Multilevel Refinable Triangular PSP-Splines (Tri-PSPS)

Qingde Li
Department of Computer Science, University of Hull, Hull, HU6 TRX, UK
Jie Tian

Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China

Abstract

A multi-level spline technique known as partial shape preserving splines
(PSPS) [12] has recently been developed for the design of piecewise polyno-
mial freeform geometric surfaces, where the basis functions of the PSPS can
be directly built from an arbitrary set of polygons that partitions a giving
parametric domain. This paper addresses a special type of PSPS, the tri-
angular PSPS (Tri-PSPS), where all spline basis functions are constructed
from a set of triangles. Compared with other triangular spline techniques,
Tri-PSPS have several distinctive features. Firstly, for each given triangle,
the corresponding spline basis function for any required degree of smoothness
can be expressed in closed-form and directly written out in full explicitly as
piecewise bivariate polynomials. Secondly, Tri-PSPS are an additive trian-
gular spline technique, where the spline function built from a given triangle
can be replaced with a set of refined spline functions built on a set of smaller
triangles that partition the initial given triangle. In addition, Tri-PSPS are a
multilevel spline technique, Tri-PSPS surfaces can be designed to have a con-
tinuously varying levels of detail, achieved simply by specifying a proper value
for the smoothing parameter introduced in the spline functions. In terms of
practical implementation, Tri-PSPS are a parallel computing friendly spline
scheme, which can be easily implemented on modern programmable GPUs
or on high performance computer clusters, since each of the basis functions
of Tri-PSPS can be directly computed independent of each other in parallel.

Keywords: Triangular splines, Refinable spline, Spline basis functions,

Email addresses: q.1i@hull.ac.uk (Qingde Li), tian@ieee.org (Jie Tian)

Preprint submitted to Computers & Mathematics with Applications June 14, 2015

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Multilevel splines, Partition of unity, Spline approximation

1. Introduction

Generalizing univariate splines to 2D are often achieved using the tensor-
product of univariate splines. Building bivariate smooth non-tensor-product
based multivariate spline basis functions is very difficult in general. This is
true even for constructing C'—smooth bivariate spline functions [1]. One
difficulty in developing bivariate splines is in the infinite variety of the shape
of the local support that a bivariate spline function may have. In one di-
mension, the only support of a univariate spline function can have is only
an interval, for which the concepts of convex set and connected set mean
the same thing. However, the two concepts differ completely when they are
extended to 2D plane or higher dimensions. When the 2D counterpart of an
interval is interpreted as a convex set, an interval can correspond to a con-
vex polygon like triangle, rectangle and pentagon, or a convex region with a
smooth boundary such as the area enclosed by an ellipse. When an interval
is interpreted as a connected set, it can correspond to any simple polygon (a
polygon with no edge crossing or no vertex shared by more than two edges),
or any connected region with a smooth boundary.

One of the most popular bivariate spline techniques has been the triangu-
lar splines, where the spline basis functions are built from a set of triangles,
due to the fact that triangle is the simplest type of polygon in 2D. In practi-
cal applications, triangular splines have been widely used as effective tools in
approximation theory, computer-aided geometric design, image analysis, and
numerical analysis[8]. So far, various efforts have been made to construct
bivariate triangular splines. One of the well studied triangular spline tech-
niques has been the Box splines. Box splines were introduced by de Boor and
De Vore [4] and their detailed study can be found in book [5]. Bivariate box
splines are piecewise polynomial functions built from a given set of directions.
Despite their elegant theory and properties, the process of computing highly
smooth box splines is in general very expensive [2]. The applications of box
splines are also limited by its requirement that the underlying triangulation
has to be regular due to the nature of its definition. A more general scheme
to build a set of bivariate spline functions over any triangulation is the one
developed by Dahmen et al. (sometimes referred to as DMS-splines)[3, 6].
DMS-splines are constructed based on a set of knot sequence inserted into the

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

triangulated domain. However, as with box splines, the process of construct-
ing DMS-splines with high degrees of smoothness, such as C2-smoothness, is
also very computationally intensive. In addition to their expensive compu-
tational cost, a more fundamental problem with DMS-splines is that there
lacks a clear geometric meaning for the auxiliary knot sequences inserted
into the triangulated domain during the process of constructing the DMS-
splines. It is therefore not clear in what a way the inserted knots will affect
the constructed spline functions, and subsequently the spline surfaces built
upon these splines. Another way of constructing bivariate B-spline functions
over a set of triangles is proposed in [13, 14] based on Delaunay configura-
tions. This scheme allows to construct the spline functions in the form of
polynomials in an elegant and simple way. It is similar to DMS-splines, but
compared to DMS-splines, its knot selection procedure is more geometrically
meaningful. A rational form of DMS-splines (RDMS) has also been intro-
duced in a similar way as how NURBS are defined using B-splines[20]. As
with DMS-splines, RDMS has similar issues with DMS-splines even though
they are more effective in geometric modelling and shape deformation. Unlike
the tensor-product based bivariate splines, triangular splines are even more
expensive to refine locally in general. Developing locally refinable spline tech-
niques has recently attracted increasing interest in computer aided geometric
design, mainly due to their importance to isogeometric analysis. Some hi-
erarchical spline techniques have been proposed to deal with the problem,
but they are limited to either relatively regular space partitions, such as
rectangular grid [22] and T-grid [16, 17, 15], or regular triangular grid|[7].

A more flexible and convenient spline technique, called partial shape pre-
serving splines (PSPS) [12], has recently been developed to built B-spline-like
functions over arbitrary polygons. For a given set of polygons, whether they
are convex or concave, or a mixture of polygons of different types, a bivariate
function with any required degree of smoothness can be directly built based
on each of the given polygons. If all these polygons form a partition of the
domain, all the bivariate spline functions built with PSPS are non-negative
piecewise polynomials and satisfy the law of partition of unity. PSPS are
a kind of multilevel spline technique. With PSPS, a parameter can be as-
sociated to each control point to specify at what level one would want to
approximate the fitted data or the control hull. In addition, PSPS can be lo-
cally refined. This feature of PSPS refers to an important property of PSPS
spline functions, called additivity. With this property, any spline function
built from a polygon can be expressed as the sum of a set of refined spline

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

functions built from a set of smaller polygons that subdivide the initial poly-
gon. This is an essential feature of multilevel splines, where the input control
hulls are having a hierarchical structure, with different levels of control points
corresponding to different levels of detail of required surface.

In this paper, we consider a special type of PSPS, the triangular partial
shape preserving splines (Tri-PSPS), where the underlying polygons are only
triangles. Unlike DMS-splines, Tri-PSPS have a clear geometric meaning.
Tri-PSPS basis functions are obtained directly from a process of convolution
over a triangulated domain, very similar to the construction of the univariate
uniform B-spline basis functions. We have managed to provide a closed-
form solution for the convolutions, so the basis functions of Tri-PSPS can be
directly expressed as piecewise bivariate polynomials explicitly. Because of
this, the implementation of Tri-PSPS is straightforward.

The meaning of the term “partial shape preserving” is that when the
spline basis functions are used as blending functions, the geometric primitives
involved in a blending operation can be preserved. Thus, the term“shape
preserving” used in this paper is having a slightly different meaning from its
conventional use.

Let the set of triangles T = {A;}, be a triangulation of a 2D do-
main D C R% That is, for any pair of triangles A;, A; € T, i # j, either
A;NA; = 0 or they only intersect at a vertex or at an edge. As having
been discussed previously, there exits a variety of ways to construct triangu-
lar spline functions [21]. In this paper, we aim to construct from T a set of
Cm-smooth piecewise polynomial bivariate functions S™ (T):

SUUT) = {Ba(w,y) : Ba(z.y) € C"(D), A € T},
which satisfies the following properties:

(1) Locality. For each triangle A € T, Ba(x,y) has a local support around
triangle A.

(2) Nonnegativity. For each triangle A, 0 < Ba(z,y) <1,

(3) C™-continuity. Each B (z,y) can be built to have any required degree
of smoothness.

(4) Closed-form expression. Each Ba(z,y) can be written out directly in
closed form as piecewise bivariate polynomial functions.

(5) Partition of unity.

> Ba(z,y) =1, (z,y) €D
AET

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

(6) Refinability. if A is subdivided into a set of smaller triangles

K
A=A
k=0

then

BA(x7y> = ZBAk<l’,y)
k=0

As with other types of triangular splines, Tri-PSPS can be applied di-
rectly to solve various real world problems, varying from developing robust
localized numerical integration to approximation, shape design and finite el-
ement methods, isogeometric analysis. However, to make our attention more
focused on the practical construction of Tri-PSPS functions, we will leave
the full exploration to their relevant applications to interested readers.

2. Bivariate triangular spline functions as a process of convolution

Let T be a triangular partition of a 2D domain D C R2?. We will detail
in this section the process to directly construct a set of triangular spline
functions which meet the requirements described above. For each A € T, we
first define B(AO) (x,y) as the characteristic function of the triangle A:

e -{ 1 (HEY

Let O be the square [—4, §] x [—4d, §] centred at the coordinate origin with

0 > 0. Starting from B(AO) (x,y), we define a sequence of bivariate functions
in the following way

n 1 e
B(A%(:C’w T 402 // B(M 1)(57t)XD(3 —x,t —y)dsdt,
R2
(n>0), (1)
where B(AO’)(;(;E, y) = B(AO)(:E, y) and

1, (z,y) € [-6,0] x [-6,4];

0, elsewhere.

xo(z,y) = {

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Bg%(x, y) is called the order n triangular PSPS basis function.
As can be observed from the definition, the order n bivariate function
B(An)(x, y) built upon a triangle A € T will be non-negative piecewise poly-

nomials with C"~!—smoothness. From the definition of B(AO) (z,y), it is also

easy to show that the set of functions {B' A 5(1: y) : A € T} built from above
process satisfies the law of partition of unlty In fact, for any n > 0, if all the
order n — 1 spline basis functions {Bxgl)(x, y) : A € T} have the property
of partition of unity, then we have

ZBXL)(;a:y = 4522// BXL(;l)StXD(S—fEt— y)dsdt

AET AET

= 452// ZB(n Vs, t)xols — z,t — y)dsdt
RQ

= @//RQXD(S—:L',t—y)dsdtzl. (2)

Since Y cr Bg)) (x,y) = 1 when (z,y) ¢ 0A, we see that the sequence

of bivariate functions B(Ak) (x,y) must have the property of partition of unity
for k = n.

This idea of constructing the spline functions is not new and it will have
little practical applications if the convolutions cannot be solved efficiently.
Fortunately, a closed form solution can be obtained to the sequence of bi-
variate functions defined in (1)[11].

As has been shown in [11] that the sequence of convolutions defined in (1)
can be be expressed as a linear combination of the convolutions defined on
the three special types of half-open angles shown in Figure 1(note that all
these open angles can be regarded as degenerated triangles with their third
edges being at the infinity).

Note that the bivariate functions B(A"j;(x,y) defined in (1) is only con-
cerned with the relationship between triangle /A and the square [—§, 6]2, they
are invariant under the translation transformation. In fact, Let T(A) be the
triangle obtained by translating the triangle A along vector T' = (t,,t,),
then it can be seen that B(T?)A) (r,y) = thzg(x —t,,y —t,). Because of this,
we can assume that the apex vertices of the three half-open triangles shown
in Figure 1 are all located at the coordinate origin. Let Z(m) be an open

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

m<0
m>0

Figure 1: The convolutions defined in (1) can be expressed as a linear combination of
the convolutions defined on above three types of open angles (triangles with one edge at
the infinity), corresponding to the three cases regarding their top edge slopes m: m > 0,
m=0,m <0.

0,0) x

(@, B)

(b)
(n)

Figure 2: The calculation of B 5(x,y) can be reduced into the calculation of two special
types of convolution, where the base triangles are half-open acute angle and the half-open
right angle.

angle shown in Figure 1 with top edge slope m. Then, it can also be shown
directly that

B%n),g(ﬂ?, y) = Bi?),m),a(_ma y).

Therefore, to find the closed form solution for the convolutions defined in (1)
with the base triangle being an open angle (a degenerated triangle with its
third edge at the infinity) shown in Figure 1, we need only to consider the
convolutions for the left two types of open angles shown in the figure.

In the following discussion, we will consider separately the two cases re-
garding whether an angle is acute angle (Figure 2(a)), where a > 0, 5 > 0, or
the right angle(2 (b)). The reason why the two cases are addressed separately

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

is that the mathematical expressions of B(A",)&(x, y) can be greatly simplified
when the open angle A is a half-open right angle. In fact, for the half-open
right angle, B! A 5(x y) can be expressed as the tensor-product of univariate
smooth step functlons -

For simplicity, we denote by B, (™ (

ﬁ)é(x,y) the convolution By 's(z,y)

when A is an open acute angle shown in Figure 2 (a), and by Bing(x,y)
when A is the open right angle shown in Figure 2 (b).

2.1. Closed form Solution to BS(LL 56(T,Y)

Consider the following recursively defined sequence of convolutions with
both a > 0 and 8 > 0:

A(Zza // 75) s,)x.(s — x,t — y)dsdt,
(n>0), (3)
where A Z(p)(@;y) 18 defined as the characteristic function x/(a of the

half-open acute angle Z(a, #). That is,

1, <0,y < Ba:
A — o PEUYSs 4
L) (T Y) = X2(a,8) (2T, Y) 0, elsewhere, 4)

and x_(z,y) is the characteristic function of half-open right angle (—oo, 0] x
[0,00)

[1, (z,y) € (—00,0] x [0, 00);

X y) = { 0, elsewhere. (5)

It has been shown in [11] that a closed form solution can be found for

the sequence of convolutions defined in (3). More specifically, the bivariate

function A(Z()a 5 (x,y) can be explicitly expressed in closed-form in piecewise
polynomials as follows:

(e (B — ay)™, r <0,y < Sz,
AG) o ay) = & n G kynik p sy <0, (6)
L 0, elsewhere.
8

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

From its definition, it can be seen directly that A(Z)a (@, y) is a non-

negative and C"~! continuous piecewise polynomial function for any integer
n > 0.
Now, let (I be the square [—4, §]? for any § > 0, and let

B(T&B) (z, - 452// (n 1 (s,t)xo(s — ,t —y)dsdt,

(n>0), (7)

where BY), ; s(z,y) = AV (2,9) = X052 ¥).
Note that, for (z,y) ¢ 8D xo(x,y) can be represented using x_(z,y)
defined in (5) in the following form:

xo(z,y) = x.(z—0,y+9) —x.(z+0,y+9)
—x.(r =8,y —96)+ x.(x+ 0,y —9),

The convolution BS& g (@,y) defined in (7) can thus be expressed as a

linear combination of the convolutions of the form A%X 8) (x,y), for which a
closed form solution has been found. In fact, for a given number § > 0, it

has been shown that the convolution BS& 5 s(,y) can be directly expressed

in terms of A(Zz)a g(7,y) in the following way:

B sten) = e D X0 () () Esten). ®

=0 7=0

where
Fyj(z,y) = AY) 5 (@ + (n = 20)5, y — (n — 2j)d)

Similar to A(Za g(,y), forn >0, B%l 8.5, Yy) 18 C™~! continuous piece-
wise polynomial, and only takes value from interval [0, 1].

The bivariate function Bgz)a 8 s(x,y) is the building block of the triangular

spline basis function B(A") (x,y). As can be seen later, any triangular spline
basis function BXL) (x,y) can always be expressed as a linear combination of
no more than six bivariate functions of the form BS& 5 s(T,y).

Since C' and C? smooth triangular splines are most frequently used in
practice, we describe here more specifically how to construct Bi()a)8 s(T),

f 2
B%()a’ﬂ o(@,y) s and BEY, 5 s(e.y) from AD), o s(e.y), AD, 5 5(@.y) , and
A(z()a,ﬁ),(s(l") y) respectively.

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Case: n=1
From (6), we have

525 (81 — ay)?, x <0,y <t
AV @) =< 212, x>0,y <0; (9)
0, elsewhere.

According to (8), we can see that the C°-smooth B(l()) (1‘, y) is a linear

combination of four functions obtained by translating AY o B)(x,y) to the
following four locations: (—d, —4), (4, —9), (=6,0), (4,9). More specifically,

_A(é()a,ﬁ) ([l’f + 5a y+ 5) + Al(a,,ﬁ) (33' + 5, Y — 5)]

The relationship between A(Al()aﬁ)(:v,y) and B(él()a 5@ y) can be illus-
trated with the mask shown in Figure 3, where the numbers in the circles are
the coefficients used to combine the function A o.5) (x,y) evaluated at four
corner locations. Using the notations shown in the mask, equation (10) can
be rewritten in a more compact form as followings:

1
Bil()%ﬁ),&(a;,y) - @[Al(a (Poo) A a,B)(PlO)

—AD), 5 (Por) + AV 5 (Pr)].

Case: n =2
To directly write out C'-continuous Bi() 5)5(@;y), we use A 08 (T,Y)-
From (6), we have

W(&U —ay)?, r <0,y < gx
At (@) = 3 H(9% - 2, z>0,y<0 (11
0, elsewhere.
10

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Pog(v-8.3+8) (11 -1) Py, (x+8,+) 05

——
—
——

SN

—
=
=~

=
=

=
—

—
=

=
=

=—
==

(x.y)

—

-3 -2

P (x-8,y-8) (-1 +1) P,,(x+5,y- 8)

Figure 3: Left: The mask to illustrate how to directly write out B(él()a 8) s(z,y) in terms
of functions A(Ll()a ﬁ)(x, y). The numbers in the circles are the coefficients used to combine
the translated functions of A(él()a ﬁ)(a:, y) corresponding to the four locations. Right: C°-

1
smooth B(é()a7ﬁ)75 (z,y).

From (8), we can directly write out Bf()a 5)6(%,y) in terms of A(f()a 5 (@,9)

in the following way based on the mask shown in Figure 4.:

(2) =
Bz(a,ﬂ)75<x,y) N ﬁ[
A(j))(Poo) — 2A(42() (P1o) + A(f()aﬁ)(PQO)

(avﬁ O{,B)

2 2 2
_QA(z()a,ﬂ) (Po1) + 4A(Z()a,ﬂ)(P11) - 214(4()04,5) (P21)
+A(4()a,5) (Po2) — 2A(4()a’ﬁ)(P12) + A(é()aﬂ)(Pm) .

Case 3: n=3
Similarly, the C%-continuous Bf()a 5) s(z,y) can be expressed in terms of

A(j’()a 8) according to the mask shown in Figure 5. That is,

11

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Poy(xy+286)

Poolx-28,+ 28) (3

,,/// /
-l'lll ,//I//

,///;/,,;;:‘*’

P o(-28,)

Py (v-28,-28)(+1

Figure 4: Left: The mask to illustrate how to directly write out B(j()a 8) s(z,y) in terms

of A(f()a’ﬁ)(ac,y) . Right: C'-smooth B(Z()a’g)(%y)

Bia() 8),6 5(@,y) = (452)[
A 5 (Pog) = BAT) | (P1o) +BAT), 5 (Pao) — AT, (Po)
—3AT) 5 (Por) +9AT) 5 (P1) = 9AT) 5 (Py) + 340 5 (Pa1)
+3A45) 5 (Pa) — 9AT) ; (P1a) + 94T | (Pay) — 34T, (Py)
— AR 5 (Pog) + 34T (P1g) = 3AT), | (Pas) + AT, 4 (Pss)],

where
6!(55)3‘(5$ —ay)®, v<0,y < G
3 [e% [e% o
Al () ,5)@ y) = é(B)Syﬁ _ %(E)ZIyE’ + 2}4'(5)1; yt, x>0,y <0;
0, elsewhere;
(12)

In practical applications, we often need to find the partial derivatives
of triangular spline basis function B(An) (x,y). Because the explicit form of

the function Bgz)a 5 s(,y) is known, the calculation of the partial differen-

tiation to triangular spline function B(A") (,y) up to any required order is
straightforward. From 8, we can see

12

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Pgo(x-8,y+30)
Poo(x-35,y+ 30)

Poolx+8,y+35)
f f 1) Pos(x+38,y+35)
Pio(x-38.y+ 8) (+9) (-9 +3) Pya(x+35,y+3)
Pig(e-By+0) Pya(x+8,5+0)
P (x-35,y- 8) 9 +9
Pi3(x-8.7-0)

-3) P,a(x+38,5-5)
P,4(x+5,5-5)

+3 Aa

#1) Pas(x+35,y-30)
P 15(x¥5,y-35)

P2g (x-38,5-30)

N
N
N
NN
N
S

=
=

7
7
=

=
=N
N

=
=

N
=
N

=

==
S

=

S

=
=

N

N
S

N
N
N
=

S

N

W
A

N
AR
X

Figure 5: (a). The mask to illustrate how to build B(j()a 8) s(x,y) in terms of A(A()a ﬂ)(x, Y).
(b). C?*-smooth B(j'()a ﬁ)(%y).

832") (2, y) 1 o OF; . (z,y)
(a,8),0\" _1)it+g n n 1, z,y
Oz (40%)" ;]Zo(D i) \J dxr (13)
aBin) (z,v) 1 U . (n\ (n\ OF;;(z
(avﬁ)yé ’ 1+] ? y)
S —1)itd . (14
oy (40%)" ;]go() i) \J oy (14)
where .
aFiJ(ZE, y) _ aAg(a’ﬁ) (SL’ + (n - 27’)5? Y= (n - 2])5)
ox ox
13

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

and
8Fi7j(x, y) . aA(ZELﬁ)(x + (n - 27’)57 Yy — (n - 2.])5>
dy dy
can be found directly from (6).
For instance, we can directly find the partial derivatives with respect to

x for Af’()a 8) (z,y) up to the second order. More specifically, we have,
(s (B — ay)®, x <0,y <l
DAY 5 (x,y)
a,f)
T =] A (), 7> 0,y < 0;(15)
L 0, elsewhere;
(16)
(5 (B — ay)?, r <0,y < Zx;
AV, 5 (x,y)
a,f) o
%; = ¢ al®vt x>0,y <0; (17)
L 0, elsewhere;

2.2. Closed form solution of B(Jg(x,y) as a tensor product of smooth step
functions

Similar to the process of developing a closed-form solution for BSEL 8 s(T),

a closed-form solution can be obtained for ng (x,y), aspecial case of BX)(S(:U,),

where A is the half-open rectangular area —shown in Figure 2 (b). In fact,

B:Lg(x,y) can be expressed in a similar form to B(;E)a #).5(®,y) by replacing

A(;()a g in (8) with the following bivariate function
A] Gy v <0y <0 (18)
<(10) 0 elsewhere.

)

However, Bfg (x,y) can be expressed in a more compact form as the
tensor-product of univariate smooth step functions[12]. As the calculation
of smooth step functions is much less computationally intensive, in terms of

14

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

simplicity and computational cost, it is more preferable to express ijg (x,y)
as the tensor-product of smooth step functions. Below, we give an intro-
duction to smooth step functions, especially about their constructions and
properties.

In practice, different types of smooth step functions [10] can be con-
structed using several different methods. It is found that the piecewise poly-
nomial smooth step functions introduced in [9] is closely related to Bi’}g(x, Y).
This type of smooth step functions can be defined either as an iterative
process or directly in explicit form using the standard Heaviside unit step
function. The iterative definition can be expressed in the following way:

0, z<0;
Hy(x) = %, x=0;
1, >0
1 T
Hir) = 5((1+) H(a+ 1)
x
(1= =)Hya(z—1)),
n=1,23"-. (19)

The recursively defined smooth step function H,(z) shown in (19) can
also be written out directly in closed-form in terms of the Heaviside unit
step function in the following way:

n

H,(z) = L > (-1)F (Z) (x4 (n — 2k)"Hy(x + (n — 2k)) (20)

nl2n

H,(x) can be considered as a generalization of the Heaviside unit step
function and can be referred to as the order n smooth unit step function, or
simply smooth step functions. Smooth step function H, (x) has the following
properties:

Proposition 2.1. For each function H,(x),

(1) H,(z) is C"'-continuous for n > 0;

(2) H,(x) is a piecewise-polynomial function of degree n;

(3) Hy(x) is monotonically increasing and takes value 1 when x > n, and
0 when x < —n;

15

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

(5) H,(z) > H,_1(z) when x < 0 and H,(z) < H,_1(z) when x > 0,
n= 727 Ty
(6) x(2H,(x) — 1) < z(2H,—1(z) — 1), n=1,2,---.

Following the definition of H,(t) given in equation (19), the functions
H,(z), Hy(z), and Hs(x) can be written out explicitly. Note that H,(z) =
1 — H,(—x), we need only to write out these functions for z < 0.

0, < —1;
mw = { % 720, 21)

2

0, T < —2;
Haz) = { l1+22, —2<z<0. (22)
0, T < —3;
Hs(z) = =B +a)3, —3<r<—1;
2—14(12—1—91'—:c3), —-1<2<0.
(23)

From (20), the generalized smooth step functions of degree 1, 2 and 3 can
also be expressed in the following form:

H(z) = %((x + D) Hy(z + 1) — (z — 1) Ho(x — 1)) (24)
Hy(z) = é((x +2)?Hy(z + 2) — 202 Ho(z) + (z — 2)*Ho(z — 2)) (25)
Hy(x) = %((m 4+ 3P Ho(x +3) — 3(x + 1) Ho(z + 1)

+3(x — 1)*Ho(x — 1) — (z — 3)*Hy(x — 3)) (26)

Figure 6 presents a plot of the smooth step functions of degree 1 to degree
4.

As can be observed directly, the degree n smooth step function H,(x) is
strictly monotone increasing over the interval [—n,n]. We call this interval
the rising range of a smooth step function. The smooth step function with
any specified rising range can be defined easily by introducing a nonnegative
number § > 0 as follows:

H,s(x) = H,(nz/9). (27)

16

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

oo o9

o8 o8|
07t 07k
o6t o6t
osf osf
04t 04t
03t 03t
o2t 0.2F

01f oif

Figure 6: (a). Piecewise polynomial smooth unit step functions of degree 1 to degree
4. (b). Piecewise polynomial smooth step function Hss(z) with different rising ranges
specified using 4.

Obviously, H, s(z) =1 when x > §, and H,, 5(x) = 0 when z < —4.

Figure 6(b) shows some C*-continuous cubic smooth step functions Hj 5(x)
with different values of rising range parameter 9.

The derivatives of smooth step functions can be found easily for n >
1. From (20), it can be seen that the derivatives of H,(z) can be directly
expressed explicitly using the Heaviside unit step function. When n > 1,

n

0 = i >y () + (= 200 o+ (0 — 20
(25)

In general, for i < n, the i*" order derivative of degree n smooth step
function H,(z) can be expressed explicitly as

n

HO@w) — ﬁ S (1 (Z) (2 + (n — 2K))" Holz + (n — 2K))
) (29)

With (29), the relevant derivatives for Hy(x) and Hs(z) can immediately
be obtained as

Hia) = (x4 2)Ho(x +2) — 2Holx) + (x — 2)Ho(x —2)) (30)

Hia) = (o4 3)Hole +8) — 3(x + 1) Ho(x + 1)

17

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

+3(x — 1)?Ho(x — 1) — (v — 3)*Hy(x — 3)) (31)
HI(z) — g@waﬂ%@+a—su+nﬂam+n
+3(x — 1)Ho(z — 1) — (z — 3)Ho(z — 3)) (32)

Let — be the half-open right angle shown in Figure 2 (b). Consider the
bivariate functions defined in the following way:

0) _)L <0,y <0;
Bﬁ"S(x’y) N {O, elsewhere.
By = [[B s xels - ot - st
R

(n > 0), (33)

where xo(x,y) is the characteristic function of the square [—6, 4] x [—4, d].

It can be shown that Bi’g(z, y) can be expressed as the tensor-product of
smooth step functions in the following way:

Bz, y) = Hy(~2/8) x Ho(~y/9).

3. Triangular spline functions

Let Z*(a, B) be an open angles shown in Figure 2 with their non-vertical
edge parallel to a vector e(a, 3), a*+ 3% > 0, a > 0. Note that the calculation
of the convolution corresponding to an open angle with a negative slope can
be turned into a problem of calculating the convolution defined on an open
angle with a positive slope. More specifically, suppose the slope edge of the
open angle shown in Figure 7 parallel to a vector e(a, —f3), o > 0, 5 > 0.
Then we have

Binzl,_ﬁ),(s(%y) = Bi?i,g),g((—w,y)- (34)

From the results shown in previous section, the solution to the sequence
of convolutions defined in (1) built upon the open angle /*(a,) can be
expressed in closed-form explicitly as

18

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 7: Triangle edge with negative slope

(0, a=0,8>0;
H,(5(=2))Ho(5(~y)),
a>0,8=0;
(n) _
Bt al®9) = Bi& 55T, Y), (35)
a>0,6>0
B(”) _
Z(C%_B)v(;(x’ y)’
\ a>0,8<0.

For any given triangle A, we now show that the sequence of bivariate
functions B(A”) (x,y) built upon triangle A according to (1) can be expressed
as a linear combination of a few explicitly represented piecewise bivariate
polynomial functions presented in (35).

Let E be an edge of a triangle A defined by two vertices vq, v;. Consider
the infinite open trapezoid M(vy, vi) shown in Figure 8, enclosed by line
segment E and two downward vertical rays starting from vertices vy, v
respectively. Just as an open angle can be considered as a big triangle with
its third edge at the infinity, M(vy, v1) can also be viewed as a ’'big’ triangle
with its third vertex at the infinity. In (1), if M(vy, vy) is used as the base

triangle in the convolution, it can be shown directly that ngi ow1) s(T,y)

19

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

can be expressed as the difference between the two functions obtained by
translating BZL 5)’5(35,3/) to vertices vy and vy respectively. Let vi — vg =
(av, B) be the vector representing the orientation of the top edge of the open
area M(vg, vy).

(0; a=0;

B (@,y) —vi) = BY.) ((@,y) - vo).
a>0,82>0;

- BZL,_@,&((_% y) — Vo) — Bi?lé,_g),g((—l’, y) — Vi),
Bﬂ(vo,vl),é(a:’ y) = o > 07 /B < 07

Biré)—a,ﬂ),ci((_‘ru y) - Vl) - Bin)_aﬂ)ﬁ((—gj’ y) — Vo)7
a<0,82>0;

Bi”z)favfﬁ)vts((’%’ y) - Vl) o Bi?)fa,fﬁ)75(($’ y) - VO)?
a<0,8<0,

“ (36)

For any given triangle, three bivariate functions can be obtained in this
way based on the three edges of the given triangle. According to the way we
construct the spline functions, it can be seen directly that BX{;(% y) is simply
a signed sum of the three bivariate functions built upon the three edges of
a triangle, where a positive sign is associated with a function built upon
an upper edge, and a negative sign is associated with a lower edge. More
specifically, let the vertices vo(zo,v0), Vi(x1,y1), va(22,y2) of a triangle A
be specified in counterclockwise order, and let ag = xg — 21, 1 = 1 — X2,
and ag = x9 — 9. Then these as are the y-components of the triangle’s edge
normal pointing outwards. Thus,

Bls(@,y) = sign(a0) B, v (@ y) + sign(a1) B, o, (@.9)
+si9n(az)3%2,vo) (,y). 7

Since av = 0, Blgé)a g)6((2,y) = 0 for a vertical edge. Thus, we can ignore

the vertical edge of a triangle when constructing B(Ari)a(a:,y). This means,

20

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Vo vy Vi Vo

V/ .

Figure 8: Infinite vertical open trapezoids corresponding to a triangle edge.

when a triangle has a vertical edge, B(") (95, y) is simply the difference of two

functions Bﬁl&l vz)(m y) corresponding to the top edge and the bottom edge

of the triangle respectively.
With the properties of integration it can be shown that B! A 5(x y) has the
following properties:

1. 0< BX%(&C y) < 1.

2 A(S(x y) has a C"~! continuity.

3 A 5($ y) is piecewise polynomial.

4. B 6(x y) has a finite support for any finite triangle A.
)

. B(A’)é(w,y) is additive. That is, if two triangles A; and Ay do not
intersect or they only intersect at their edges, then

B sl y) = B s(w,y) + B ().
6. Partition of unity. For a 2D domain D, if
UAk =D, area(A; ﬂA
i#j

then
ZB(Q,&(%?/) =1, (z,y) €D.
k

As have been discussed in [11], the construction of a spline function based
on a given polygon is simply a process of constructing a set of bivariate func-
tions associated to the vertices of the polygon. Since the explicit representa-
tion is known for each of these vertex based functions, the calculation of the

21

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

AR

0.5 //',3“““ 0s //;";‘i\;ii‘\\\\

Figure 9: Triangular spline functions built with different degrees of smoothness, with
§ = 0.2 (a). Cl-continuous B(AQ?OAQ(:C,y); (b). C?-continuous Bg?o.z(l"ay)? (c). C3-

continuous BXL?OQ(x,y); (d). C*-continuous Bg’?o_z(x,y).

spline basis function is straightforward. Note also that the construction of
different order spline basis functions only differs in the computational cost
required for computing the function A(Zz)a (@, y) defined in (6), there is no
extra effort required in terms of the implementation of constructing a higher
order smooth spline basis function.

Figures 9 to 10 show the triangular spline functions constructed with
different degrees of smoothness and different values of the smooth range
parameter 9.

As Tri-PSPS functions can be directly written out as piecewise polyno-
mials in closed form, it is straightforward to construct a set of spline basis
functions from any given triangular partition of a 2D domain. Figure 11
shows three sets of Tri-PSPS constructed with different values of smoothing
parameter 9.

22

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

AN
:";‘:“:8::‘:\‘:“8\\\“‘&\\%\{\‘{(\
RO
;;':,:::;:‘ I
A

)

XIS
RS

AN
A

A
XL

W
(RN
/g ““\‘\‘:‘33‘33::‘
i
SR

i)

=

ikl
\\\\}}\\‘3&‘:}\‘

77
s

Figure 10: C?-smoothness triangular spline functions built with different values of smooth-
ing range parameter §: (a). 6 = 0.05; (b). § = 0.15; (¢). 6 = 0.25.

&

W

; LN
S i
N’\
S ST,
05 - iy , ’/%\\'\
i POy
0 Vi
»mv\v"\,‘l"‘:\‘\\\‘\\{\"""“g {
05 A,
@,,,,,:;;ulnlﬂ,l‘;"\ it
-1 O 5=0.08
- 0 1 N
BN
\\\\\\\\&’:Q‘Q {‘\(//:””""'?’\
D\ N
NSORY i At
LN e
SR) 1 i
- \\\\‘Q\\Q\i&‘\v”'*"":’:’:'i‘lg\”&""" A \\\\\%\\\\\\\\ S
s ety A
SR i
GRS T i~
”."’)’:5‘}“:‘\\\‘%\\\\\\},‘,,,,".\ :&b@w ."“ ‘“\;\ A W—A //'O"“\‘\\
Q‘”‘?‘WW%\W‘&‘MW««M AN
i O P IR g
Illllllllllif}‘&‘\\%};}:&.‘wg&\\“ 0.12 L
iy ',0.‘/:’”"\' =0.

2

Figure 11: A set of triangular spline functions built from a set of triangles. Top left:
Triangulated domains; Top tight: C2-smooth triangular spline functions constructed with
§ = 0.08; Low left: C?-smooth triangular spline functions constructed with § = 0.12; Low
right: C?-smooth triangular spline functions constructed with § = 0.2;

23

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Note that if the orientation of an edge of a triangle A is described by a
unit vector v(a,), B(An)(x,y) = 0 when ay — fzx > n(a + §)J. Because of

this, the calculation of a triangular spline function B(A"()v) (x,y) needs only to

be performed locally around its base triangle.

4. Surface design using Tri-PSPS

Let Ao, Ay, Ny, -+, Ak be a triangulation of a 2D domain D. Let BXQ (x,y),
k=0,1,2,---, K, be the sequence of Tri-PSPS functions built upon these
triangles. Tri-PSPS surfaces take the following form

K
S(,y) =Y Pla,y)BY(2,y),
=0

where Pi(z,y) is the i control geometric primitive associated to triangle
N, 1 =0,1,2,---) K. Traditionally, the control geometric primitives used
are mainly a set of control points. With the shape-preserving feature of
Tri-PSPS, we can easily turn the design of a complex surface as a task of
designing a set of simple surfaces. In Figure 12, the left figure shows a
control point-based Tri-PSPS surface and the right one is a Tri-PSPS surface
obtained by blending a set of planar control primitives.

As have been pointed out, Tri-PSPS are a kind of multilevel spline tech-
nique. The levels of detail can be easily incorporated into the parameter §.
In Figure 13, a noisy point set is used to show how levels of detail in surface
design can be easily implemented using different ¢ values.

Surface design with levels of detail can also be achieved by using the
additivity property of Tri-PSPS. The idea is to first organise the control data
points or primitives in a hierarchical structure, with different control points at
different levels corresponding to different levels of detail of a required surface.
The additivity of Tri-PSPS makes Tri-PSPS an ideal spline technique for
editing surface’s level of detail. This is because, with the feature of additivity,
the spline function built from one big triangle can be replaced with a set of
refined Tri-PSPS functions built on a set of smaller subdivision triangles
of the original triangle (see Figure 14). Obviously, high levels of detail of
a surface can be achieved by partitioning the domain using much smaller
triangles, as it is shown in Figure 15.

Tri-PSPS can be used in various ways for solving real world problems.
To demonstrate the potential applications of Tri-PSPS, a few more examples

24

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

N
s
GOSN
ORI
s
Uy)
il
DO
XR00X

OIEIEN
N
0TI

AT
/,,;,/,,,,;.:v.‘,o..\\\\\} T

RN
BN
‘ IR
T
R

o "“:
G XSS
AR
U

e
i
TR

i g4l
i o
X A

A
e

)
s
¢
“b‘b‘t‘b‘b‘

"
XS
S AN
R
RS
RS
RO
S
W
s
e
Wit

s

e
XK

Figure 12: Surface constructed from the same set of points using Tri-PSPS. Left: C2-
smooth Tri-PSPS surface built directly from original point data using C?-smooth Tri-
PSPS with § = 0.15. Right: C?-smooth Tri-PSPS surface built from planar primitive for
each control hull face using C2-smooth Tri-PSPS with 6 = 0.2. In general, any required
approximation accuracy to the control points can be achieved as long as § is small enough
or each local geometric approximation patch is sufficiently accurate.

NS
v i
o SR
AT
IR
l.o‘:\m\\}“\\‘\:\‘
AR
'l"r:’:,’,';,';{“{-l‘&’l.”
DL

s
BN
RS
O

L

Figure 13: C?-smooth Tri-PSPS surfaces built with decreased levels of detail: (a). § = 0.1

(b). § =0.2; (¢). 6 =0.4; (d). 6 =0.8;

25

b

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

0.5 0.5

T

/ ’ ‘“‘ % = ' —
I/Z/'/I,"'““\"\ i

o
v
OO,
eI
B e)
Y
SRS

I

(48
{“o »

=
S

RS
s

"‘\::
i
il

S5
2
2
S
=

e Al
g I Ll i
Vs N A ‘!N,'\ ==
e S] iR ‘“\\ =
=N AN =
=R NN
AN N NS == N

e S
T e
e e
S A TS e LT
e eenee
I e et

ST =
REteres
s

Figure 14: This figure demonstrate the property of additivity of triangular splines. Top
row: The initial triangle (left) and a triangle subdivision (right) to the initial triangle;
Bottom row: The C%-smooth triangular spline function built from the initial big triangle
(left) and the set of C?-smooth triangular spline functions built from the set of smaller
subdivision triangles (right). The sum of these refined triangular spline functions equal to
the one shown on the left.

26

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

are provided in Figure 16.

5. Further Discussions

5.1. From Tri-PSPS to Spline Functions on Arbitrary Polygons

In [11], it is shown that for any polygon, whether it be a simple polygon
or a polygon with holes, a spline basis function can be directly created from
the polygon. As any polygon can be triangulated as a set of triangles, we
can also directly construct a spline function with local support around an
arbitrary polygon, thanks to the property of additivity of Tri-PSPS. The
idea is to subdivide a given polygon A as a set of triangles Ay, Ay, - -+, Ak,
and to build a spline function as the sum:

K
BY =" B (x,y)
1=0

The function built in this way for an arbitrary polygon is independent of
the ways that the given polygon is triangulated. In general, a polygon can
be divided into different sets of triangles, but the additivity property of Tri-
PSPS will guarantee that the total sum of the refined Tri-PSPS functions
will be the same, which is independent of the ways a triangle is subdivided.

5.2. Tri-PSPS constructed from transformed triangles

Tri-PSPS is translation and scaling invariant, in the sense that a Tri-PSPS
basis function constructed from a transformed triangle can be obtained by
transforming the Tri-PSPS basis function built on the initial triangle. This
means, when we construct the Tri-PSPS basis functions based on a set of
translated or scaled triangles, we can first build the spline basis functions
based on their original positions, orientations and sizes of a set of triangles
and then transform these functions to obtain the Tri-PSPS functions corre-
sponding to the transformed triangles.

However, Tri-PSPS basis functions are not rotational transformation in-
dependent as can be directly observed from the definition of Tri-PSPS basis
functions. Once the orientation of a triangle is changed, the corresponding
Tri-PSPS basis function needs to be recalculated.

27

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

-2 -2

-2 -2

-2 -2

N
N AV
el

T
DRk
S AT
mmwmws%ur

A N

KORAAK

K
ANV YAV,

=

2 -2

Figure 15: High level of surface details can be achieved by subdividing the domain using

much smaller triangles.

28

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

SIS
DI

S

s

()

Figure 16: Examples of geometric design using Tri-PSPS: (a). Dense point cloud fitting.
(b). An explicit Tri-PSPS surface patch (right) designed using the triangulation configu-

ration shown left. (¢). An implicit Tri-PSPS surface designed based on the triangulated
pattern shown in the left figure in (b).

29

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

5.8. Tri-PSPS are parallel computing friendly

Unlike traditional spline technique, Tri-PSPS is particularly suitable to
be implemented in parallel processing systems. This is because each spline
function is defined locally independent of each other. This is a big difference
between Tri-PSPS and traditional spline functions, whose construction often
involve the use of a sequence of neighbour triangles.

5.4. Degree-elevation free

In traditional spline techniques like NURBS, interpolating a control point
or a portion of line segment is achieved by using lower degrees of spline basis
functions. Tri-PSPS use the smoothing parameter introduced in the spline
scheme to achieve control point interpolation or control polygon edge inter-
polation. This indicates that no degree-elevation process is required when
perform, for instance, isogeometric analysis. In practice, Tri-PSPS technique
is also much easier to implement, as local editing of a Tri-PSPS surface can be
done directly through triangle subdivision, without having to handle knots
insertion which in general is not a trivial process. Tri-PSPS can be used
to construct analysis-suitable parameterization in a similar way as NURBS
for isogeometric analysis[16, 17, 15, 18, 19], which will be investigated in a
separate paper.

6. Summary

In this paper, we present a new type of triangular spline technique, the
Tri-PSPS. Compared with other similar triangular spline techniques, Tri-
PSPS have several distinctive features. The most important feature of Tri-
PSPS is that the spline basis functions of different degrees can be directly
written out in closed form, which is a great advantage over other triangular
spline techniques in terms of computational efficiency. The second important
property of Tri-PSPS is that it is additive. This means Tri-PSPS are a refin-
able spline scheme, as each of its spline basis functions can be replaced with a
set of refined basis functions built on subdivided triangles. Thirdly, Tri-PSPS
are a multilevel spline technique, the required surface details can be controlled
either through the specification of a proper value for the smoothing param-
eter or by using hierarchical control points or control polygons. In terms of
practical implementation, Tri-PSPS are a parallel computing friendly spline
scheme, which can be easily implemented on modern programmable GPUs
or on high performance computer clusters. This is based on the fact that

30

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

the basis functions of Tri-PSPS can be directly computed independent of its
neighboring triangles. Lastly but not least, the implementation of Tri-PSPS
is straightforward as the exact form of each triangle spline function can be
written out in closed-form explicitly.

References

[1] Gerard Awanou, Ming-Jun Lai, and Paul Wenston. The multivariate
spline method for scattered data fitting and numerical solutions of par-
tial differential equations. Wawvelets and splines: Athens, 2006:24-74,
2005.

[2] Charles K. Chui and Ming-Jun Lai. Algorithms for generating B-nets
and graphically displaying spline surfaces on three- and four-directional
meshes. Computer Aided Geometric Design, 8:479493, 2001.

[3] Wolfgang Dahmen, Charles A. Micchelli, and Hans-Peter Seidel. Blos-
soming Begets B-Spline Bases Built Better by B-Patches. Mathematics
of Computation, 59(199):97-115, 1992.

[4] Carl de Boor and Ron DeVore. Approximation by smooth multivariate
splines. Trans. Amer. Math. Soc., 276(2):775-788, 1983.

[5] Carl de Boor, Klaus Hollig, and Sherman Riemenschneider. Box Splines.
Springer-Verlag New York, Inc., New York, NY, USA, 1993.

[6] Philip Fong and Hans-Peter Seidel. An implementation of multivariate
B-spline surfaces over arbitrary triangulations. In Proceedings of the

conference on Graphics interface '92, pages 1-10, San Francisco, CA,
USA, 1992. Morgan Kaufmann Publishers Inc.

[7] Hongmei Kang, Falai Chen, and Jiansong Deng. Hierarchical B-splines
on regular triangular partitions. Graphical Models, 76(5):289-300, 2014.

[8] Ming-Jun Lai and Larry L Schumaker. Spline functions on triangula-
tions. Cambridge University Press, 2007.

[9] Qingde Li. Smooth piecewise polynomial blending operations for implicit
shapes. Computer Graphics Forum, 26(2):157-171, 2007.

31

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

[10] Qingde Li, John. G. Griffiths, and James Ward. Constructive implicit
fitting. Comput. Aided Geom. Des., 23(1):17-44, 2006.

[11] Qingde Li and Jie Tian. 2D piecewise algebraic splines for implicit
modeling. ACM Trans. on Graph., 28(2):1-19, 20009.

[12] Qingde Li and Jie Tian. Partial shape-preserving splines. Computer-
Aided Design, 43(4):394-409, 2011.

[13] Marian Neamtu. Bivariate simplex B-splines: A new paradigm. In Pro-
ceedings of the 17th Spring Conference on Computer Graphics, SCCG
‘01, pages 71—, Washington, DC, USA, 2001. IEEE Computer Society.

[14] Marian Neamtu. What is the natural generalization of univariate splines
to higher dimensions? in Mathematical Methods for Curves and Sur-
faces, T. Lyche and L. L. Schumaker (eds.), Vanderbilt University Press,
Nashuville, pages 355-392, 2001.

[15] N Nguyen-Thanh, J Muthu, X Zhuang, and T Rabczuk. An adaptive
three-dimensional RHT-splines formulation in linear elasto-statics and
elasto-dynamics. Computational Mechanics, 53(2):369-385, 2014.

[16] N Nguyen-Thanh, H Nguyen-Xuan, Stephane Pierre Alain Bordas, and
T Rabczuk. Isogeometric analysis using polynomial splines over hierar-
chical T-meshes for two-dimensional elastic solids. Computer Methods
in Applied Mechanics and Engineering, 200(21-22):1892-1908, 2011.

[17] Nhon Nguyen-Thanh, J Kiendl, H Nguyen-Xuan, R Wiichner, KU Blet-
zinger, Y Bazilevs, and T Rabczuk. Rotation free isogeometric thin shell
analysis using PHT-splines. Computer Methods in Applied Mechanics
and Engineering, 200(47):3410-3424, 2011.

[18] Gang Xu, Bernard Mourrain, Régis Duvigneau, and André Galligo.
Analysis-suitable volume parameterization of multi-block computa-

tional domain in isogeometric applications. Computer-Aided Design,
45(2):395-404, 2013.

[19] Gang Xu, Bernard Mourrain, Régis Duvigneau, and André Galligo. Con-
structing analysis-suitable parameterization of computational domain
from cad boundary by variational harmonic method. Journal of Com-
putational Physics, 252:275-289, 2013.

32

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

[20] Gang Xu, Guo-Zhao Wang, and Xiao-Diao Chen. Free-form deformation
with rational DMS-spline volumes. Journal of computer science and
technology, 23(5):862-873, 2008.

21] Jia Yue, Zhang Yongjie, Xu Gang, Zhuang Xiaoying, and Rabczuk
Timon. Reproducing kernel triangular B-spline-based FEM for solv-
ing pdes. Computer Methods in Applied Mechanics and Engineering,
267(Complete):342-358, 2013.

[22] Urska Zore and Bert Jiittler. Adaptively refined multilevel spline spaces
from generating systems. Computer Aided Geometric Design, 31(7):545—
566, 2014.

33

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

