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Abstract 18 

Rocky shores and beaches are important over-wintering areas for non-estuarine waders but 19 

have rarely been studied. We examined cliff top habitat use by 6 species of wader over 75km 20 

of coast to assess their potential value as alternative feeding sites to rocky and sandy shores. 21 

Both the regional and local survey showed that waders occurred on golf courses and 22 

recreational grasslands in higher frequencies than expected but arable and pasture use was 23 

lower than expected. We also compared local wader densities on rocky and sandy shores, 24 
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2 
 

pastures, golf courses, caravan parks and recreational grasslands over two winters.  25 

Sanderling predominantly fed on the beach whereas Oystercatcher, Dunlin, Turnstone and 26 

Redshank numbers significantly increased on golf courses and recreational grasslands over 27 

the winter period, with pasture being rarely used. General linear models were used to relate 28 

environmental factors to the presence and absence of each species on the cliff top habitats.  29 

Redshank was the only species that showed a higher probability of occurrence on cliff top 30 

habitats at high tide whereas the probability of Turnstone, Oystercatcher and Redshank 31 

occurring increased as temperatures declined. Using core sampling, we determined that 32 

invertebrate richness and abundance was significantly higher on the recreational grasslands 33 

and golf courses than on the pasture or the beach.  Our data demonstrated that cliff top 34 

habitats are important alternative feeding areas for over-wintering waders in areas where the 35 

intertidal is bounded by cliffs.  Current management creates short sward, open field habitats 36 

with a diverse and abundant invertebrate food supply exploited by waders.  Any alterations to 37 

the land use of these areas should be carefully considered by planning authorities in light of 38 

the fact that they support species that are of conservation concern.   39 

 40 

1. Introduction 41 

Waders are primarily dependent on wetland habitats and estuarine areas (Granadeiro 42 

et al. 2006) outside the breeding season, but will also use other intertidal areas (e.g. Summers 43 

et al. 2002).  Situated along the East Atlantic Flyway, the British Isles are important stop-over 44 

and over-wintering sites with an estimated 1.3 million birds overwintering in 1984/1985 45 

(Moser 1987; Moser and Summers 1987).  Further evidence as to the importance of  the  46 

British Isles comes from the 1997/1998 Non-estuarine Coastal Waterfowl Survey (NEWS)) 47 

which estimated that 30.9% of the European population of Oystercatchers (Haematopus 48 
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ostralegus), 41.7% of Dunlin (Calidris alpina), 60.0% of Redshanks (Tringa totanus) and 49 

52.7% of Turnstones (Arenaria interpes) over-wintered in Britain (Rehfisch et al. 2003).  The 50 

status and population trends of 44 out of the 47 wader populations (93%) along the East 51 

Atlantic Flyway have been established and 37% of these are thought to be in decline (Stroud 52 

et al. 2006).  For example, Calidris alpina accounted for approximately a third of the waders 53 

counted during the1984/1985 survey (Moser 1987) however a 50% population decline over 54 

the last 25 years has resulted in this species recently being red-listed in Britain (Eaton et al. 55 

2009).  The degradation and loss of coastal habitats has been suggested to be one of the main 56 

factors causing the decline in wader numbers (Clemens et al. 2010). 57 

There are many studies examining the use of estuarine tidal flats by waders (e.g. 58 

Granadeiro et al. 2006; Spruzen et al. 2008; Clemens et al. 2010).  Access to intertidal 59 

feeding areas is regulated by the tidal cycle and waders may use adjacent marshes and 60 

grasslands to roost or supplement food intake at high tide (Velasquez and Hockey 1992). 61 

Man-made environments can also act as alternative habitats for waders (Colwell 2010).  62 

Waders are known to roost and forage in salt pans/works and lagoons (Shuford et al. 1998; 63 

Masero and Perez-Hurtado 2001; Sripanomyom et al. 2011) as well as in rice fields (Elphick 64 

and Oring 1998; Maeda 2001; Taylor and Schultz 2008; Lourenço and Piersma 2009) both of 65 

which can be further managed for waterbird conservation (e.g. Fasola and Ruiz 1996; Elphick 66 

and Oring 2003; Lourenço and Piersma 2008)).  67 

In the USA., agricultural coastal grasslands  are used as foraging areas for non-68 

breeding waders (Colwell and Dodd 1995, 1997). Long-billed Curlews (Numenius 69 

americanus) and Marbled Godwits (Limosa fedoa)  fed on coastal agricultural fields at high 70 

tide (Long and Ralph 2001).  However, in Virginia U.S.A., whilst Dunlin and Turnstones 71 

used fields at high tide, other species (e.g. Killdeer (Charadrius vociferus), American Golden 72 
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Plover (Pluvialis dominica) and Buff-breasted Sandpiper (Tryngites subruficollis)) fed on 73 

such grasslands irrespective of tidal stage (Rottenborn 1996). 74 

Sward length is particularly important in determining grassland use by foraging 75 

waders.  Short sward vegetation provides easier access to prey and a clearer view of 76 

approaching predators (Colwell and Dodd 1995; Milsom et al. 1998; Evans Ogden et al. 77 

2008) and appropriate management of agricultural fields can improve their suitability. Evans 78 

Ogden et al. (2008) suggested that autumn mowing, planting a mosaic of crops and applying 79 

manure to fields were all positive correlates of wader abundance on agricultural fields.  Low 80 

levels of disturbance and low field boundaries may also enhance site use (Milsom et al. 1998) 81 

and ideally fields managed for waders should be within 0.5 km of the sea. 82 

The UK has an estimated 17,381 km of coastline of which 42% is classified as hard 83 

rock substrate (Jackson and McIlvenny 2011). However, studies on wader use of non-84 

estuarine habitats are few (Lourenço et al. 2013; Summers et al. 2002) despite important 85 

numbers over-wintering on the coast (Burton et al. 2008).  In addition, they are major 86 

predators on rocky shores (Lourenço et al. 2013).  Waders foraging on intertidal areas of the 87 

Orkney Islands tended to avoid steep shores and cliffs (Summers et al. 2002) and the different 88 

species showed a preference for foraging on particular substrates (e.g. Sanderling Calidris 89 

alba preferred sand, Turnstones rock and gravel and Purple Sandpipers Calidris maritima 90 

rocky substrates).  From a longer term perspective, there is also concern about the loss of 91 

intertidal habitats due to ‘coastal squeeze’ (Jackson and McIlvenny 2011) and changes in 92 

intertidal invertebrate abundance due to climate change (Kendall et al. 2004). Whilst waders 93 

do use coastal fields to supplement intertidal feeding in estuarine areas (Moser and Summers 94 

1987), little data exists for non-estuarine areas or where the intertidal is backed by cliffs. 95 
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Managed grasslands in the form of caravan parks, golf courses, and general 96 

recreational grasslands are created to support coastal tourism.  These man-made habitats may 97 

provide cliff top feeding sites for waders when intertidal areas are inaccessible.   As some 98 

wader species show high over-wintering site fidelity (Catry et al. 2004) we need to determine 99 

if  these habitats are important in order to manage them effectively for both wildlife and 100 

recreation.   101 

  The current study aimed to assess the potential value of cliff top habitats as feeding 102 

sites for waders in non-estuarine areas.  We studied the 6 commonest coastal over-wintering 103 

waders present in the region including Eurasian Oystercatcher (Haematopus ostralegus), 104 

Redshank (Tringa totanus), Dunlin (Calidris alpina), Red Knot (Calidris canutus), Turnstone 105 

(Arenaria interpres) and Sanderling (Calidris alba).  Other species, such as Grey Plover 106 

Pluvialis squatarola, Ringed Plover (Charadrius morinellus), Bar-tailed Godwit (Limosa 107 

lapponica) and Eurasian Curlew (Numenius arquata) occurred infrequently, whereas Purple 108 

Sandpipers (Calidris maritima) exclusively foraged on the rocky shore and are not considered 109 

further.  110 

We specifically aimed to address the following questions 1) Do foraging waders in the 111 

region use different cliff top habitats with equal frequency and is this independent of tidal 112 

stage?  2) Does the number of foraging waders vary significantly between cliff top and 113 

intertidal habitats, and is there any evidence of shifts in habitat use over time? 3) Are there 114 

any environmental factors that significantly influence the probability of occurrence of waders 115 

on cliff top habitats?  4) Do cliff top habitats have a higher invertebrate abundance and 116 

diversity than sandy shore areas? 117 

 118 

2. Materials and methods 119 
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2.1 Site Description 120 

The regional between Bridlington (latitude 54.07721°, longitude -0.18386°) and 121 

Sandsend (latitude 54.4909°, longitude -0.641937°; Fig 1) is typified by rocky platforms and 122 

sandy beaches backed by cliffs >30m in height.  Arable land use predominates on the cliff 123 

tops punctuated by holiday parks, recreational grasslands, coastal towns and occasional 124 

grazing pasture. We selected 5 cliff top habitats for the regional study of wader habitat use 125 

including golf courses, caravan parks, recreational grasslands, arable fields and grazing 126 

pastures.  Only 5 cliff top golf courses occur across the region, so we selected representative 127 

areas of the other 4 habitats as close as possible to these that had an open aspect adjacent to 128 

the cliff edge and were between 5-6ha
-1

 in area (25 sites in total).   129 

To determine if the waders showed significant differences in habitat use over the 130 

winter period, Filey Bay, U.K. (latitude 54.21349°, longitude -0.29169°; Fig 1) was selected 131 

as a site for detailed observations. The site is a 1km
2
 area containing the 5 cliff top habitats 132 

used in the regional survey, and sandy/rocky intertidal areas. Our sampling design contained a 133 

6.7ha
-1

 arable stubble field (AF) plot but this was excluded from further analysis waders 134 

never used that site. The remaining 6 plots included SS, a dynamic sandy shore plot of 135 

medium grained sand (area = 9 ha
-1

at low tide) adjacent to a moderately sheltered complex 136 

barnacle–fucoid–mussel mosaic rocky shore (RS) (area = 9ha
-1

 at low tide). Both intertidal 137 

plots were bounded by cliffs and at high tide there was very little supra-littoral habitat 138 

remaining at sea level, merely small rocky outcrops used as roosting sites.   The PA plot was 139 

a 7ha
-1

 cliff top pasture grazed by cattle during the summer months (mean sward length = 9.6 140 

cm (SE ±1.2)). The local authority (Scarborough Borough Council (SBC)) manage a cliff top 141 

6ha
-1

 pitch and put golf course (GC) and a 5ha
-1

 open access recreational grassland (RG) both 142 

regularly mown throughout the year to maintain a short sward length (mean = 4.3cm, SE 143 
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±0.4). The final plot was a 4ha
-1

 touring caravan site (CP) constantly managed to maintain a 144 

very short sward (mean = 3.1cm, SE ±0.1) throughout the year.   145 

 146 

2.2 Wader use of regional cliff top habitats  147 

To determine which cliff top habitats were used most frequently by waders across the 148 

region, and whether this was dependent on tidal stage, the 25 designated regional sites were 149 

visited four times each month (twice at high and twice at low tide) between November-March 150 

(500 site visits).  On each visit, observers scanned the site from designated observation points 151 

and recorded the presence/absence of each species.  152 

 153 

2.3 Local surveys of cliff top habitat use over time 154 

A sampling method derived from the standard ‘Low Tide Counts’ method  used by the 155 

British Trust for Ornithology (BTO) for the national Wetland Bird Survey scheme (WeBS) 156 

(Austin et al. 2007) was used to study local habitat use. Wader scan counts were conducted 157 

over two winters between October and March 2007-2008 and 2008-2009.   The number of 158 

feeding waders on each plot was recorded during daylight hours using 10x40 binoculars and a 159 

tripod mounted 20x scope; preliminary nocturnal surveys failed to locate any waders feeding 160 

or roosting on the cliff tops.  Four scan counts  were made at  high (1hr either side of high 161 

tide),  low  (1hr either side of low), rising (flooding tide within 2hrs of high) and falling 162 

(ebbing tide within 2hrs of low) each month to examine the effect of tidal stage on habitat use 163 

(Leeman and Colwell 2005). All plots were surveyed within an hour and the rainfall (mm. 164 

day
-1

), air temperature (°C) and wind speed (km hr
-1

) were recorded 30 minutes prior to each 165 

count.  A total of 968 scan counts were made over the two year period. 166 

 167 
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2.4 Invertebrate abundance and diversity in sedimentary habitats 168 

To quantify prey availability in sedimentary habitats, sediment cores were taken in 169 

early December (late autumn) and at the beginning of March (late winter) from SS, RG, GC 170 

and PA during the second year of study (permission from the landowners was not granted to 171 

sample AF and CP). We systematically sampled 20 cores across each cliff top habitat plot and 172 

across the low shore of SS at low tide.  A core of 11.5cm diameter was pushed 10 cm into the 173 

substrate (Sherfy et al. 2000) then covered to retain invertebrates present on the surface.  The 174 

depressions left by core removal were immediately in-filled and the extracted cores frozen at 175 

-20°C within 1hr of collection.  After thawing, the sediment was sieved through a 500μm 176 

sieve and the invertebrates preserved in 70% ethanol before identification to class/order 177 

(Tilling 1987). The abundance was converted to number m
-2

 prior to analysis (as in Taft and 178 

Haig 2006).  179 

 180 

2.5 Data analysis 181 

We collated the number of times each wader occurred in each cliff top habitat for both 182 

the regional and local survey. This was done separately for both high and low tide. We then 183 

tested the null hypothesis that waders occurred in each habitat with equal frequency using a 184 

Chi-squared test for homogeneity and compared regional and local frequency of occurrence 185 

in each habitat using Chi-squared tests for association (Fowler et al., 1998).   186 

The over-wintering local wader counts were converted to number ha
-1 

prior to analysis 187 

and two-way ANOVA was used to determine if there were significant differences in wader 188 

abundance between the fixed factors plot and month. ANOVA is considered to be robust to 189 

non-normality and small violations of the assumption of equal variances in the case of a large 190 

number of replicates (Underwood 1997), however the significance level was set at α=0.01 to 191 
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lower the Type I error rate.  The Tukey HSD test was used as a post-hoc test to determine the 192 

sources of the significant difference between groups (Underwood, 1997).   193 

The local wader count data was converted into presence/absence data. Binary logistic 194 

regression models were then used to determine the effect of environmental predictor variables 195 

(tidal stage, rainfall, wind speed, temperature) on the probability of occurrence of each wader 196 

species on the cliff top habitats (PA, RG, CP and GC). Using presence/absence data avoided 197 

the problems associated with non-independence of plot use by individuals as waders are 198 

social foragers (Whittingham and Devereux 2008).  The data was screened for outliers using 199 

Cleveland dotplots and examined for collinearity using a multi-panel scatterplot (Zuur et al. 200 

2010).  All environmental variables were retained for analysis as variance inflation factor 201 

(VIF) values were all < 3 and there was no evidence of excessive collinearity (Zuur et al. 202 

2009).  There was no evidence of lack of fit to the binary regression model as determined by 203 

Pearson Chi-squared goodness of fit tests (p > 0.05 for all models). The significance of each 204 

predictor variable was determined by analysis of deviance, in which a nested model is created 205 

by removing a single predictor and the significance of the predictor estimated from the 206 

difference in deviance (ΔD) between the nested and full models  using a χ
2
 distribution to 207 

determine the significance (Zuur et al. 2009).   208 

Total invertebrate abundance (N), taxon richness (S) and Shannon Wiener diversity 209 

(H’) were calculated.  The data did not meet the assumptions of normality (Kolmogorov-210 

Smirnov test, P < 0.05 in all cases), however all variances could be considered homogeneous 211 

(Levene’s test, P > 0.05 in all cases). For the reasons justified above, ANOVA models were 212 

used to determine if there were significant differences in invertebrate H’, S and N between 213 

selected plots (SS, RG, GC and PA) and season (autumn and winter) with post-hoc Tukey 214 

HSD tests to determine the sources of the significant difference between means.  All data 215 
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analysis was conducted using the R software package version 2.15.0 (R Development Core 216 

Team 2012). 217 

 218 

3. Results 219 

3.1 Regional wader presence/absence on cliff top habitats. 220 

The results of the high tide regional survey indicated that Oystercatcher, Redshank, 221 

Dunlin, Knot and Turnstone occurred more frequently on recreational grasslands and golf 222 

courses and less frequently on arable and grazing pasture than expected (Chi-Squared, p < 223 

0.001 in all cases; Fig.2a).  Dunlin, Turnstone and Knot were never observed feeding on the 224 

arable or pasture fields even at high tide.   Oystercatchers and Redshanks also fed on feeding 225 

on cliff top habitats at low tide (Fig. 2b) and both species occurred more frequently on the 226 

recreational grasslands and less frequently on arable and grazing pasture than expected (Chi-227 

Squared p < 0.001 in both cases; Fig.2b). Sanderling were never observed on the cliff top 228 

habitats during the regional survey. 229 

 230 

3.2 Local scale plot use over time and factors affecting cliff top habitat use  231 

The percentage occurrence of each wader on each plot is presented in Fig. 3. The local 232 

presence/absence data for each species on each plot was compared to that obtained from the 233 

regional surveys.  For all species, there was no significant association between habitat and 234 

scale of survey indicating that the waders occurred in similar frequencies on each habitat at 235 

both local and regional scales (Chi-squared, p > 0.05).  Locally, waders rarely occurred on the 236 

pasture (PA) and Oystercatcher, Dunlin, Turnstone and Redshank had a similar percentage 237 

occurrence on the GC plot to that on the intertidal sites (RS and SS). Knot had the highest 238 

occurrence on RS and Sanderling on SS (Fig. 3).   239 
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For all 6 wader species, there was a significant difference in numbers ha
-1 

between the 240 

plots (ANOVA, p <0.0001 in all cases; Table 1; Fig.4).  Mean Oystercatcher, Redshank and 241 

Knot ha
-1

 were all significantly lower on PA than other plots; Sanderling, Dunlin and 242 

Turnstone were absent (Table 1).  Both numbers of Sanderling ha
-1

 and Knot ha
-1

 were 243 

significantly greater on the intertidal plots (Sanderling on the SS and Knot on the RS plot; 244 

Table 1; TukeyHSD, p < 0.05; Fig.4) however the other species had significantly greater 245 

numbers ha
-1

 on the GC plot (Table 1; TukeyHSD, p < 0.05; Fig. 4).  Knot numbers ha
-1

 were 246 

significantly higher in February (mean = 0.54, SE ± 0.11) than in November (mean = 0.08, 247 

SE ± 0.03; Table 1; Fig. 4), but all other species showed no significant difference between 248 

months (ANOVA, p > 0.05; Table 1).  Whilst there was no significant interaction between 249 

month and plot for both Sanderling and Knot (ANOVA p > 0.05; Table 1), the interaction 250 

was significant for all other species (ANOVA, p < 0.001; Table 1; Fig.4).  The numbers ha
-1

 251 

of Dunlin, Oystercatchers and Turnstones were all significantly higher on the RS plot during 252 

October but between December – February were significantly higher on GC (ANOVA, p < 253 

0.001 in all cases; Fig.4).  Redshank ha
-1

 was significantly higher on GC than all other plots 254 

between December - February (Tukey HSD, p < 0.05; Fig.4).  255 

Binary logistic regression models of wader presence/absence indicated that high tide 256 

had a significant positive effect on the probability of Redshank feeding on the cliff top 257 

habitats (estimate = 0.615) but not for any other species.   For Oystercatcher (estimate = -258 

0.075), Redshank (estimate = -0.078) and Turnstone (estimate= -0.073) decreasing 259 

temperature increased the probability of occurrence on cliff top habitats (Table 2).  260 

 261 

3.3 Invertebrate abundance, richness and diversity  262 
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Overall, 11 invertebrate taxa were identified from sediment cores (Table 3).   Three of 263 

the taxa (Dermaptera and Neuroptera larvae, Thysanoptera) were only found on GC, 264 

Pulmonata only occurred at PA and Nephtyidae was the only taxon found in the SS samples 265 

(Table 3).   The other taxa were more widely distributed across the cliff top habitats, albeit in 266 

varying abundance (Table 3). There were no significant differences in mean taxon richness 267 

(S) and Shannon Wiener H’ between season nor any significant interaction between season 268 

and plot (ANOVA, p > 0.05 in all cases).   However, mean N, S and H’ were all significantly 269 

different between plots (Table 3, ANOVA, p < 0.0001 in all cases).  Pairwise comparisons 270 

showed that all plots were significantly different in terms of average richness (S) (in order of 271 

magnitude GC > RG > PA > SS; Table 3) and GC had significantly higher mean N and H’ 272 

than the other plots (remaining plots in order of magnitude RG > PA = SS; Table 3; Tukey 273 

HSD, p < 0.05).  Average total abundance m
-2

 (N) was significantly higher in late autumn 274 

than in late winter (Table 3; Tukey HSD, p < 0.05). 275 

 276 

4. Discussion 277 

Our results show that waders used cliff top habitats for feeding over 75km of 278 

coastline.  Five out of the 6 species studied occurred on golf courses, caravan parks and 279 

recreational grasslands in higher frequencies than expected at high tide (Fig.2a). 280 

Oystercatchers (Goss-Custard et al. 1996), Dunlin (Rottenborn 1996; Evans Ogden et al. 281 

2005) and Turnstone (Smart & Gill 2003) have been shown to use fields adjacent to estuaries 282 

to supplement feeding at high tide, and alongside these species Knot and Redshank fed on 283 

cliff top habitats in the current study (Fig.2, 3). Sanderling and Purple sandpiper were absent 284 

from the cliff top habitats during the regional survey, with Sanderling occurred in the highest 285 

numbers in the SS plot during the local study (Fig. 4).   Both species are regarded as intertidal 286 
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specialists, with Sanderling foraging predominantly on sand and Purple sandpipers on rocky 287 

substrates (Summers et al. 2002).   288 

Studies in the USA have demonstrated that pasture and arable fields are important 289 

alternative feeding areas at high tide (e.g. Evans Ogden et al. 2008), in contrast to this Dunlin 290 

and Turnstone did not use these habitats (Fig. 2, 3) and Oystercatchers, Redshanks and Knot 291 

used them infrequently (Fig. 2, 3). Waders have been shown to avoid fields with long 292 

vegetation that may hinder predator detection (Evans Ogden et al. 2008) or create difficulties 293 

in locating prey (Mouritsen 1994).  Despite the cliff top location, the pasture and arable 294 

habitats were rarely used by waders on both the local and regional scale, however short sward 295 

grasslands were used frequently. 296 

Local Dunlin, Redshank, Oystercatcher and Turnstone numbers ha
-1

 were all 297 

significantly higher on the golf course during December – February inclusive than on other 298 

plots (Table 1) and this may be a consequence of reduced access to intertidal resources. When 299 

short day-lengths and/or neap tides reduce access to visible intertidal prey, estuarine 300 

Oystercatchers used fields at high tide (Goss-Custard et al. 1996).  However, apart from for 301 

Redshank, tidal stage was not a significant predictor of wader occurrence on cliff top habitats 302 

(Table 2).  Estuarine waders also moved onto fields when intertidal resources became 303 

depleted or over-exploited (Smart and Gill, 2003) or because of anthropogenic disturbance 304 

(Dias et al. 2008). Disturbance has also been highlighted as a key factor in influencing the 305 

abundance of waders on rocky shores in Portugal (Lourenço et al. 2013) however this was not 306 

measured in the current study. In addition, individual Oystercatchers may escape the high 307 

levels of intraspecific competition often seen on intertidal mussel patches (Caldow et al. 308 

1999) by foraging on cliff top habitats.   Feeding on smaller buried prey reduces the 309 

opportunities for kleptoparasitism and may lead to higher intake rates (Stillman et al. 2002).   310 
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The probability of Turnstone, Oystercatchers and Redshanks foraging on the cliff top 311 

habitats increased as temperature declined suggesting that birds were attempting to maximise 312 

intake rates during cold weather (Table 2). Small waders have higher rates of heat loss and 313 

may need to feed for longer periods of time, especially during periods of cold or wind chill 314 

(Evans 1976; Kelly et al. 2002). Stable isotope analysis revealed that Dunlin increased their 315 

intake from grasslands during periods of high rainfall or cold (Evans Ogden et al. 2005) and 316 

the authors suggested this reduced starvation mortality in severe weather. Even large waders 317 

such as Oystercatchers and Redshanks can suffer increased mortality rates from starvation 318 

during severe weather (Davidson and Evans 1982) and feeding on adjacent cliff tops may 319 

create a buffer against starvation (Evans Ogden et al. 2005). In the current study, 4 out of 6 320 

waders fed on the grasslands irrespective of tidal state and this may reflect a switch between 321 

the intertidal and supra-tidal cliff top areas to maximise feeding rates. 322 

Whilst the invertebrate prey densities in the short sward cliff top habitats were similar 323 

to those observed in wet agricultural areas in the USA (Taft & Haig 2006), those on SS were 324 

markedly lower than observed in local estuaries (e.g. Mander et al. 2013) or in previous 325 

studies on exposed sandy beaches (e.g. Hubbard & Duggan 2003).  Many of the infaunal 326 

invertebrates usually preyed upon by waders (e.g. Arenicola, Nereis, Macoma, Cerastoderma 327 

(Colwell 2011; Mander et al. 2013) were absent.  Large burrowing annelids such as Arenicola 328 

and Nereis require relatively stable sediments to form deep burrows (Evans 1987), however 329 

the beach at SS shows marked periods of erosion and accretion, and during the last 4 years 330 

0.75m of sediment loss has occurred in the low shore (North Sea Coastal Observatory 2013).  331 

Feeding on the SS site was periodically enhanced by macrophyte wrack deposition which 332 

contained additional prey items for waders (Dugan et al. 2003).  The RS plot contained a 333 

variety of biotopes including algal turf, mussel and barnacle patches, cobble fields, boulders 334 
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and fucoid algal beds and, whilst not quantified here, intertidal invertebrates are abundant in 335 

various biotopes on the site (S.L. Hull unpublished data).  Turnstones are regarded as 336 

specialist rocky shore feeders predating upon invertebrates on algae (Kendall et al. 2004) 337 

whereas limpets (Kendall et al. 2004) and mussels (Caldow et al. 1999) are favoured by 338 

Oystercatchers.  Dunlin and Sanderling are ‘tidal followers ’and will prey upon invertebrates 339 

disturbed by wave action at the edge of the tide (Granadeiro et al. 2006) on both the rocky 340 

and sandy shore. However, despite the abundant prey and accessibility of this plot at low tide 341 

waders were still observed feeding on the cliff top habitats. 342 

Annelids are an important dietary constituent for many wader species (Colwell 2010)  343 

and the RG and GC habitats had the highest oligochaete abundance; a factor of ten greater 344 

than that seen on PA (Table 3).  Total invertebrate richness and diversity was also higher on 345 

GC and RG than at other sites (Table 3) and many prey items were just below the grass 346 

surface accessible to waders with short bills such as Turnstone and Dunlin (Mouritsen 1994; 347 

Barbosa 1995).   Waders with a longer bills such as Oystercatchers (mean bill length 7.5 cm 348 

(Goss-Custard et al. 1987)) could access the annelids deeper in burrows.   By selecting prey 349 

from different sediment depths (Lifjeld 1984; Davies and Smith 2001) or of different sizes, 350 

inter-specific competition is reduced by partitioning the resources available.  Invertebrate 351 

total abundance was significantly lower in late winter and this may be the result of 352 

invertebrates burrowing deeper during periods of cold (Taft and Haig 2006) or could indicate 353 

a depletion of resources by foraging birds.     354 

 355 

5. Conclusions 356 

The current study has shown that small populations of non-estuarine over-wintering 357 

waders will use cliff top habitats on regional scale to supplement their food intake.  Golf 358 
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course and recreational grassland had a significantly higher invertebrate diversity and 359 

abundance than pasture, and provided a range of prey items that could be exploited by a 360 

variety of species.  Our data suggest that the current management practice of regionally 361 

maintaining short sward grasslands on cliff edges adjacent to the intertidal is beneficial to 362 

small populations of waders.  Such habitats may become more important especially if climate 363 

change results in ‘coastal squeeze’ (Jackson and McIlvenny 2011) or intertidal invertebrate 364 

abundance declines (Kendall et al. 2004).  Planning authorities need to be made aware of the 365 

importance of these areas and regional land use changes should be carefully considered, as 366 

the current study has shown that they provide additional resources for small populations of 367 

waders many of which are in decline and are of conservation concern.   368 
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Table 1.  Summary of results of two-way ANOVA conducted on number of waders ha
-1

 for each species with Month and Plot as factors, the F values from the models 616 

and the mean counts (SE) on each plot  (ns=not significant, *p <=0.01, **p <=0.001, ***p <0.0001). 617 

 Plot    Month    Plot*Month SS  RS  GC  PA  RG  CP 618 

Oystercatcher  18.4***    1.4ns    3.2***  1.75 (0.18) 1.37 (0.15) 4.67 (0.47) 0.26 (0.07) 2.21 (0.32) 2.89 (0.43) 619 

Redshank  16.7***    1.8ns    2.5***  0.28 (0.04) 0.07 (0.03) 0.99 (0.14) 0.01 (0.01) 0.22 (0.06) 0.29 (0.08) 620 

Dunlin   13.2***    1.8ns    1.9**  0.57 (0.13) 0.13 (0.04) 1.91 (0.38) 0  0.58 (0.14) 0.15 (0.09) 621 

Turnstone  12.8***    1.2ns    3.7***  0.29 (0.05) 0.02 (0.01) 0.04 (0.02) 0  0.02 (0.02) 0.05 (0.03) 622 

Knot    11.7***    4.6***    1.4ns  0.25 (0.08) 0.91 (0.13) 0.41 (0.11) 0.01 (0.0) 0.18 (0.06) 0.01 (0.01) 623 

Sanderling   10.2***    1.9ns    1.8ns  0.29 (0.05) 0.01 (0.01) 0.04 (0.03) 0  0.02 (0.02) 0.05 (0.03) 624 

 625 
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Table 2.  Binary logistic regression analysis for the presence/absence of each wader species on cliff top habitats surveyed over two winters.  Results of the Likelihood Ratio 626 

Chi-square tests from the analysis of deviance for each predictor variable in the model are presented (significant tests shown in bold; ns=not significant, *p <=0.05, **p 627 

<=0.01, ***p <0.001 in the text). 628 

 629 

Parameter      Oystercatcher Redshank Dunlin  Turnstone Knot  630 

AIC full model     660.9  518.6  409.4  508.6  222.6 631 

TIDE STAGE     5.02ns  9.82**  6.2ns  4.2ns  1.90ns  632 

WIND SPEED (range 0.1 – 30 km hr
-1

)  0.87ns  0.06ns  1.81ns  0.03ns  0.07ns  633 

TEMPERATURE (range -3 - 12°C)  6.89**  5.62*  3.27ns  4.62*  0.24ns  634 

RAINFALL (range 0-15 mm day
-1

)   0.87ns  0.14ns  0.15ns  0.53ns  2.04ns  635 
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Table 3.  Mean (SE) invertebrate taxon abundance and H’, S and N for both plot and season during the second year of the study (plot abbreviations as in text). 636 

Late Autumn Late Winter   GC  RG  PA     SS 637 

Nematoda   53.8 (18.8) 95.0 (18.2) 85.0 (49.1) 157.5 (44.0) 55.0 (13.8) 0 638 

Gastropoda   0  1.25 (1.25) 0  0  2.50 (2.50) 0 639 

Dipteran larvae   0  2.50 (1.76) 2.50 (2.50) 0  2.50 (2.50) 0 640 

Oligochaeta   291.3 (51.6) 120.0 (27.9) 430.0 (65.8) 365.0 (79.6) 27.5 (12.9) 0 641 

Coleoptera larvae   38.8 (10.7) 61.3 (17.00) 125.0 (31.0) 67.5 (20.4) 7.50 (4.22) 0  642 

Coleoptera pupae   12.5 (4.49) 28.8 (9.10) 57.5 (13.8) 25.0 (13.3) 0  0 643 

Columbella   2.50 (1.76) 5.0 (3.94) 10.0 (7.84) 5.0 (3.49) 0  0 644 

Nephtyidae   1.25 (1.25) 0  0  0  0  2.50 (2.50) 645 

Neuroptera larvae   1.25 (1.25) 1.25 (1.25) 5.0 (3.49) 0  0  0 646 

Dermaptera nymph  0  1.25 (1.25) 2.50 (2.50) 0  0  0 647 

Thysanoptera   1.25 (1.25) 1.25 (1.25) 2.50 (2.5) 0  0  0  648 

Total Abundance (N) m
-2  

698 (115)  445.0 (79.2)  1160 (149)  995 (175)  125.0 (27.4)   5.00 (5.00) 649 

Taxon Richness (S)   1.613 (0.18)  1.638 (0.18)  3.350 (0.22) 2.325 (0.20) 0.775 (0.14)  0.05 (0.05) 650 

Shannon Wiener (H’)  0.487 (0.056)  0.455 (0.064) 1.028(0.071) 0.678 (0.071) 0.162 (0.049)  0.017 (0.017)  651 
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Figure legends. 652 

Fig. 1. Map showing the regional study area on the north east coast of England.  The 653 

Filey study sites are indicated as, beach (SS), rocky shore (RS), pasture (PA), golf 654 

course (GC), caravan park (CP) and recreational grassland (RG).  655 

 656 

Fig.2 Percentage occurrence of each wader species on the different cliff top habitats at a 657 

regional scale at different tidal stages a) high tide and b) low tide. 658 

 659 

Fig.3. Percentage occurrence of the presence of each wader species on the different cliff 660 

top habitat types at the main study site. 661 

 662 

Fig.4. Mean (± SE) wader’s ha
-1

 for each species showing changes in plot use over 663 

months.  664 

  665 
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Fig. 3 
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HIGHLIGHTS 

 

 Over 75 km of rocky coastline, Oystercatchers, Redshanks, Dunlin, Knot and Turnstones 

fed on cliff top golf courses or recreational fields rather than arable or grazing pasture. 

 The abundance of foraging individuals of these species increased between December –

February compared to that at other sites. 

 The probability of Turnstone, Oystercatcher and Redshank feeding on cliff top habitats 

increased as temperatures declined.  

 Sediment samples revealed that the richness and abundance of invertebrate taxa was 

significantly higher in the recreational grasslands and golf courses than pasture or the 

beach.   

 Our data suggest that cliff top habitats are important alternative feeding areas for waders 

on rocky and sandy shores and any alterations to the land use of these areas should be 

carefully considered by planning authorities as they support species that are of 

conservation concern.   

 

Research Highlights
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