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Abstract: A novel turn-on fluorescence probe L has been designed that exhibits high selectivity and
sensitivity with a detection limit of 9.53 × 10−8 mol/L for the quantification of Zn2+. 1H-NMR
spectroscopy and single crystal X-ray diffraction analysis revealed the unsymmetrical nature of the
structure of the Schiff base probe L. An emission titration experiment in the presence of different
molar fractions of Zn2+ was used to perform a Job’s plot analysis. The results showed that the
stoichiometric ratio of the complex formed by L and Zn2+ was 1:1. Moreover, the molecular structure
of the mononuclear Cu complex reveals one ligand L coordinates with one Cu atom in the asymmetric
unit. On adding CuCl2 to the ZnCl2/L system, a Cu-Zn complex was formed and a strong quenching
behavior was observed, which inferred that the Cu2+ displaced Zn2+ to coordinate with the imine
nitrogen atoms and hydroxyl oxygen atoms of probe L.

Keywords: fluorescent probe; Schiff base; crystal structure; titration experiments

1. Introduction

Zinc is the second most abundant transition metal ion in the human body and is
essential for various biochemical processes, such as neurotransmission, enzyme regulation,
gene expression, and apoptosis [1–4]. In addition, zinc at normal concentrations controls
many metabolic, biological, and environmental processes, while deficiency usually leads to
the appearance of some clinical diseases, such as growth retardation, brain dysfunction,
high blood cholesterol, Parkinson’s disease, ischemic stroke, Alzheimer’s disease, etc. [5–9].
On the other hand, excessive zinc will also cause problems for humans; for example, it will
reduce soil microbial activity and cause phytotoxic effects [10–14]. Therefore, it is of great
significance to be able to accurately detect zinc ion concentration [15–18].

At present, the main detection methods of zinc include spectrophotometry, electro-
chemical methods [19], atomic absorption methods [20], chromatographic methods, and
mass spectrometry [21,22]. However, due to the high cost of equipment, cumbersome
sample preparation, or prolonged testing time, the wide application of these methods in
actual testing has been limited. Among various detection methods, metal ion fluorescent
chemical sensors have attracted much attention because of the convenient use, high sen-
sitivity, and ability to directly measure concentration through fluorescent signals [23–27].
Zn2+ fluorescent probes can be divided into three categories: fluorescence quenching,
fluorescence enhanced type, and ratio type. There is still an urgent need to develop new
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small molecule probes that are easy to prepare, have high sensitivity, and can recognize
Zn2+ with excellent selectivity.

Schiff bases can coordinate with a variety of metals due to their special chemical
structure, so they are considered to be dominant ligands for metal ions [28]. Schiff bases
and their transition metal complexes not only have a wide range of applications in syn-
thesis, catalytic chemistry, and materials chemistry [29], but also have a wide range of
applications in antibacterial, antifungal, anticancer [30], clinical, analytical, and pharmaco-
logical aspects [31–34]. Moreover, a series of Schiff base ligands have been reported to be
fluorescence turn-on chemosensors for Zn2+ with high sensitivity and selectivity [35–40].
Such systems are based on several reported mechanisms of fluorescence enhancement
behavior, including internal charge transfer (ICT) [41], chelating-enhanced fluorescence
(CHEF) [42,43], photoinduced electron transfer (PET) [44,45], aggregation-induced emis-
sion (AIE) [46–48], and C=N isomerization mechanisms [49–51]. In the current work, we
have designed an asymmetric Schiff base L that not only has the ability to chelate metals
but also has lone pair electrons on nitrogen atoms. The synthesis of L is shown in Scheme
1, and its structure has been confirmed by NMR spectroscopy, mass spectrometry, single
crystal X-ray diffraction, and UV-Vis spectroscopy.
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Scheme 1. Synthesis of Schiff base compound L.

The fluorescence spectrum indicated little fluorescence emission of the free probe L.
However, after adding Zn2+, L exhibited a fluorescence emission peak at 475 nm and a
512-fold fluorescence enhancement. Meanwhile, qualitative and quantitative detection
are achieved through the linear relationship between fluorescence intensity and zinc ion
concentration. Additionally, most of the coexisting metal ions had little or negligible
interference on the emission response of probe L toward Zn2+. Of particular note is Cd2+,
which has very similar chemical properties to Zn2+, and most Zn2+ sensors tend to respond
to both Zn2+ and Cd2+ [32–35]. Hence, the development of a Zn2+ selective fluorescence
sensor that can discriminate Zn2+ from Cd2+ is a great challenge and is of great significance.
The recognition mechanism of the probe for Zn2+ in ethanol solution is proposed to be C=N
isomerization [49–51] and chelation-enhanced fluorescence [42,43]. The C=N isomerization
is inhibited by the coordination of Zn2+ with the probe L, so the fluorescence is significantly
enhanced. Moreover, both Zn2+ and Cu2+ were investigated as the metal ions to coordinate
simultaneously with L in order to understand the strong quenching behavior of Cu2+.

2. Results and Discussion
2.1. Selectivity of the Probe L

To determine potential practical applications, the spectroscopic properties of L were
measured under simulated physiological conditions (50 µM in ethanol solution). The probe
will be deactivated when the water content exceeds 5%, and thus the fluorescence spectral
response of L to metal ions was recorded in ethanol solution excited at 354 nm as shown in
Figure 1. The fluorescence spectroscopic response of L toward metal ions was evaluated
in ethanol solution upon excitation at 354 nm as presented in Figure 1. The fluorescence
spectroscopy indicated that the addition of Zn2+ resulted in a significant enhancement
of the emission intensity positioned at 475 nm (Figure 1A, blue line). Under the same
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conditions, next to no responsive changes are observed in the presence of 1 equiv. of
various metal cations (solutions of Zn2+, Li+, Na+, K+, Ag+, Mg2+, Ca2+, Sr2+, Ba2+, Al3+,
Fe3+, Co2+, Ni2+, Cu2+, Pb2+, Cd2+, and Hg2+ were prepared from their chloride salts) in
ethanol. Thus, according to the spectroscopy changes, the Schiff base probe L can detect
Zn2+ with good selectivity.
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Eem = 475 nm). (C) Photos of L responding to 17 kinds of other metal ions and Zn2+ under visible
light (above) and UV light (below).

2.2. Competition Experiments

It is necessary for a metal ion fluorescence chemosensor to achieve higher selectivity
over other competing metal ions. Therefore, we evaluated the fluorescence behavior of
probe L for Zn2+ in the presence of various competing metal ions, in which L was treated
with 1 equiv. of Zn2+ in the presence of 1 equiv. of other metal ions. Figure 1B summarizes
the results, and reveals that the presence of Li+, Na+, K+, Ag+, Hg2+, Mg2+, Hg2+, Ba2+, and
Pb2+ caused only minor interference for the detection of Zn2+, whilst the presence of Co2+,
Al3+, Ca2+, Ni2+, and Cr3+ resulted in low fluorescence intensity but were clearly detectable.
However, in the case of Fe3+ and Cu2+, quenching of the fluorescence signal was observed,
which may be due to the paramagnetic nature of Cu(II) and Fe(III) and their stronger
coordinating ability than Zn(II). The fluorescence probe for detecting Zn2+ in the presence
of coexisting metal ions, except for Fe3+ and Cu2+, clearly maintains higher emission than
observed for the free probe L. Moreover, Cd2+ did not inhibit the emission intensity of
Zn2+. Thus, these results indicate that probe L could be used as a selective probe for Zn2+

for distinguishing Zn2+ from Cd2+, which commonly share similar properties.
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2.3. Fluorescence Spectroscopic Studies of L toward Zn2+

The result of the fluorometric titration of the free probe L and those in the presence of
incremental amounts of Zn2+ in ethanol solution is shown in Figure 2A. The fluorescence
spectrum showed that the fluorescence intensity increases steadily and smoothly on in-
creasing the Zn2+ concentration. On addition of up to 1 equiv. of Zn2+, the turn-on ratio
was observed to increase by over 512-fold. Additionally, the dependence of the emission
intensity at 475 nm on the Zn2+ concentration is shown in Figure 2B. The fluorescence
intensity remained constant in the presence of more than 1 equiv. of Zn2+, and there-
fore, the formation of a 1:1 complex between L and the Zn2+ was proposed. According
to the fluorescence titration data, the association constant for L–Zn2+ complexation was
calculated at 1.42 × 104 mol/L from the Benesi-Hildebrand plot (Figure 2C). For practical
purposes, the detection limit of probe L is an important parameter. The detection limit
of probe L for Zn2+ was determined to be 9.53 × 10−8 mol/L according to the IUPAC
definition (CDL = 3 Sb/m) from 10 blank solutions [52,53]. The Job’s plot analysis shows
that a maximum emission was observed when the molar fraction reached 0.5, suggesting
that the complex formation between L and Zn2+ has the stoichiometric ratio of 1:1. A linear
relationship (R2 = 0.99173) for the plot of the normalized fluorescence intensity at 475 nm
against Zn2+/L is shown in Figure 2D.
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Zn2+ was 50 µM. (D) The Benesi-Hildebrand plot of 1 / (F − F0) versus 1 / [Zn2+].

For a rough comparison between present complex with other reported similar fluo-
rescent sensors [35,37–39,54,55], based on the detection limits of fluorescent sensors for
Zn2+, see the results gathered in Table 1. The present compound is clearly more sensitive
than most of the other Schiff base fluorescent sensors for the detection of Zn2+ via turn-on
fluorescence.
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Table 1. Comparison of various fluorescent sensors for Zn2+.

Compound Solvent Detection Limit Ref.
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2.4. UV-Vis Absorbance Response of Probe L towards Zn2+

As illustrated in Figure 3, the probe L exhibited a maximal absorption at 313 nm.
Upon addition of Zn2+ ions (0−1 equiv.), the absorbance at 313 nm decreased gradually on
gradually increasing the Zn2+ concentration (Figure S4, Supplementary Materials). The
presence of two clear isosbestic points at 273, 339 nm is consistent with the conversion of
the free probe L to the Zn2+ complex. Moreover, the absorbance at 313 nm hardly changes
in the presence of more than 1 equiv. of Zn2+ ions, indicating the formation of a 1:1 complex
between L and the zinc ion. This is in good agreement with a 1:1 stoichiometry for the
Zn2+ complex as determined by the Job’s plot obtained from UV-Vis absorption (Figure S5,
Supplementary Materials).
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2.5. Crystal Structures of Probe L and Metal Complexes

To further investigate the binding mode of L with other metal ions, probe L and
the organic framework of L possess an approximate torsional structure which chelates
with one equivalent of Cu2+ ions. Moreover, a heteronuclear bimetallic complex was also
obtained. The geometrical parameters of the mononuclear Cu complex, Cu-Zn complex,
and L are listed in Table S1, Supplementary Materials. Treatment of 2,4-pentanedione
with (1R, 2R)-diaminocyclohexane in refluxing methanol for 15 min, cooling, followed
by the addition of 2-hydroxy-3-methoxybenzaldehyde led to the target product L, which
was obtained from the filtrate on standing overnight below 0 ◦C. The reaction generally
affords a high yield (84%), and yellow crystals suitable for X-ray determination were
obtained (Figure 4a). The probe L is found to be unsymmetrical as shown by the crystal
structure and the potential coordination sites in the two side chains point in opposite
directions. Additionally, the bond lengths of N1–C17 and N2–C7 are 1.319(10) Å and
1.310(12) Å, respectively, corresponding to a C=N double bond. Both bond lengths of
C15–C16 (1.348(15) Å) and C15–O1 (1.293(14) Å) were between single and double as a result
of contributing to the conjugation effect. Moreover, all the atoms (except for hydrogen) in
each side chain are coplanar and the dihedral angle of the two planes is 61.28◦, thereby
making the whole molecule appear “V” shaped.
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To synthesize the copper complex, ligand L was treated with an equivalent of CuCl2 at
room temperature, and following work-up, brown crystals were afforded. X-ray crystallo-
graphic analysis (Figure 4b) shows that the Cu2+ complex is a mononuclear complex, where
the asymmetric unit consists of one ligand L and one Cu atom, giving rise to a 1:1 ligand
to metal coordination. The central Cu2+ is four-coordinate with one phenoxide oxygen
atom, and one enolic hydroxyl oxygen atom and two imine nitrogen atoms. Moreover, the
four-coordinated atoms are almost coplanar, in which the dihedral angle of N1–Cu1–O1
and N2–Cu2–O2 is only 9.21◦. The bond lengths of N1–C17 and N2–C7 are 1.309(5) Å and
1.290(5) Å, respectively, and are shorter than in the neutral ligand. The bond lengths to
Cu are comparable with corresponding values observed in similar complexes [56,57]. The
Cu complex clearly shows quenched fluorescence, which might be due to the d9 electron
configuration of the Cu2+ ions making the transfer of ligand electrons from the excited
states to the d-orbital of Cu2+ rather than transferring back to the ground state of the
ligand [58].

In order to understand the strong quenching behavior when coexisting Cu2+ and
Zn2+ are present, we added CuCl2 to the solution of ZnCl2/L. As expected, the solution
shows an obvious quenched fluorescence. Moreover, a heteronuclear bimetallic complex
was obtained by concentrating the solution. The solid-state molecular structure is shown
in Figure 5, as determined by X-ray crystallography. This revealed that the asymmetric
unit is composed of two fragments that are connected by two bridged chlorine atoms to
construct a dimeric heteronuclear metal complex. The coordination environment of the
copper atom is a slightly distorted square-planar involving two O and N atoms from the
L2− ligand, which is similar to that in the above-mentioned mononuclear Cu-complex.
Moreover, the zinc has a distorted tetrahedral environment, in which the zinc atom is
coordinated by the two O atoms of the L2− ligand and the two Cl atoms. The average
angle of Cl–Zn–Cl is 116.96(11) and the Cl–Zn–Cl planes are nearly perpendicular to the
CuL units, respectively, which decreases the steric effects between them. The distances
between Cu and Zn are 3.106 Å and 3.101 Å in each half of the molecule, respectively. The
core feature of the bimetallic structure possesses an average Cu–O bond of 1.919 Å and
Zn–O bond of 2.146 Å, accompanied by an average Zn–Cl bond of 2.220 Å and Cu–N bond
of 1.939 Å. These values are comparable with corresponding values observed in similar
Cu-Zn complexes [59,60]. The formation of the Cu-Zn complex indicates that the Cu2+ can
displace the Zn2+ to coordinate with the imine nitrogen atoms and the hydroxyl oxygen
atoms of probe L. In this regard, the formation of complex Cu-Zn would be the main cause
of the strong quenching behavior when Cu2+ coexists in the presence of Zn2+/L.
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2.6. Proposed Recognition Mechanism

To better understand the recognition mechanism in the detection of L for Zn2+, the 1H
NMR spectroscopic titration experiment was performed as shown in Figure S6, Supplemen-
tary Materials. It shows that the proton peaks at δ = 13.49 and 10.74 ppm of the phenolic
hydroxyl and enol hydroxyl, respectively, of probe L gradually decreased on the addition
of zinc ions. Especially, the proton peak of the phenolic hydroxyl was almost completely
gone when the addition of Zn2+ reached 1.0 equivalent, which indicated that the Zn2+

coordinates to the two O atoms with the stoichiometric ratio 1:1. The enol hydroxyl proton
peak remains because the enol and ketone can still interchange. On the other hand, based
on the Job’s plot analysis and the structures of similar types of zinc complexes reported
in the literature [61–63], we propose the structure of a 1:1 complex for L and Zn2+ is as
shown in Scheme 2. The remarkable increase of the fluorescence of probe L at 475 nm
can be explained as follows: the probe L with a C=N containing structure shows little
fluorescence because of C=N isomerization, which leads to the predominant decay in the
excited states [64]. In contrast, the nitrogen containing lone pair electrons coordinate with
the zinc ions and form a bond to restrain the C=N isomerization so that its fluorescence
increases drastically [65]. Moreover, the complexation of Zn2+ with L leads to a more rigid
molecule, and produces a large chelation-enhanced fluorescence detection effect, which
leads to a large increase in the fluorescence [66]. On the other hand, it has been reported
that transition metal cations with closed shell d-orbitals cannot form low-energy metal
center excited states or charge-separated excited states to provide the obvious fluores-
cence enhancement. However, transition metal cations with open shell d-orbitals usually
quench fluorescence due to electron or energy transfer between the metal cation and the
fluorophore, providing rapid and effective non-radiative decay of the excited state [67].
The formation of Cu-Zn complex implies that Cu2+ with its open shell d-orbitals replaces
Zn2+ with closed shell d-orbitals and coordinates with C=N bond of the ligand. Hence,
strong quenching of the fluorescence was observed following the addition of CuCl2 to the
ZnCl2/L system.
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3. Materials and Methods
3.1. Reagents and Equipment

All of the starting materials and solvents were commercially available and used
without further purification. Ultrapure water was used throughout the experiments. The
solutions of the metal ions were prepared from their chloride salts. The UV-Vis absorption
spectra were determined at room temperature on a UV-2600 Milton Ray Spectrofluorometer
(Shimadzu, Kyoto, Japan) in a 1 cm quartz cell. Fluorescence spectroscopy measurements
were recorded on a Cary Eclipse Hitachi 4500 spectrophotometer (Hitachi, Tokyo, Japan)
(Varian). 1H-NMR spectra were measured using an Inova-600 Bruker AV 600 spectrometer
(Bruker, Karlsruhe, Germany) at room temperature. DMSO-d6 was used as a solvent
and tetramethylsilane (TMS) as an internal standard. Single crystal X-ray diffraction was
conducted on a Bruker Smart Apex II single crystal diffractometer (Bruker, Karlsruhe,
Germany). The spectroscopic properties of the probe L were investigated in an ethanol
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solution at 1 mmol/L that was diluted to the required concentrations. All the metal ions
and anions were initially prepared as a 1 mmol/L ethanol solution and then diluted to the
needed concentrations.

3.2. Synthesis of the Fluorescent Probe L

Here, 2,4-pentanedione (1.00 g, 10 mmol) in methanol (15 mL) was added dropwise
to a methanol (20 mL) solution of (1R, 2R)-diaminocyclohexane (1.14 g, 10 mmol). The
mixture was heated to reflux for 15 min, and cooled to room temperature. Then, 2-hydroxy-
3-methoxybenzaldehyde (1.52 g, 10 mmol) was added and the solution was stirred for
an additional 2 h at room temperature. It was filtered and the filtrate was left to stand
overnight below 0 ◦C. The resulting yellow precipitate was collected by filtration to give the
Schiff-base ligand L (2.67 g, 84%). The precipitate was recrystallized from methanol. X-ray
quality yellow single crystals of ligand L were obtained by slow evaporation of a saturated
methanol solution. 1H-NMR (600 MHz, DMSO-TMS): δ/ppm 13.49 (s, 1H, Ar–OH), 10.74
(s, 1H, (C=C)OH), 8.39 (s, 1H, CH=N), 7.03 (d, J = 7.8 Hz, 2H, Ar–H), 6.94 (d, J = 7.8 Hz, 2H,
Ar–H), 6.80 (t, J = 7.8 Hz, 1H, Ar–H), 4.74 (s, 1H, CH=C), 3.77 (s, 3H, CH3–O), 3.61 (m, 1H,
Cy–H–N), 3.10 (m, 1H, Cy–H–N), 1.81 (s, 3H, CH3(C=N)), 1.78 (s, 3H, CH3(C=C)), 1.95−1.37
(m, 8H, Cy−CH2). 13C-NMR (150.9 MHz, DMSO-TMS): δ/ppm 193.2 (C=C–OH), 165.6
(CH3–C=N), 162.3 (Ar–C=N), 151.0 (Ar–C–OH), 148.0 (Ar–C–CH3), 123.2 (Ar–C–(C=N)),
118.4 (Ar–C), 118.1 (Ar–C), 114.8 (Ar–C), 94.7 (C=C–OH), 72.5 (Cy–C–N), 55.9 (Cy–C–N),
55.8 (CH3–O), 32.9, 32.6, 28.6, 24.2 (Cy–CH2), 23.5 (CH3(C=C)), 18.8 (CH3(C=N)). ESI-MS
m/z: calcd. for [C19H26N2O3 + H]+, 331.2016; found, 331.2011. Elemental analysis calcd.
(%) for C19H26N2O3 [330.19 g/mol]: C 68.85, H 8.21, N 8.45. Found (%): C 68.56, H 8.47,
N 8.73.

3.3. X-ray Crystallography

Diffraction data for the probe L, Cu-complex, and the Zn-Cu complex were collected
on a Bruker SMART APEX II diffractometer at room temperature (298 K) with graphite-
monochromated Mo Kα radiation (λ = 0.71073 Å). An empirical absorption correction
using SADABS was applied for all data [68]. The structures were solved and refined to
convergence on F2 for all independent reflections by the full-matrix least squares method
using the SHELXL−2014 programs [69] and OLEX2 1.2 [70]. Hydrogen atoms bonded to
carbons were included in idealized geometric positions with thermal parameters equivalent
to 1.2 times those of the atom to which they were attached. In compound L, one oxygen
atom in the solvent water was disordered and there was a large amount of disorder in the
structure. In particular, the disordered side-chains are very dynamic and may be considered
as a solvent. Short contacts between disordered fragments are to be expected, which
caused the observed level B alerts. Crystallographic data and refinement details for L, Cu-
complex, and the Zn-Cu complex are given in Table S1, Supplementary Materials. CCDC:
2067620, L; 2067621, Cu-complex; and 2067622, Zn-Cu complex contain the supplementary
crystallographic data for this paper. These data can be obtained free of charge from the
Cambridge Crystallographic Data Centre: www.ccdc.cam.ac.uk/data_request/cif.

3.4. General Procedure for Analysis

Before conducting the spectroscopic measurements, the corresponding solutions of
probe L and the metal ions were freshly prepared. For fluorescence spectroscopy selective
experiments, test solutions were prepared as follows: a stock solution of probe L (1 mM)
and the reactive species (1 mM) was prepared in ethanol solution and 0.15 mL of probe
L and 0.15 mL of the reactive species were placed into a 3 mL cuvette and then after
diluting the solution to 3 mL with ethanol solution; the final concentration was 50 µM. The
fluorescence spectra were collected at room temperature.

For fluorescence spectroscopy competitive experiments, test solutions were prepared
as follows: a stock solution of probe L (1 mM) and the reactive species (1 mM) was prepared
in ethanol solution and 0.15 mL of probe L and 0.15 mL of the reactive species were placed

www.ccdc.cam.ac.uk/data_request/cif
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into 3 mL cuvette and mixed. Next, 0.15 mL of the Zn2+ solution was added to the above
mixed solution, which was then diluted to 3 mL with ethanol. Fluorescence spectra were
recorded at room temperature.

For UV-Vis and fluorescence spectroscopy titrations experiments, a stock solution of
the probe L (1 mM) was prepared and 0.15 mL of the probe L solution was placed into
3 mL cuvette. Adding 15–450 µL Zn2+ solution to the above cuvette, and then diluting
the solution to 3 mL with different amounts of ethanol solution. UV-Vis and fluorescence
spectra were taken at room temperature.

For the Job’s plot measurement, the total concentration of the probe L and Zn2+ was
kept at 50 µmol. L and the ratio of the concentration of Zn2+ to the concentration of the
probe L was changed to 0:10, 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, 9:1, and 10:0, with the
fluorescence intensity at 475 nm and the ultraviolet absorption intensity at 310 nm as the
vertical axis Zn2+ occupies the probe and the molar ratio of Zn2+ is on the horizontal axis.
The spectra of these solutions were immediately recorded by means of the UV-Vis method
and fluorescence spectroscopy.

4. Conclusions

In summary, a new, low-cost, rapid, and portable Schiff base fluorescent probe L
was synthesized and characterized. A “turn-on” fluorescence emission was observed
upon sequential addition of Zn2+ and this increases proportionally with increased Zn2+

concentration. Meanwhile, it was found that probe L has great fluorescence selectivity
for Zn2+ over many other important metal ions. Additionally, the method of equivalent
molarity of fluorescence and UV spectrum indicated a 1:1 binding mode between L and
Zn2+. Finally, the formation of the Cu-Zn complex and the strong quenching behavior of
coexisting Cu2+ for Zn2+ may lead to the potential application as an on-off chemosensor
candidate for Cu2+.

Supplementary Materials: The following are available online: Figure S1: 1H-NMR spectrum of L,
Figure S2: 13C-NMR spectrum of L, Figure S3: HR ESI-MS spectrum of probe L, Figure S4: Absorbance
of L as a function of [Zn2+]/[L], Figure S5: Job’s plot of probe L with Zn2+. Figure S6: 1H-NMR
spectra of probe L with 0–1 equiv. of ZnCl2, Table S1: Crystallographic data and refinement details,
Table S2: Selected bond lengths and bond angles for complex L, Cu-complex and Cu-Zn complex.
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