�) such that exogenous input 		;̃  in (12) is attenuated 

below the desired level =  to ensure robust regulation 

performance. The location of the closed-loop system 

poles affect the estimation transient response. Hence, the 

sensor fault observer can be designed to constrain the 

estimation error system eigenvalues to lie globally in a 

complex region. This is defined by merging different 

eigenvalue constraints to produce a >(?, A, B, C)  LMI 

region in which the vertical line at ? bounds the stability 

region, where A  and B  are the radius and centre of the 

disc region, and C is the angle of sector of the A and B 

circle (see [28] for more details). 

Theorem 1. The eigenvalues of the estimation error 

dynamics are located in a LMI region in the complex 

plane defined by 	>(?, A, B, C) , and the error dynamics 

are stable and the H∞ performance is guaranteed with an 

attenuation level 		= , (provided that the signal (;̃)  is 

bounded), if there exists a SPD matrix D&,	 and matrices E# , 6# , and scalar parameters 	F , ?, A, B,and C  satisfying 

the following LMI constraints: 

Minimize (= + F) such that: 
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Proof:  Let the performance output be defined as follows: 
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(H& ∈ ℛI∗� and (H� ∈ ℛ/∗/. The estimation performance 

objective can now be defined as [29]: 

TT T
2

p p

p

as as

2 0 0

e
1

 e C C e dt z z 0
z

γ γ
γ

∞ ∞

≤ = − ≤∫ ∫
ɶ

ɶ ɶ ɶ ɶ
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Now consider the following candidate Lyapunov 

function for the augmented system (12) 
 

( )
T

as as as
e e  P  e   ,w here  P 0  υ = >ɶ ɶ ɶ  

(17) 

To achieve the required performance (16) and stability 

of the augmented system (12) the following inequality 

should hold: 

( )
T T

a ps p

1
e e  e z z 0υ γ

γ
+ − <ɺ ɶ ɶ ɶ ɶ ɶ  (18) 

where J1(7̃��) is the derivative of candidate Lyapunov 

function ( J(7̃��) = 7̃��K 	D4	7̃�� ) in terms of Eq.(12). 

Inequality (18) can now be re-written as: 

( )T T

as as s s as
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T T T
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(19) 

By using (19), and the Schur Complement Theorem, 

then inequality (18) implies that the following inequality 

must hold: 
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(20) 

To conform to the format of (12) D4  is structured as 

follows: 

1
P 0

P 0
0 I

 
= >  

 (21) 

By substituting the corresponding values of	D4, �L�(�, �), MN(�, �) and using the variable change EO(�) = D&�4(�)	,	 
and the equality 

T

1f
F(p)C D P=  (22) 

The LMI in (14) is obtained. 

Remark 3: The equality (22) can be relaxed using the 

following optimization problem [19] 

minimise	F			such	that
T
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0D
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(23) 

To prove the validity of the LMI (13) the following 

Lemma [28] is required: 

Lemma 1 [28]: For the control problem the matrix Z is >(?, A, B, C)-stable if and only if there exists a symmetric 

matrix [ > 0 such that:  
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 (24) 

To ensure the suitability of the LMI constraints given 

in Lemma1 for observer design constraints, the three 

inequalities of (24) have been rewritten in the following 

observer equivalent form: 
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where ^ > 0. 

Proof: By using the Congruence Lemma [30], pre- and 

post-multiply the first LMI of (24) by	[_&, and pre and 

post multiply the other two constraints by `abc([_&, [_&). Hence, the observer equivalent form of 

LMI constraints (24) is obtained after using the change of 

variables ^ = [_&. This completes the proof. 

Based on Lemma 1, inequality (13) can be obtained 

after substituting	^ = D4 = dD& 00 ef > 0, and � = �L(�, �) as 

defined in (12). This completes the proof of Theorem 1. 

3.2 Actuator fault estimate observer design 

This subsection considers the actuator fault estimator 

design, with the observer driven by the corrected (sensor 

fault compensated) output and control signals (see Fig. 2). 

Therefore, the system given in Eq.(4) becomes: 

( ) ( )( )

s

a

f f

x A p x  B p u f    

y Cx D e                       

= + + 
= + 

ɺ
 (25) 

Based on the same arguments as given in Section 3.1, 

the T-S fuzzy PPI observer is used for estimating the 

actuator fault.  

Under the assumption that the actuator fault first time 

derivative and sensor fault estimation error (��1 , 7-9 ) are 

bounded, then the following T-S fuzzy observer is 

proposed to simultaneously estimate the system states and 

actuator fault: 

( ) ( )( ) ( )( )
s

s

a a f f

f f

x A p x B p u L p Cx D e Cxˆ ˆ ˆ

y Cx D e                                                            

f̂

     

= + + + + − 


= + 

ɺ
 

 (26) 

where �g ∈ ℛ�  is the estimation of the state vector	� , ��(�) ∈ ℛ�×� 	, and	6�(�) ∈ ℛ�×� are the observer gains 

to be designed, and 78 	is the state estimation error. The 

state estimation error dynamic then: 

( ) ( )( ) ( )
( )

a

s

x a x f

a f f

e A p L p C e B p e

                                                        L p D e

= − + −ɺ
 (27) 

Using (26) and (27) the fault estimation error dynamics 

are as follows: 

( ) ( ) ( )( )
( ) ( ) ( ) ( )

a

a s

f a a a x

a f a a f f

e f F p C A p L p C I e

                F p CB p e F p CL p D e

= − − + −

+

ɺɺ
 (28) 

The augmented estimator will then be of the following 

form: 

( ) ( ) ( )a ae t A p , p e  N p , p z= +ɶ ɶɺɶ ɶ ɶ  (29) 

( )
( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )
a

a a a

A p , p

A p L p C B p
        

F p C A p L p C I F p CB p

=

− 
 − − + − 

ɶ

 

( )
( )

( ) ( )
xe

s

a

fa f
a

f a a f a

eL p D 0
 e  , N p , p , z

e F p CL p D I f

−     
= = =         

ɶ
ɺ

ɶ ɶ  

The objective now is to compute the gains ��(�) and 6�(�) such that exogenous input		;̃ in (29) are attenuated 

below the desired level =�  to ensure robust regulation 

performance, in addition to locating the observer poles 

within a specified LMI >(?�, A� , B�, C�) region. 

Theorem 2. The eigenvalues of the estimation error are 

located in a disc region in the complex plane defined by 



(?�, A�, B� ,	C�  ), and the error dynamics are stable and 

the Eh  performance is guaranteed with an attenuation 

level 		=� , (provided that the signal (;̃)  is bounded), if 

there exists a SPD matrix D�& , together with matrices E�# , 6�# , and scalar parameters 	F� , A� , 	?� , C� , and 	B� 

satisfying the following LMI constraints: 

Minimize (=� + F�) such that: 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T
ai ai a a

a a a a ai
T

a a ai a a

T T

T T

2 P 0  

P P
0  

P P

sin cos
0

cos sin

Σ Σ ρ

α β Σ

β Σ α

θ θ

θ θ

+ + <
− +  <  + −  

     + −     <
     − +     

X X X X

X X X X

A A A A

A A A A

 

 (30) 

T
11 12 13 p1

T
22 23 p 2

a

a

a

a

0 C 0

* I 0 C

* * I 0 0 0 0
* * * I 0 0

* * * * I 0

* * * * * I

Ψ Ψ Ψ

Ψ Ψ
γ

γ
γ

γ

 
 
 
 − <
 −
 −
 

− 

 (31) 

( ) ( )T

a 1 a

a

I B p P F p C 0
* I

µ
µ

 − > 
 

 (32) 

( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( )

1
a a1 13 f

T T

11 a1 a1

T T T
12 a1

T T
22 a1 a1

T
23 f

L p P H p  ; H p D

P A p P A p H p C H p C

A p P B p C H p B p

B p P B p B p P B p

B p H p D

Ψ

Ψ

Ψ

Ψ

Ψ

−= = −

= + − −

= − −

= − +

= −

 

( ) ( ) ( )
( ) ( )

a1 a1
Tai

a1

P A p H p C P B p

B p P B p
Σ

Φ

− 
=  − 

 

( ) ( ) ( ) ( ) ( )( )
TT T T T

a1 a1A p P B p C H p B p B p PΦ = − − +

Proof.  This proceeds in a similar manner to steps given 

to prove Theorem 1 and hence is omitted. To overcome 

the equality constraint required throughout the proof of 

Theorem 2, the inequality (23) is also required as given 

below: 

minimise	F� 

( ) ( )T

a 1 a

a

I B p P F p C 0
* I

µ
µ

 − > 
 

 
(33) 

3.3 Controller Design 

The control objective is to design a TSDOFC capable 

of forcing the specified output of the nonlinear plant to 

follow a bounded time-varying reference signal in both 

the faulty and fault-free cases. 

An augmented system consisting of the system (4) and 

the integral of the tracking error ( 7i# = j�$ − k�)  is 

defined below: 

( ) ( ) ( )
s

s

a r in f

f f

p  p u f Ry D e

 e                                   

x A x B

y   C      D  x     

= + + + + 
= + 

ɺ
 (34) 

( ) ( ) ( ) ( )
ti0 SC 0e

p , , p
0 A p B px

A x B
−    = = =        

 

f
in f

f

SD 0I I 0
R , D ,C , D

D0 0 C0

−      = = = =
            

 

where	k ∈ ℛl∗� is used to define which output variable 

is considered to track the reference signal. Since the 

system in (34) has a common output matrix (C), the 

dynamic output feedback controller used to stabilize and 

perform the tracking objective is of quadratic 

parameterisation form and defined below: 

( ) ( )( )
( ) ( ) ( )

c c c c r r

c c c r r a

x A p , p x B p S y y    
ˆu C p x D p S y y f

= + − 
= + − − 

ɺ
 (35) 

where �m  is the state and �m(�, �) ∈ ℛ(�3l)×(�3l) , 'm(�) ∈ ℛ(�3l)×(�3l) , (m(�) ∈ ℛ�×(�3l) , ,m(�) ∈ℛ�×(�3l), . ∈ ℛ(�3l)×l , ,#� ∈ ℛ(�3l)×/, bn`	k$ ∈ℛ(�3l)×l  is introduced to match the dimensions of �$	bn`	�4. Aggregation of Eq.(34) and Eq.(35) gives the 

following system: 

( ) ( )a a a a

a a a

x A p , p x E p , p d

y  C x D d                       

= + 


= + 

ɺ ɶ

ɶ
 (36) 

( )
( ) ( ) ( ) ( ) ( )

( ) ( )
c c

a
c c

p p D p p C pA B C B

C
A p , p

B p A p , p

− 
=  − 

 

( ) ( ) ( ) ( ) ( )
( ) ( )

in c f c r
a

c f c r

p D p D p R p D p S
E

0 B p B p S

B B D B

D

− + 
=  − 

[ ] [ ]
a

s

f

a f a a f
c

r

x
d C D

e

x , e ;C 0 ; D 0 0  
x

y

 
   = = = =
    

 

ɶ 	 

Theorem 3. If the eigenvalues of the closed-loop system 

Eq.34 are located in the negative complex plane 

characterised by the LMI region defined by:	Am ,	 Bm ,	?m , Cm , then the closed-loop system will be stable. 

Furthermore, the closed-loop system will track the 

reference signal with guaranteed Eh  performance with 

an attenuation level 		=m , (provided that the augmented 

signal L̀  is bounded), if there exist SPD matrices	o, p , 

and matrices	�m(�, �),	'm(�),(m(�),	,m(�), together with 

scalars Am ,	?m , Cm , and	Bm  that satisfy the following LMI 

constraints: 

Minimize  =̅m such that: 

( ) ( )

( ) ( )

T
ij ij c

c c ij

T
c ij c

T T
c ij ij c ij ij

T T
c ij ij c ij ij

2 X 0

X X
0

X X

sin cos
0

cos sin

ρ

α β

β α

θ θ

θ θ

+ + <


− +  <  + −  
    + −    < 

    − +      

Q Q

Q

Q

Q Q Q Q

Q Q Q Q

 

(37) 



( )
( )

11c 12c 13c

22c 23c

c

c

B p

* Y B p

* * I 0

* * * I

* * * *
* * * *
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* * * *
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γ
γ



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
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
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T T
14c

T T
24c

T T
r r c r

1

X X 0

0

0 0 0 0
0 0 0 0

0
S S I 0 0 S

* I 0 0

* * G 0
* * *

C

C C

G

CΨ

Ψ

γ

−

−


− 

 <
−
− 

− 
− 

 

(38) 

where 

( ) ( )( ) ( ) ( )

( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )

T

11c

T

T
12c

13c in f 23c in f
TT

22c

14c r 24c r

p X p X p p

                                                            p p

ˆ ˆA p , p p p D p C

ˆ ˆD p D p Y D B p

ˆ ˆY p Y p B p C B p C

ˆ ˆR p D p S ; Y R B p

ˆA A B C

ˆB C

A B

B D ; D

A A

B S

Ψ

Ψ

Ψ Ψ

Ψ

Ψ Ψ

= + + +

= + −

= − = +

= + + +

= + = −

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

 
ij

ˆ ˆp X p C p p p D p C
ˆ ˆA p , p Y

A A

p B p C

A B

A p

 + −
=  + 

Q  

The controller gains are thus calculated as follows: 

( ) ( )

( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( )

( ) ( ) ( ) ( )( )
( ) ( ) ( )

c
T

c c

1
c c

c
1

T T
c c

ˆD p D p

ˆC p C p D p CX M

ˆB p N B p Y p D p

A p , p

ˆ ˆN A p , p Y p p D p C X ...

                    Y p C

B

[ A B

p M NB p C ]B X M

−

−

−

−

=

= +

= − −

=

− −

− +

 

where *	bn`	M satisfy *MK = e − op 

Proof:  Following the definition of the observer 

estimation performance objective 7Hin (16), the controller 

robustness against the augmented input ( L̀)  can be 

represented by minimising the performance objective 

below: 

p T 2 T2
c p p c

0 02

y
 y  y dt d d  dt 0

d
γ γ

∞ ∞

≤ = − ≤∫ ∫ɶ ɶɶ
 (39) 

where �H is the performance objective variable: 

( ) ( ) ( )TT
p r r p p r r r r

T T T T T T T
p p r r r r r r r r

y S y y ; y  y S y y S y y

y  y y S S y y S y y S y y y

= − = − −

= − − +
 

Let q$ = [0	0	k$] then: 
T T T T T
p p r r r a a

T T T T
a a r a a a a

y  y d E E d d E C x ...

                                       x C E d x C C x

= − −

+

ɶ ɶ ɶ

ɶ
 

Consider the following candidate Lyapunov function 

for the augmented system (36) 

( ) T
a a ax x  P  x   ,w here  P 0  υ = >  

As stated in the observer design, to achieve the required 

performance (39) and stability of the augmented system 

Eq.(36) the following inequality should hold: 

( ) T 2 T
a p p cx y  y d d 0υ γ+ − <ɶ ɶɺ  (40) 

where J1(��)  is the derivative of the candidate 

Lyapunov function, based on the state-space 

representation of the augmented system Eq.(36), 

inequality (40) then becomes: 

( ) ( ) ( )( )
( ) ( )

T T
a a a a a

T T T
a a a a

x x A p , p P  PA p , p x

                               x PE p d d E p Px

...υ = +

+ +ɶ ɶ

ɺ
 (41) 

By using Eq. (41) and the Schur Complement Theorem, 

inequality (40) implies that the following inequality must 

hold: 

( ) ( ) ( )T T T
a a a a r a

T 2
r r c

A p , p P  PA p , p PE p C E C

* E E I 0 0

* * I

γ

 + −
 

− < 
−  

 

 (42) 

Inequality (42) can further decomposed as below: 

( ) ( ) ( )T T
a a a a

T 2
r r c

A p , p P  PA p , p PE p C

* E E I 0 ...

* * I

γ

 +
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− + 
−  

 

[ ] [ ]
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T
r r a

0C
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   −
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   

  

 

(43) 

Lemma 2 [17]: Given a scalar F > 0 and SPD matrix 

G, the following inequality holds: 

T T T T 1X R R X  X GX R G R−+ ≤ +  (44) 

where R & X are two matrices. 

Based on Lemma 2, inequality (43) is implied by the 

following inequality: 

( )∆ T T
a a a

T 2 T
r r c r

1

PE p C C 0

* E E I 0 0 E
0* * I 0 0

* * * G 0
* * * * G

γ

−

 −
 

− 
<− 

 −
 − 

 

( ) ( )∆
T
a aA p , p P  PA p , p= +  

(45) 

It can be assumed that D4  and 	D4_&   is structured as 

follows: 

D4 = d p MMK ∗ f , D4_& = d o **K ∗ f , since D4D4_& = e 



we then have D4 d o*Kf = te0u 	⇒ D4 d
o e*K 0f = de p0 MKf. 

Define w& = d o e*K 0f	; 	w� = de p0 MKf 
Pre- and post-multiplying inequality (45) by [w&K e e e e]  and its transpose respectively, the 

following inequality obtained: 

( )∆ T T T T T
2 a 1 a 1 a

T 2
r r c r

1

E p C C 0

* E E I 0 0 E
0* * I 0 0

* * * G 0
* * * * G

Π Π Π Π
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−
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( ) ( )∆
T T T
1 a 2 2 a 1A p , p  A p , pΠ Π Π Π Π= +  

(46) 

After simple algebraic manipulation and using the 

following change of variables:  

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

c

T T
c c c

c c
T

c c

c
2

c c

Â p , p Y A p B p D p C X ...

       Y B p C p M NB p CX NA p , p M

B̂ p NB p Y B p D p

Ĉ p C p M D p CX

D̂ p D p

γ γ

= − +

− +

= − −

= −

=

=

 

Then inequality (38) can be obtained easily. 

By using the change of variables � = ��(�, �),	o = D4, 
and pre- and post-multiplying the first inequality of (23) 

by	w&K , the 2
nd

 and 3
rd

  inequality of (24) by	[w&K w&K] 
and its transpose respectively yields:   

( )

( )
( )[ ] ( )[ ]
( )[ ] ( )[ ]

α β

β α

T
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T T
1 2 1 2

TT T
1 2 1 2
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cos sin
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Π Π Π Π

θ θ
θ θ

+

+ −
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
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where : (47) 

( ) ( )( )
( ) ( )( )

TT T
2 a 1 2 a 1

TT T
2 a 1 2 a 1

A p , p A p , p

A p , p A p , p

Π Π Π Π

Π Π Π Π

+

−

ℑ = +

ℑ = −

 

Substituting the equality	*MK = e − op into inequality 

(47), then inequality (37) is obtained. 

Remark 4: The matrices 	*, MK can be determined 

based on the equality *MK = e − op	using any matrix 

decomposition techniques e.g.  QR (qr) decomposition or 

Singular Value Decomposition (svd). 

Remark 5: 

• The proposed methodology offers design freedom to 

combine any estimation strategy for actuator and 

sensor faults. Moreover, the time responses of the two 

fault estimation observers as well as the closed-loop 

control system can be adjusted separately. 

• Due to the fact that T-S fuzzy static output feedback 

controller (SOFC) has a non convex Lyapunov stability 

condition [31], in this paper the fuzzy DOFC 

(TSDOFC) is proposed instead of SOFC. 

4. INVERTED PENDULUM EXAMPLE 

To illustrate the proposed FTC strategy encompassing 

the possibility of simultaneous actuator and sensor faults, 

a tutorial example is considered using a nonlinear 

simulation of the inverted pendulum and cart with 

tracking of a time-varying reference cart position. As the 

pendulum system is nonlinear a local approximation-

based T-S fuzzy model has been derived based on the 

procedure given in [32]. The faults considered are 

additive and parametric as follows. Various results are 

generated by considering the cart position sensor and cart 

actuator to have both additive and parametric faults.  

The nonlinear inverted pendulum and cart system 

model is given as follows: 

( )

( )
( )

( )

( )

( )

( )

3

4
1

1 1
2 2 2

13 1

4 1
22

11

x 0
x 0

x
g sin x acos x

x
x ...

4 l / 3 mla cos( x )x 4 l / 3 mla cos( x )
x mag sin 2 x  /2 4a / 3

4 / 3 mla cos( x )4 / 3 mla cos( x )

   
   

     −     = = +     − −
     −     

  − −   

ɺ

ɺ
ɺ

ɺ

ɺ

 

( )( )( )2
a 3 1* u f mlx sin x+ +  (48) 

where	�&, �� �y, �zare the pendulum angle position, the 

cart position, the pendulum angular velocity, and the cart 

speed, respectively. The system parameters are 	{ : 

Pendulum mass (2kg), 2}: Pendulum length (1m), *: Cart 

mass (8kg), b = &
�3~. The output matrix is: 

1 0 0 0
C 0 1 0 0

0 0 0 1

 
 =
  

 

Although, increasing the number of fuzzy rules ensures 

good approximation of a smooth nonlinear system, the 

design conservatism of the T-S fuzzy controller and 

estimator also increase. Therefore, to take into account 

this trade-off, three system operating points are chosen 

corresponding to the pendulum angular positions 		C =0	bn` ± �/4 . Due to symmetry this results in the choice 

of two fuzzy rules in the T-S model. Details of the fuzzy 

model are presented in [32] and are omitted here. The 

control objective is to force the cart position to follow a 

desired cart reference position in the presence of a cart 

position measurement	(�� fault and actuator fault. 

By solving the LMI conditions given in Theorems 1, 2, 

and 3 the fuzzy controller and observers gains are: 

( )c 1 ,1

1.49 2.01 10.35 29.38 806.95
1.10 2.23 7.67 20.95 591.71

A 0.34 0.27 2.56 6.30 187.19
0.09 0.11 0.11 2.95 39.95
0.09 0.36 0.38 0.73 17.16

− − 
 − − −
 = − − −
 − −
 − − − 

 



( )c 1 ,2

1.93 0.96 17.18 61.83 2748.86
1.43 3.01 12.72 44.92 2027.57

A 0.45 0.02 4.15 13.89 637.38
0.12 0.06 0.44 4.51 128.92
0.10 0.34 0.51 1.31 52.15

− − 
 − − −
 = − − −
 − −
 − − − 

 

( )c 2 ,1

1.46 2.26 10.19 28.09 752.52
1.12 2.01 5.23 13.11 333.50

A 0.33 0.33 2.37 5.50 161.40
0.08 0.12 0.11 2.90 42.72
0.04 0.34 0.20 0.27 2.24

− − 
 − − −
 = − − −
 − −
 − − − − 

 

( )c 2 ,2

1.88 1.29 16.49 58.02 2543.07
1.30 2.42 7.89 25.74 1086.62

A 0.42 0.12 3.70 11.88 538.60
0.10 0.07 0.43 4.40 127.20
0.04 0.34 0.22 0.36 8.81

− − 
 − − −
 = − − −
 − −
 − − − − 

 

c1

12.27 51.36 334.10 131.49
8.64 11.49 251.91 22.22

B 45.03 0.04 49.63 118.87
141.63 20.10 111.01 37.84
17.20 194.45 4.07 7.94

− − − 
 − −
 = −
 − −
 − − 

 

c 2

5.34 27.38 330.13 132.20
2.29 8.29 146.23 17.92

B 46.67 5.53 41.87 118.13
141.26 21.27 111.55 36.10

16.69 182.50 9.54 9.34

− − − 
 − −
 = −
 − −
 − − − 

 

[ ]
[ ]
[ ]
[ ]

c1

c 2

c1

c 2

C 0.02 0.17 0.75 2.19 59.86

C 0.04 0.10 1.27 4.59 203.37

D 0.74 2.78 24.56 0.07

D 0.26 1.62 26.30 0.01

= − −

= − −

= − − −

= − − −

 

The sensor fault T-S PPI gains are calculated as: 

1 2

39.32 0.26 8.79 40.45 0.27 1.24
1.71 0.02 0.46 1.82 0.02 0.11

142.99 1.02 32.15 147.14 1.05 4.70
L , L5.99 0.25 1.86 6.23 0.25 0.70

33.28 0.22 7.43 34.24 0.22 1.04
13.71 17.88 4.19
4.65 0.24 1.55

− − − − 
 − −
 − − − −
 = =− −
 

− − − − 
− − − 
−  

15.20 17.88 1.13
4.86 0.24 0.65

 
 
 
 
 
 

− 
−  

 

The actuator fault T-S PPI gains are calculated as: 

1 2

522.50 0.04 1.42 522.54 0.06 1.15
0.05 1.61 0.99 0.05 1.61 0.99

L , L
769.44 0.08 3.28 768.29 0.09 0.03

0.01 0.04 1.99 1.99 0.08 1.75

− − − −   
   

= =   − −
   
   

 

The fault estimation observer feedback gains for the 

sensor and actuator PPIs are 

6� = [12.33 7.10 2.61]		6� = [−23.48 −0.01 546.39] 
The corresponding attenuation coefficients are 	=m =0.6302,  = = 0.2722 and	=� = 0.1227. 

The controller designed LMI region is bounded by Am = 20, Bm = 0,	?m = 0, Cm = �/3, the sensor fault PPI 

LMI region is bounded by A = 100 , B = 0 , 	? = −1 , C = �/2 , and the actuator fault PPI LMI region is 

bounded by A� = 100, B� = 0,	?� = −1, C� = �/2. 

Remark 6: Although specifying the closed-loop 

performance via additional LMI constraints can guarantee 

bounded performance since only a region in the complex 

plane is defined, this increases the probability of 

infeasible solutions. Hence, the LMI regions parameters 

(Am ,	?m , Cm ,Bm , A� ,	?� , C� , B� ,	A,	?, C, and	B) should be 

selected in order to jointly achieve acceptable 

performance and robustness (i.e. feasibility of inequalities 

14, 31, and 38 with minimum =m , =�	, and	=  ). 

Fig. 2 a, b, c & d show the actuator fault estimation 

results generated via PPI T-S fuzzy observers, covering 

several additive fault scenarios of abruptly varying 

amplitudes and slow to fast (linear time-varying fault 

frequencies). 

 
Fig. 2a Time-varying actuator fault signal and fault 

estimation 

 
Fig. 2b: Actuator fault estimation error 

 
Fig. 2c: Time axis zoomed-in actuator fault signal/estimation 

 

Fig. 2d: Fault magnitude zoomed-in actuator fault 

signal/estimation 



The following simulation results consider the effect of 

the actuator fault given in Fig.2a with online estimation 

(via one T-S PPI observer) and compensation. Additive 

and parametric cart position sensor fault scenarios have 

been introduced to show the ability of the proposed 

strategy to handle simultaneous faults. In Fig. 3 a 

parametric change on the cart position sensor fault  

(0.3(� ) is introduced and the proposed FTTC system 

maintains the tracking performance during the 

simultaneous fault. 

Fig. 4 shows the effectiveness of the actuator fault 

compensation. The significant effect of the 

uncompensated sensor fault is also shown. Moreover, the 

fault estimation in Fig. 4 indicates that a parametric 

change fault is a special case of an additive fault in which 

the fault signal represents the loss of effectiveness 

multiplied by the corresponding fault-free signal. Based 

on this interpretation, the fault estimation signal can be 

utilized to assess the severity of the fault as shown in Fig. 

5. This is achieved by taking the ratio between the 

measured cart position and the faulty estimation signal. 

Hence, if there are no faults the ratio should be 0 

otherwise any deviation indicates the occurrence of the 

fault and the magnitude of the deviation represents the 

fault severity. 

Fig. 6 a & b shows a result from further investigation of 

the proposed FTTC system by considering a time-varying 

and abruptly changing multi-step sensor fault signal and 

its T-S PPI estimate affecting the system at the same time 

as the actuator fault shown in Fig. 2a.  Zoomed version of 

the sensor fault estimate signal in Fig. 6 c & d with 

separate time windows further demonstrate the 

effectiveness of the proposed estimation and 

compensation scheme. Within each window small 

sinusoidal variations from the actuator fault (with 

different frequencies and amplitude) are clearly visible 

showing that the bi-directional interactions between the 

proposed T-S PPI observers are strongly attenuated. 

 
Fig. 6 a: Additive sensor fault signal/estimation 

 
Fig. 6 b: Simultaneous actuator & sensor fault with the 

uncompensated sensor fault  

 
Fig. 6 c: Zoomed-in sensor fault signal/estimation 

Fig. 3 Simultaneous actuator and sensor fault 

uncompensated sensor fault 

Fig. 4 Faulty measurement and fault estimatio 

Fig. 5 Sensor fault evaluation 



 
Fig. 6 d: Zoomed-in sensor fault signal/estimation 

5. CONCLUDING DISCUSSION 

The paper develops a new architecture for active FTC 

with simultaneous actuator and sensor faults based on 

fault estimation and compensation. Using this proposed 

architecture, a detailed design approach is presented for a 

certain class of nonlinear systems that can be modelled in 

T-S fuzzy inference form. A dynamic output feedback 

control scheme is used that has time-varying reference 

tracking capability and the fault estimators are designed 

using a proposed T-S extension of a well known PPI 

observer scheme, the T-S PPI observer. The controller 

and fault estimators individually satisfy an appropriate �� 

norm robustness condition guaranteeing minimum 

tracking error and robust fault estimation. From this a 

dual pair of actuator and sensor fault estimators are 

developed that have low fault interaction and which 

together provide robust fault compensation in the output 

feedback controller. A tutorial study based on a nonlinear 

inverted pendulum shows how the proposed FTTC can 

handle the most challenging and complex FTC problem, 

that of simultaneous actuator and sensor faults.  

In summary, the significant attributes gained by using 

the FTTC system are:  

1. Design of an FTTC system that robustly tolerates 

simultaneous sensor and actuator faults.  

2. Estimate time-varying actuator and sensor faults with 

bounded first time-derivatives using proportional and 

integral feedback PPI observers with T-S model 

structure. 

3. Maintain the nominal controller performance in the 

presence of large reference changes and faults.  

4. Overcome the hurdles imposed by the generally 

accepted use of T-S observer-based state feedback. 

Moreover, the limitation of using an iterative form of 

static output feedback control design is obviated via 

the use of TSDOFC 

5. The significant impact of tracking control for the 

sensor fault tolerance problem is investigated. 

Furthermore, the investigation has also shown that 

additive faults are a generalized fault representation that 

can be used to assess the severity of sensor faults. These 

factors represent significant contributions to the subject in 

active FTC. 
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