Tetrads of lines spanning $\text{PG}(7,2)$

Neil A. Gordon
University of Hull

Ron Shaw
University of Hull

Hans Havlicek
Vienna University of Technology
Tetrads of lines spanning $\text{PG}(7, 2)$

Ron Shaw, Neil Gordon, Hans Havlicek

Abstract

Our starting point is a very simple one, namely that of a set \mathcal{L}_4 of four mutually skew lines in $\text{PG}(7, 2)$. Under the natural action of the stabilizer group $\mathcal{G}(\mathcal{L}_4) < \text{GL}(8, 2)$ the 255 points of $\text{PG}(7, 2)$ fall into four orbits $\mathcal{O}_1; \mathcal{O}_2; \mathcal{O}_3; \mathcal{O}_4$ of respective lengths 12, 54, 108, 81. We show that the 135 points in \mathcal{O}_2 are the internal points of a hyperbolic quadric \mathcal{H}_7 determined by \mathcal{L}_4; and that the 81-set \mathcal{O}_4 (which is shown to have a sextic equation) is an orbit of a normal subgroup $\mathcal{G}_{81} = (\mathbb{Z}_3)^4$ of $\mathcal{G}(\mathcal{L}_4)$. There are 40 subgroups $\cong (\mathbb{Z}_3)^3$ of \mathcal{G}_{81}, and each such subgroup $H < \mathcal{G}_{81}$ gives rise to a decomposition of \mathcal{O}_4 into a triplet $\{\mathcal{R}_H, \mathcal{R}_H', \mathcal{R}_H''\}$ of 27-sets. We show in particular that the constituents of precisely 8 of these 40 triplets are Segre varieties $S_3(2)$ in $\text{PG}(7, 2)$. This ties in with the recent finding that each $S = S_3(2)$ in $\text{PG}(7, 2)$ determines a distinguished \mathbb{Z}_3 subgroup of $\text{GL}(8, 2)$ which generates two sibling copies S', S'' of S.

MSC2010: 51E20, 05B25, 15A69

Key words: Segre variety $S_3(2)$; line-spread; invariant polynomials

1 Introduction

We work for most of the time over $\mathbb{F}_2 = \text{GF}(2)$, and so we can then identify a projective point $\langle x \rangle \in \text{PG}(n - 1, 2)$ with the nonzero vector $x \in V(n, 2)$. In fact we will be dealing with vector space dimension $n = 8$, and we will start out from a(ny) direct sum decomposition

$$V_8 = V_a \oplus V_b \oplus V_c \oplus V_d$$

of $V_8 := V(8, 2)$ into 2-dimensional spaces V_a, V_b, V_c, V_d. For $h \in \{a, b, c, d\}$ we will write

$$V_h = \{u_h(0), u_h(1), u_h(2)\}, \quad \text{with } u_h(0) = 0.$$

(The reason for this labelling of the four elements of V_h is that in a later section we wish to use 0, 1, 2 as the elements of the Galois field \mathbb{F}_3.) So $PV_h = \text{PG}(7, 2)$ is the span of the four projective lines

$$L_h := PV_h = \{u_h(0), u_h(1), u_h(2)\}, \quad h \in \{a, b, c, d\}. (2)$$

It is surprising, but gratifying, that from such a simple starting point so many interesting and intricate geometrical aspects quickly emerge, as we now describe.
1.1 \(\mathcal{H}_7 \)-tetrads of lines in \(\text{PG}(7,2) \)

For \(v_h \in V_h \) let \((v_a, v_b, v_c, v_d) := v_a \oplus v_b \oplus v_c \oplus v_d \) denote a general element of \(V_8 \). Setting \(U_{ijkl} := (u_a(i), u_b(j), u_c(k), u_d(l)) \) then the 255 points of \(\text{PG}(7,2) \) are

\[
\{U_{ijkl} | i, j, k, l \in \{0, 0, 1, 2\}, \, ijkl \neq 0000\}. \tag{3}
\]

First observe that the subgroup \(\mathcal{G}(\mathcal{L}_4) \) of \(\text{GL}(8,2) \) which preserves the direct sum decomposition \(\mathcal{L}_4 \), and hence the foregoing tetrad

\[
\mathcal{L}_4 := \{L_a, L_b, L_c, L_d\} \tag{4}
\]
of lines, has the semi-direct product structure

\[
\mathcal{G}(\mathcal{L}_4) = \mathcal{N} \rtimes \text{Sym}(4), \quad \text{where } \mathcal{N} := \text{GL}(V_a) \times \text{GL}(V_b) \times \text{GL}(V_c) \times \text{GL}(V_d),
\]

and where \(\text{Sym}(4) = \text{Sym}\{a, b, c, d\} \). Hence \(|\mathcal{G}(\mathcal{L}_4)| = 6^4 \times 24 = 31,046 \).

The \(\mathcal{G}(\mathcal{L}_4) \)-orbits of points are easily determined. In addition to the weight \(\text{wt}(p) = \text{wt}_B(p) \) of a point \(p \in \text{PG}(7,2) \) with respect to a basis \(B \) for \(V_h \), let us also define its line-weight \(\text{lw}(p) \) as follows:

\[
\text{lw}(U_{ijkl}) = r \quad \text{whenever precisely } r \text{ of } i, j, k, l \text{ are in } \{0, 1, 2\}.
\]

Then the 255 points of \(\text{PG}(7,2) \) clearly fall into just four \(\mathcal{G}(\mathcal{L}_4) \)-orbits \(\omega_1, \omega_2, \omega_3, \omega_4 \), where

\[
\omega_r = \{p \in \text{PG}(7,2) | \, \text{lw}(p) = r\}. \tag{5}
\]

The lengths of these orbits are accordingly

\[
|\omega_1| = 12, \quad |\omega_2| = \binom{4}{2} \times 3^2 = 54, \quad |\omega_3| = \binom{4}{3} \times 3^3 = 108, \quad |\omega_4| = 3^4 = 81.
\]

Next take note that there is a unique \(\text{Sp}(8,2) \)-geometry on \(V_h := V(8,2) \), given by a non-degenerate alternating bilinear form \(B \), such that the subspaces \(V_a, V_b, V_c, V_d \) are hyperbolic 2-dimensional spaces which are pairwise orthogonal. If \(B = \{e_i\}_{i \in \{1,2,3,4,5,6,7,8\}} \) is any basis such that

\[
V_h = V_a \perp V_b \perp V_c \perp V_d = \langle e_1, e_8 \rangle \perp \langle e_2, e_7 \rangle \perp \langle e_3, e_6 \rangle \perp \langle e_4, e_5 \rangle \tag{6}
\]

then the symplectic product \(x \cdot y := B(x, y) \) is determined by its values on basis vectors:

\[
e_1 \cdot e_8 = e_2 \cdot e_7 = e_3 \cdot e_6 = e_4 \cdot e_5 = 1, \quad e_i \cdot e_j = 0 \quad \text{for other values of } i, j \tag{7}
\]

and so has the coordinate expression

\[
x \cdot y = (x_1 y_8 + x_8 y_1) + (x_2 y_7 + x_7 y_2) + (x_3 y_6 + x_6 y_3) + (x_4 y_5 + x_5 y_4).
\]

Perhaps less obvious is the fact that the tetrad \((4) \) also determines a particular non-degenerate quadric \(Q \) in \(\text{PG}(7,2) \). For, as we now show, such a quadric \(Q \) is uniquely determined by the two conditions

\[
\]
(i) it has equation \(Q(x) = 0 \) such that the quadratic form \(Q \) polarizes to give the foregoing symplectic form \(B : Q(x + y) + Q(x) + Q(y) = x \cdot y; \)

(ii) the 12-set of points
\[
\mathcal{P}(L_4) := \omega_1 = L_a \cup L_b \cup L_c \cup L_d \subset \text{PG}(7, 2)
\]
supporting the tetrads \(L_4 \) is external to \(Q \).

For it follows from (i) that the terms of degree 2 in \(Q \) must be \(P_2(x) = x_1x_8 + x_2x_7 + x_3x_6 + x_4x_5 \), and then the eight conditions \(Q(e_i) = 1 \) entail that the linear terms in \(Q \) must be \(P_1(x) = \sum_{i=1}^{8} x_i \), so that
\[
Q(x) = P_2(x) + P_1(x) = x_1x_8 + x_2x_7 + x_3x_6 + x_4x_5 + u \cdot x,
\]
where \(u := \sum_{i=1}^{8} e_i \). Further \(Q \) in (8) is seen to satisfy also the four conditions \(Q(e_i + e_j) = 1 \), \(ij \in \{18, 27, 36, 45\} \), so indeed \(Q(p) = 1 \) for all \(p \in \omega_1 \).

Theorem 1. The quadric \(Q \) is a hyperbolic quadric \(\mathcal{H}_7 \); moreover \(\mathcal{H}_7 = \omega_2 \cup \omega_4 \).

Proof. There exist just two kinds, \(\mathcal{E}_7 \) and \(\mathcal{H}_7 \), of non-degenerate quadrics in \(\text{PG}(7, 2) \). An elliptic quadric \(\mathcal{E}_7 \) has 119 points and a hyperbolic quadric \(\mathcal{H}_7 \) has 135 points; see [7, Theorem 5.21], [9, Section 2.2]. Since \(Q \) is uniquely determined, its internal points must be a union of the \(\mathcal{G}(L_4) \)-orbits \(\omega_2, \omega_3, \omega_4 \), of respective lengths 54, 108, 81. So the only possibility is that \(Q \) is a hyperbolic quadric \(\mathcal{H}_7 = \omega_2 \cup \omega_4 \), having 54 + 81 = 135 points. (So we will term such a tetrads \(L_4 \) of lines in \(\text{PG}(7, 2) \) a \(\mathcal{H}_7 \)-tetrad.) \(\square \)

Corollary 2. \(\mathcal{G}(L_4) \) is a subgroup of the isometry group \(\mathcal{G}(Q) \cong O^+(8, 2) < \text{Sp}(8, 2) \) of the hyperbolic quadric \(\mathcal{H}_7 \).

Remark 3. In fact \(\mathcal{G}(L_4) \) is a maximal subgroup of \(O^+(8, 2) = O^+_8(2) \cdot 2 \); see [3, p. 85], where it is recorded as \(S_3 \wr S_4 \).

1.2 \(\mathcal{G}(L_4) \)-invariant polynomials

The tetrads \(L_4 = \{ L_a, L_b, L_c, L_d \} \) determines the following \(\mathcal{G}(L_4) \)-invariant sets of flats in \(\text{PG}(7, 2) \):

1. four 5-flats: \(\langle L_a, L_b, L_c \rangle, \langle L_a, L_b, L_d \rangle, \langle L_a, L_c, L_d \rangle, \langle L_b, L_c, L_d \rangle \);
2. six 3-flats: \(\langle L_a, L_b, L_c \rangle, \langle L_a, L_c, L_d \rangle, \langle L_b, L_c, L_d \rangle, \langle L_a, L_d \rangle, \langle L_b, L_d \rangle, \langle L_c, L_d \rangle \);
3. four 1-flats: \(L_a, L_b, L_c, L_d \).

Let (i) \(F_{hh} = 0 \) be the quadratic equation of the 5-flat \(\langle L_h, L_k, L_l \rangle \), (ii) \(F_{hh} = 0 \) be the quartic equation of the 3-flat \(\langle L_h, L_k \rangle \) and (iii) \(F_h = 0 \) be the sextic equation of the line \(L_h \). (See [11, Lemma 2].) Consequently the tetrads \(L_4 \) determines the \(\mathcal{G}(L_4) \)-invariant polynomials \(Q_2, Q_4, Q_6 \), of respective degrees 2, 4, 6, defined as follows:

1. \(Q_2 = F_{abc} + F_{abd} + F_{acd} + F_{bcd} \)
2. \(Q_4 = F_{ab} + F_{ac} + F_{ad} + F_{bc} + F_{bd} + F_{cd} \)
3. \(Q_6 = F_a + F_b + F_c + F_d \).
Theorem 4. The 81-set \(\omega_4 \) has the sextic equation \(Q_{\omega_4}(x) = 0 \), where \(Q_{\omega_4} := Q_6 + Q_4 + Q_2 \).

Proof. Setting \(\psi_Q := \{ p \in \text{PG}(7,2) | Q(p) = 0 \} \), the last entry in the following table follows from the three preceding entries.

| \(Q \) | \(\deg Q \) | \(Q(p) \) if \(p \in Q \) | \(\psi_Q \) | \(|\psi_Q| \) |
|------------------|--------------|-------------------------------|-------------|-----------|
| \(Q_2 \) | 2 | \(\omega_1 \ 0 \ 0 \ 0 \) | \(\omega_2 \cup \omega_4 \) | 135 |
| \(Q_4 \) | 4 | \(1 \ 1 \ 0 \ 0 \) | \(\omega_3 \cup \omega_4 \) | 189 |
| \(Q_6 \) | 6 | \(1 \ 0 \ 0 \ 0 \) | \(\omega_2 \cup \omega_3 \cup \omega_4 \) | 243 |
| \(Q_2 + Q_4 + Q_6 \) | 6 | \(1 \ 1 \ 1 \ 0 \) | \(\omega_4 \) | 81 |

Remark 5. Of course \(Q_2 = 0 \) is, see Eq. (8), the \(\mathcal{H}_7 \) quadric \(Q \) of Theorem 1. Also \(Q_4 \) was denoted \(Q'_4 \) in [11, Theorem 17] and \(Q_6 \) was denoted \(Q'_6 \) in [11, Example 20]. The sextic terms in \(Q_6 \) are readily found, since:

\[
Q_6 = \Pi_{i \neq 1,8}(1 + x_i) + \Pi_{i \neq 2,7}(1 + x_i) + \Pi_{i \neq 3,6}(1 + x_i) + \Pi_{i \neq 4,5}(1 + x_i).
\]

Consequently, in terms of the sextic monomials \(\bar{x}_j \bar{x}_k := \Pi_{i \notin \{j,k\}} x_i \), we see that:

\[
Q_6 = \bar{x}_1 \bar{x}_8 + \bar{x}_2 \bar{x}_7 + \bar{x}_3 \bar{x}_6 + \bar{x}_4 \bar{x}_5 + \text{(terms of degree < 6)}.
\] (9)

Remark 6. A sextic polynomial \(Q \) determines, via complete polarization, an alternating multilinear form \(\times^6 \mathbb{V}_8 \rightarrow \mathbb{F}_2 \), and hence an element \(b \in \wedge^6 \mathbb{V}_8^* \cong \wedge^2 \mathbb{V}_8 \). (See [10, Section 1.1].) Since \(Q_6 \) is \(\mathcal{G}(L_4) \)-invariant, and since there is a unique nonzero \(\mathcal{G}(L_4) \)-invariant element of \(\wedge^2 \mathbb{V}_8^* \cong \text{Alt}(\times^2 \mathbb{V}_8, \mathbb{F}_2) \), namely \(B \) in Eq. (7), it follows, in the case \(Q = Q_6 \), that \(b \) must be the \(\wedge^2 \mathbb{V}_8 \) image of \(B \in \wedge^2 \mathbb{V}_8^* \), namely:

\[
b = e_1 \wedge e_8 + e_2 \wedge e_7 + e_3 \wedge e_6 + e_4 \wedge e_5.
\] (10)

It follows from (10) that the sextic terms in \(Q_6 \) must be the four monomials in (9). So the result (9) could in fact have been deduced in this alternative manner.

From the foregoing it is not too difficult to find by hand the explicit coordinate form of the sextic polynomial \(Q_{\omega_4} \). In fact we used Magma, see [2], to obtain the result below. At times writing \(1' = 8, 2' = 7, 3' = 6, 4' = 5 \), let us
define the following polynomials:

\[
P_1 = \sum_{1 \leq i \leq 8} x_i, \quad P_2 = \sum_{1 \leq i < j \leq 8} x_i x_j, \quad P_3 = \sum_{1 \leq i < j < k \leq 8} x_i x_j x_k,
\]

\[
P_4 = \sum_{1 \leq k < l \leq 4} x_k x_l x_i x_j,
\]

\[
P'_4 = \sum_{1 \leq m \leq 4} x_m x_m' P_{mm'}, \quad \text{where } P_{mm'} = \sum_{k < l, k \neq k'} x_k x_l,
\]

\[
P_5 = \sum_{1 \leq k < l \leq 4} x_k x_l x_i x_{i'},
\]

\[
P_6 = \sum_{1 \leq k < l < m \leq 4} x_k x_l x_i x_j x_m x_{m'}, = x_1 x_8 + x_2 x_7 + x_3 x_6 + x_4 x_5.
\]

Then, assisted by Magma, we found that

\[
Q_{\omega_k} = P_b + P_5 + P_4 + P'_4 + P_3 + P_2 + P_1.
\]

2 The eight distinguished spreads \(\{ \mathcal{L}_{85}^{ijk} \}_{i,j,k \in \{1,2\}} \)

Next we show that the partial spread \(\mathcal{L}_4 \) of four lines determines a privileged set of eight extensions to a complete spread \(\mathcal{L}_{85} \) of 85 lines in PG(7, 2). To this end, for each \(h \in \{a, b, c, d\} \) let us choose that element \(\zeta_h \in \text{GL}(V_h) \) of order 3 which effects the cyclic permutation \((u_0 h(0) u_h(1) u_h(2)) \) of the points of \(L_h \).

Consider the eight \(Z_3 \)-subgroups \(\{ Z_{ijk} \}_{i,j,k \in \{1,2\}} \) of \(\mathcal{G}(\mathcal{L}_4) \) defined by

\[
Z_{ijk} = \langle A_{ijk} \rangle, \quad \text{where } A_{ijk} := (\zeta_a)^i \oplus (\zeta_b)^j \oplus (\zeta_c)^k \oplus \zeta_d.
\]

When working using the basis \(\mathcal{B} \) we will make the following choices for the four \(\zeta_h \) in (11):

\[
\begin{align*}
\zeta_a &: e_1 \mapsto e_8 \mapsto e_1 + e_8, \quad \zeta_b : e_7 \mapsto e_2 \mapsto e_2 + e_7, \\
\zeta_c &: e_3 \mapsto e_6 \mapsto e_3 + e_6, \quad \zeta_d : e_5 \mapsto e_4 \mapsto e_4 + e_5.
\end{align*}
\]

We will also choose the \(u_h(0) \) so that \(U_{0000} \) is the unit point \(u \) of the basis \(\mathcal{B} \).

Since \((A_{ijk})^2 + A_{ijk} + I = 0 \), each \(Z_{ijk} \) acts fixed-point-free on PG(7, 2) and gives rise to a spread \(\mathcal{L}_{85}^{ijk} \) of lines in PG(7, 2), with a point \(p \in \text{PG}(7, 2) \) lying on the line

\[
L^{ijk}(p) := \{ p, A_{ijk} p, (A_{ijk})^2 p \} \in \mathcal{L}_{85}^{ijk}.
\]

Note that if in (11) one or more of the \(\zeta_h \) is replaced by the identity element \(I_h \in \text{GL}(V_h) \) then, although a \(Z_3 \)-subgroup of \(\mathcal{G}(\mathcal{L}_4) \) which preserves the lines is generated, it is not fixed-point-free on PG(7, 2). So there exist precisely eight extensions of \(\mathcal{L}_4 \) to a Desarguesian spread of 85 lines in PG(7, 2). Observe that in the case where \(p \) is the unit vector \(u := \sum_{i=1}^8 e_i \) of the basis \(\mathcal{B} \) then the eight lines (13) are distinct: for, using \(ijk \)l as shorthand for \(e_i + e_j + e_k + e_l \), they are...
For the flat $\Pi(0)$ we have in (14) just seen that the eight lines are distinct for the point $p \in \omega_4$.

Lemma 7. For $p \in PG(7, 2)$ the eight lines $L^{ijk}(p)$ are distinct if and only if $p \in \omega_4$.

Proof. We have in (14) just seen that the eight lines are distinct for the point $u \in \omega_4$, and hence for all $p \in \omega_4$. Consider a point $p = (0, v_a, v_c, v_d)$ of line-weight 3. Since $A_{1,ik} = A_{2,ik}$, and so $L^{ijk}(p) = L^{ijk}(p')$, the lines $L^{ijk}(p)$ coincide in pairs. Similarly for other points $p \in \omega_3$. For a point $p \in \omega_2$ of line-weight 2 the analogous reasoning shows that only two of the lines $L^{ijk}(p)$ are distinct. And of course if $p \in \omega_1$, that is if $p \in L_h$ for some $h \in \{a, b, c, d\}$, then $L^{ijk}(p) = L_h$ for all eight values of ijk.

Recall that on a H_7 quadric there exist two systems of generators, see [8, Section 22.4], elements of either system being solids (3-flats). Consequently it follows from the next theorem that the foregoing eight Z_3-subgroups of $G(\mathcal{L}_4)$ divide naturally into two sets of size four, namely $Z = \{Z_{111}, Z_{122}, Z_{212}, Z_{221}\}$, $Z^* = \{Z_{222}, Z_{211}, Z_{121}, Z_{112}\}$.

Theorem 8. For $p \in \omega_4$ let $\Pi(p)$ denote the flat spanned by the four lines $L^{ijk}(p)$, $ijk \in \{111, 122, 212, 221\}$, and let $\Pi^*(p)$ denote the flat spanned by the four lines $L^{ijk}(p)$, $ijk \in \{222, 211, 121, 112\}$. Then $\Pi(p)$ and $\Pi^*(p)$ are generators of H_7 which moreover belong to different systems.

Proof. The flat $\Pi(p) = \langle L^{111}(p), L^{122}(p), L^{212}(p), L^{221}(p) \rangle$ for the point $p = (v_a, v_b, v_c, v_d) \in \omega_4$ is seen, upon using $(\zeta_h)^2 = \zeta_h = I_h$, to consist of the nine points $L^{111}(p) \cup L^{122}(p) \cup L^{212}(p) \cup L^{221}(p)$ of line-weight 4 together with the following six points of line-weight 2:

\[
(0, 0, v_c, v_d), (0, v_a, 0, v_d), (v_a, v_b, 0, 0), (v_a, 0, v_c, 0), (0, 0, v_c, v_d), (0, v_a, 0, v_c).
\]

By Theorem 1, for each $p \in \omega_4$, the flat $\Pi(p)$ is in fact a solid on the quadric H_7. Similarly the same applies to the flat $\Pi^*(p)$, whose six points of line-weight 2 moreover coincide with those of $\Pi(p)$. So $\Pi(p) \cap \Pi^*(p)$ is the isotropic plane consisting of $p = (v_a, v_b, v_c, v_d)$ together with the six points (16). Consequently, see [8, Theorem 22.4.12, Corollary], for each $p \in \omega_4$ the generators $\Pi(p)$ and $\Pi^*(p)$ belong to different systems.

\[\]
3 The normal subgroup G_{81} of $G(L_4)$

Let Z_h denote that Z_3 subgroup of $G(L_4)$ which fixes pointwise each of the three lines $L_4 \setminus L_h$, $h \in \{a, b, c, d\}$. Then clearly the elementary abelian group

$$G_{81} := Z_a \times Z_b \times Z_c \times Z_d \cong Z_3 \times Z_3 \times Z_3 \times Z_3$$

is a normal subgroup of $N = GL(V_a) \times GL(V_b) \times GL(V_c) \times GL(V_d)$ and of $G(L_4) = N \rtimes \text{Sym}(4)$. Observe that ω_4 is a single G_{81}-orbit. One easily sees that G_{81} is equally well the direct product $Z_{111} \times Z_{122} \times Z_{212} \times Z_{221}$ of the four members of Z, and also the direct product $Z_{222} \times Z_{211} \times Z_{121} \times Z_{112}$ of the four members of Z^*.

Consider now any $Z_3 \times Z_3 \times Z_3$ subgroup $H < G_{81}$. If $G_{81} = H \cup H' \cup H''$ denotes the decomposition of G_{81} into the cosets of H then we define subsets $R := R_H, R' := R'_H, R'' := R''_H$ of ω_4 by

$$R = \{ hu, h \in H \}, \quad R' = \{ h'u, h' \in H' \}, \quad R'' = \{ h''u, h'' \in H'' \}. \quad (17)$$

In particular $R = R_H$ is the orbit of u under the action of the group H. Each such subgroup $H < G_{81}$ gives rise to a decomposition $\omega_4 = R \cup R' \cup R''$ of ω_4 into a triplet of 27-sets.

As we will now demonstrate, the study of such triplets is greatly simplified by viewing G_{81} in a GF(3) light.

3.1 A GF(3) view of G_{81}

For $i, j, k, l \in F_3 = GF(3) = \{0, 1, 2\}$ define

$$A_{ijkl} := (\zeta_a)^i \oplus (\zeta_b)^j \oplus (\zeta_c)^k \oplus (\zeta_d)^l.$$

Note that if $i, j, k \in \{1, 2\}$ then $A_{ijkl} = A_{ijkl}$, as previously defined in (11). In the following we will view $ijkl$ as shorthand for the element $(i, j, k, l) \in (F_3)^4$. Since

$$A_\tau A_\sigma = A_{\sigma + \tau}, \quad \sigma, \tau \in (F_3)^4, \quad (18)$$

observe that $A : \sigma \mapsto A_\sigma$, $\sigma \in (F_3)^4$, is an isomorphism mapping the additive group $(F_3)^4$ onto the multiplicative group G_{81}. Now the orbit of any point $p \in \omega_4$ under the action of the group G_{81} is the whole of ω_4. In particular this is so for the unit point $u := \sum_{i=1}^3 e_i$ of the basis B. Consequently the 81-set ω_4 is in bijective correspondence with $(F_3)^4$ as given by the map $\theta_u : (F_3)^4 \to \omega_4$ defined by

$$\theta_u(\sigma) = p_\sigma := A_\sigma u, \quad \sigma \in (F_3)^4. \quad (19)$$

Observe that the choices made in (2) and (12) imply that $\theta_u(ijkl) = U_{ijkl}$ for all $ijkl \in (F_3)^4$.

In the GF(3) space $V(4, 3) = (F_3)^4$ we will chiefly employ the basis $B_e := \{e_1, e_2, e_3, e_4\}$, where

$$e_1 = 1000, \quad e_2 = 0100, \quad e_3 = 0010, \quad e_4 = 0001. \quad (20)$$
and then write a general element \(\xi = \sum_{r=1}^{4} \xi_r e_r \in V(4,3) \) as \(\xi = \xi_1 e_1 + \xi_2 e_2 + \xi_3 e_3 + \xi_4 e_4 \). We denote the weight of \(\xi \in (\mathbb{F}_3)^4 \) in the basis \(\mathcal{B}_x \) by \(\text{wt}_x(\xi) \).

Let us now study subgroups of \(\mathcal{G}_{81} \) by viewing them in the light of their corresponding subspaces in the vector space \(V(4,3) = (\mathbb{F}_3)^4 \).

A \(\mathbb{Z}_3 \) subgroup of \(\mathcal{G}_{81} \) is of the form \(\{ I, A_\sigma, A_{2\sigma} \} \) for some non-zero \(\sigma \in V(4,3) \). So \(\mathcal{G}_{81} \) contains 40 subgroups \(\cong \mathbb{Z}_3 \) which are in bijective correspondence with the 40 points of the projective space \(\text{PG}(3,3) = \mathbb{F}V(4,3) \). If we denote by \(\Xi \cup \Xi^* \) the following eight elements of \((\mathbb{F}_3)^4 \):

\[
\Xi : \quad \alpha = 1111, \ \beta = 1221, \ \gamma = 2121, \ \delta = 2211,
\Xi^* : \quad \alpha^* = 2221, \ \beta^* = 2111, \ \gamma^* = 1211, \ \delta^* = 1121,
\]

then observe that \(A_\alpha, A_\beta, \ldots, A_\delta \) are the respective generators of the eight \(\mathbb{Z}_3 \)-subgroups \(Z_{111}, Z_{122}, \ldots, Z_{112} \in \mathbb{Z} \cup \mathbb{Z}^* \) considered in (15). Now under the action by conjugacy of \(\mathcal{G}(\mathcal{L}_4) \) on \(\mathcal{G}_{81} \) the particular 4-set \(\{ A_\alpha, A_\beta, Z_\delta, Z_\gamma \} = \{ (\alpha), (\beta), (\delta), (\gamma) \} \) of \(\mathbb{Z}_3 \) subgroups is fixed, whence

\[
\mathcal{T}_c := \{ (\varepsilon_1), (\varepsilon_2), (\varepsilon_3), (\varepsilon_4) \}
\]

is a \(\mathcal{G}(\mathcal{L}_4) \)-distinguished tetrahedron of reference in \(\text{PG}(3,3) \). Consequently take note that the eight \(\mathbb{Z}_3 \) subgroups \(\{ (A_\rho) \}_{\rho \in \Xi, \Xi^*} \) considered in (15) are picked out as the only \(\mathbb{Z}_3 \) subgroups \((A_\rho) \) of \(\mathcal{G}_{81} \) for which \(\text{wt}_c(\rho) = 4 \).

Next let us consider subgroups \(H \cong \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \) of \(\mathcal{G}_{81} \).

Theorem 9. The normal subgroup \(\mathcal{G}_{81} < \mathcal{G}(\mathcal{L}_4) \) contains precisely 40 subgroups \(H \cong \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \). These fall into four conjugacy classes \(\mathcal{C}_0, \mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3 \) of \(\mathcal{G}(\mathcal{L}_4) \), of respective sizes 8, 16, 12, 4.

Proof. Each subgroup \((A_\rho, A_\sigma, A_\tau) \cong \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \) arises as

\[
\{ A_\lambda | \lambda \in V_3 := \langle \rho, \sigma, \tau \rangle \}
\]

from a corresponding projective plane \(\mathbb{P}V_3 = \langle (\rho), (\sigma), (\tau) \rangle \) in \(\text{PG}(3,3) \). Now there exist precisely 40 planes in \(\text{PG}(3,3) \), and these fall into four kinds \(\mathcal{P}_0, \mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3 \), where \(\mathcal{P}_\rho \) denotes those planes in \(\text{PG}(3,3) \) which contain precisely \(r \) of the vertices \((\varepsilon_i) \) of the tetrahedron of reference \(\mathcal{T}_c \). There are 8 planes of kind \(\mathcal{P}_0 \), namely those with one of the 8 equations

\[
\xi_1 = c_1 \xi_1 + c_2 \xi_2 + c_3 \xi_3, \quad c_1, c_2, c_3 \in \{1, 2\}.
\]

Similarly we see that there are, respectively, 16, 12, 4 planes of kinds \(\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3 \). The theorem now follows, since planes of the same kind are seen to correspond to conjugate \(\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \) subgroups.

Finally let us consider subgroups \(H \cong \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \) of \(\mathcal{G}_{81} \). Such a subgroup \((A_\rho, A_\sigma) \) arises from a corresponding line \(\langle (\rho), (\sigma) \rangle \subset \text{PG}(3,3) \), and so we need to classify lines with respect to the \(\mathcal{G}(\mathcal{L}_4) \)-distinguished basis \(\mathcal{B}_x \). If \(n_w \) points of a line \(L \subset \text{PG}(3,3) \) have weight \(w \), \(w \in \{1, 2, 3, 4\} \), with respect to the basis \(\mathcal{B}_x \) then we will say that \(L \) has weight pattern \(\pi_w(L) = (n_1, n_2, n_3, n_4) \).
The normal subgroup $G_{41} < G(L_4)$ contains precisely 130 subgroups $\cong Z_3 \times Z_3$. These fall into seven conjugacy classes K_1, \ldots, K_7 of $G(L_4)$, of respective sizes 6, 24, 16, 12, 16, 48, 8.

Proof. Each subgroup $\langle A_p, A_r \rangle \cong Z_3 \times Z_3$ arises from a corresponding line $\langle (\rho), (\sigma) \rangle$ in $\text{PG}(3,3)$, and there exist precisely 130 lines in $\text{PG}(3,3)$. With respect to the $G(L_4)$-distinguished tetrahedron of reference T, the 130 lines L are of seven kinds $\Lambda_1, \ldots, \Lambda_7$ as described in the following table.

| $\pi_r(L)$ | $|\Lambda_i|$ |
|------------|----------|
| $L \in \Lambda_1$ | (2,2,0,0) | 6 |
| $L \in \Lambda_2$ | (1,1,2,0) | 24 |
| $L \in \Lambda_3$ | (0,3,1,0) | 16 |
| $L \in \Lambda_4$ | (0,2,0,2) | 12 |
| $L \in \Lambda_5$ | (1,0,1,2) | 16 |
| $L \in \Lambda_6$ | (0,1,2,1) | 48 |
| $L \in \Lambda_7$ | (0,0,4,0) | 8 |

(23)

The theorem now follows since lines of the same kind correspond to conjugate $Z_3 \times Z_3$ subgroups. \hfill \square

3.2 The 27-set ‘denizens’ of ω_4

It follows from Theorem 9 that the 81-set ω_4 is populated by 40 triplets $\{R, R', R''\}$ of 27-set ‘denizens’, as in (17), and that these triplets, and the 120 denizens of ω_4, can be classified into four kinds C_0, C_1, C_2, C_3. One of our aims is to show that precisely eight of these triplets are triplets of Segre varieties $S_3(2)$. So it helps to remind ourselves at this point about certain aspects of a Segre variety $S = S_3(2)$ in $\text{PG}(7,2)$, and to relate our present concerns to those in [4], [5] and [11].

First of all, S defines a $(27_3, 27_3)$ configuration, each of the 27 points of S lying on precisely 3 lines $\subseteq S$, namely three of the 27 generators of S. Moreover the stabilizer group G_S of S contains as a normal subgroup a group $\langle A_1, A_2, A_3 \rangle \cong Z_3 \times Z_3 \times Z_3$ which acts transitively on the 27 points of S, the three generators of S through a point $p \in S$ being the lines

$$L^r(p) := \{p, A_r p, (A_r)^2 p\}, \quad r = 1, 2, 3.$$

(24)

Here A_r satisfies $(A_r)^2 + A_r + I = 0$, each Z_3 group $\langle A_r \rangle$ acting fixed-point-free on $\text{PG}(7,2)$. Further, as noted in [11, Theorem 5], S determines a distinguished Z_3-subgroup $\langle W \rangle$ which also acts fixed-point-free on $\text{PG}(7,2)$, the distinguished tangent, see [11, Section 2.1], at $p \in S$ being the line $\{p, Wp, W^2 p\}$. Moreover, see [11, Section 4.2], under the action of the distinguished Z_3-subgroup $\langle W \rangle$ the Segre variety S gave rise to a triplet $\{S, S' = W(S), S'' = W^2(S)\}$ of Segre varieties. In [4, p. 82] (although without proof and using a different notation), [5, Proposition 5] and [11, Section 4.1] the five G_S-orbits O_1, O_2, O_3, O_4, O_5 of
points were described, with $O_5 = S$ and $O_4 = S' \cup S''$. These are related to the four $G(L_3)$-orbits (5) in the following simple manner:

$$
\omega_1 = O_1, \quad \omega_2 = O_2, \quad \omega_3 = O_3, \quad \omega_4 = O_4 \cup O_5 = S \cup S' \cup S''.
$$

So ω_4 is a single orbit under the action of the group $(A_1, A_2, A_3, W) \cong (Z_3)^4$, this last thus being the group G_{81} in our present context.

Lemma 11. If $p \in \omega_4$ and $\lambda \in (F_3)^4, \lambda \neq 0000$, then $L_\lambda^p \equiv \{p, A_\lambda p, A_{2\lambda} p\}$ is a line in ω_4 if and only if $\pm \lambda \in \Xi \cup \Xi^*$.

Proof. We already know, see (13), that L_λ^p is a line if $\lambda \in \Xi \cup \Xi^*$ or if $-\lambda \in \Xi \cup \Xi^*$. Also, as noted after equation (21), if $\pm \lambda \notin \Xi \cup \Xi^*$ then $\text{wt}_e(\lambda) < 4$, and so $\lambda = mnr(\lambda)$ where at least one of m, n, r, s is 0. For example, suppose $\lambda = mnr0$, where $m, n, r \in F_3$. Then $(I + A_\lambda + A_{2\lambda})U_{ijkl} = U_{0000} \neq 0$.

Remark 12. A partial affine space, see [1, p. 35] or [6, p. 794], is an affine space from which some parallel classes have been removed. For example, the affine space on $(F_3)^4$ turns into a partial affine space if we consider only affine lines with a direction vector $\pm \lambda \in \Xi \cup \Xi^*$ and restrict the parallelism of $(F_3)^4$ to the set of those lines. Lemma 11 shows that ω_4 arises as the point set of an isomorphic partial affine space in the following way: The lines in ω_4 are of the form L_λ^p with $\pm \lambda \in \Xi \cup \Xi^*$. Two lines are parallel if they belong to the same distinguished spread L_{ijk}.

Theorem 13. A triplet of 27-sets $\{R_H, R'_H, R''_H\}$ in (17) which arises from a $(Z_3)^3$ subgroup $H = \{A_\lambda | \lambda \in V_3\}$ will consist of Segre varieties $S_3(2)$ if and only if the projective plane $P = \mathbb{P}V_3 \subset PG(3, 3)$ is of kind P_0. So the 81-set ω_4 contains precisely 24 copies of a Segre variety $S_3(2)$.

Proof. Since each point of a Segre $S = S_3(2)$ lies on precisely three generators of S, see (24), it follows from the preceding lemma that in order for R_H to be a $S_3(2)$ the subgroup H must be of the form $\langle A_\lambda, A_\mu, A_\nu \rangle$ for precisely three elements $\lambda, \mu, \nu \in \Xi \cup \Xi^*$. But a straightforward check shows that planes of the kinds P_0, P_1, P_2, P_3 contain, respectively, precisely 3, 2, 4, 0 points $\langle \lambda \rangle$ with $\lambda \in \Xi \cup \Xi^*$. So only in the eight cases where the Z_3 subgroup $H < G_{81}$ is of kind C_0 can R_H be a Segre variety $S_3(2)$. By (25) for one such subgroup a Segre variety arises and, by Theorem 9, the same holds for the remaining subgroups of kind C_0.

Remark 14. It is easy to check that if all three of λ, μ, ν are in Ξ, or if all three are in Ξ^*, then $P(\langle \lambda, \mu, \nu \rangle)$ is a plane in $PG(3, 3)$ of kind P_0, thus accounting for all eight planes of kind P_0. But if λ, μ, ν are split 2, 1 or 1, 2 between Ξ, Ξ^*, then we see that $H = \langle A_\lambda, A_\mu, A_\nu \rangle$ contains a fourth Z_3 subgroup $\langle A_\rho \rangle$ with $\rho \in \Xi \cup \Xi^*$: for example, observe results such as

$$
\langle \alpha, \beta, \alpha^* \rangle = \langle \alpha, \beta, \alpha^*, \beta^* \rangle, \quad \text{and} \quad \langle \alpha, \beta, \gamma^* \rangle = \langle \alpha, \beta, \gamma^*, \delta^* \rangle.
$$

So such a $(Z_3)^3$ subgroup H is of kind C_2, not C_0, and R_H gives rise to a $(27_4, 36_3)$ configuration in contrast to the $(27_3, 27_3)$ configuration arising from a $S_3(2)$.
It was proved in [11, Theorem 18] that a Segre variety $S_3(2)$ in $\text{PG}(7, 2)$ has a sextic equation. In fact, from our results in Section 1.2 we can deduce that if \mathcal{S} is any of the 24 copies of a Segre variety $S_3(2)$ in ω_4 then \mathcal{S} has a sextic equation of the form $Q_{\mathcal{S}}(x) = 0$ where, for some polynomial $F_{\mathcal{S}}$ of degree < 6,

$$Q_{\mathcal{S}} = x_1 x_5 + x_2 x_7 + x_3 x_6 + x_4 x_5 + F_{\mathcal{S}}.$$ \hfill (27)

For recall from (25) that $\omega_4 = \mathcal{O}_4 \cup \mathcal{O}_5$ where $\mathcal{O}_5 = \mathcal{S}$. Now, see [11, Theorem 17], the 201-set $(\mathcal{O}_4)^c := \omega_1 \cup \omega_2 \cup \omega_3 \cup \mathcal{S}$ has a quartic equation, say $F_{\mathcal{S}}^2 = 0$, and, see Theorem 4, $\mathcal{O}_4 \cup \mathcal{S}$ has sextic equation $Q_6 + Q_4 + Q_2 = 0$. It follows that \mathcal{S} has equation $Q_6 + Q_4 + Q_2 + F_{\mathcal{S}}^2 = 0$ which, see (9), is of the form (27).

3.3 Non-Segre triplets in ω_4

When the authors first considered 27-sets such as $\mathcal{R}_{\alpha\beta\gamma} = \{A_{\mu} \}_{\mu \in \langle \alpha, \beta, \gamma \rangle}$ they were briefly misled into thinking that $\mathcal{R}_{\alpha\beta\gamma}$ was a Segre $S_3(2)$. Upon discovering their error, see (26), they decided that all the ‘deceitful’ non-Segre 27-sets in ω_4 should be termed ‘rogues’. In this terminology we can summarize our foregoing results as follows.

The 81-set ω_4 is populated by 120 denizen 27-sets which occur as 40 triplets $\{\mathcal{R}, \mathcal{R}', \mathcal{R}''\}$ such that $\mathcal{R} \cup \mathcal{R}' \cup \mathcal{R}'' = \omega_4$. Of these triplets eight are of Segre varieties $S_3(2)$, sixteen are of rogues of kind \mathcal{C}_1, twelve are of rogues of kind \mathcal{C}_2 and four are of rogues of kind \mathcal{C}_3.

Since a Segre variety $S_3(2)$ spans $\text{PG}(7, 2)$, the next two theorems confirm in a more vivid manner that rogues of kinds \mathcal{C}_2 and \mathcal{C}_3 are not Segre varieties.

Theorem 15. Suppose that a 27-set $\mathcal{R} \subset \omega_4$ is a rogue of kind \mathcal{C}_2. Then $\langle \mathcal{R} \rangle$ is a 5-flat in $\text{PG}(7, 2)$.

Proof. Six of the twelve planes of kind \mathcal{P}_2 are those having equations of the kind $\xi_r = \xi_4$ and the other six are those having equations of the kind $\xi_r = 2\xi_4$. Consider a plane $P = \mathbb{P}V_3$ in the first six, say with equation $\xi_3 = \xi_4$. Then, see (3), the subset $\theta_4(V_3)$ consists of the 27 points

$$\mathcal{R} := \{U_{ijk}\mid i, j, k \in F_3 = \{0, 1, 2\}\}. \hfill (28)$$

Now any two elements a, b of a line $L_a \in \mathcal{L}_4$ satisfy $a \cdot b = 1$ if $a \neq b$ and $a \cdot b = 0$ if $a = b$. So the three points of the line

$$L_\mathcal{R} := \{U_{0000}, U_{0011}, U_{0022}\} \subset \langle L_c, L_d \rangle$$

are perpendicular to every point of \mathcal{R}. However this is not the case for any other point of $\text{PG}(7, 2)$, and so $\langle \mathcal{R} \rangle$ is the 5-flat $(L_\mathcal{R})^\perp$. A plane $P = \mathbb{P}V_3$ in the second six, say with equation $\xi_3 = 2\xi_4 = -\xi_4$, can be treated similarly, with the subset $\theta_4(V_3)$ consisting of the 27 points

$$\mathcal{R}_* := \{U_{ijk}\mid i, j, k \in F_3 = \{0, 1, 2\}\}, \hfill (29)$$
where, for \(k \in \mathbb{F}_3 \), \(\mathcal{R} \) denotes \(-k(=2k)\). If \(\mathcal{R}_* \) is as in (29) then we see that \(\langle \mathcal{R}_* \rangle \) is the 5-flat \((L_{\mathcal{R}_*})^\perp\) where

\[
L_{\mathcal{R}_*} := \{U_{0000}, U_{0012}, U_{0021}\} \subset \langle L_c, L_d \rangle.
\]

Remark 16. Consider the triplet \{\(\mathcal{R}, \mathcal{R}', \mathcal{R}'' \)\} of kind \(\mathcal{C}_2 \) which contains \(\mathcal{R} \) as in (28). Then \(\mathcal{R}' = A_\mu(\mathcal{R}) \) and \(\mathcal{R}'' = A_{2\mu}(\mathcal{R}) \) for suitable \(\mu \in (\mathbb{F}_3)^4 \), for example \(\mu = 0001 \). Consequently

\[
L_{\mathcal{R}'} := \{U_{0001}, U_{0012}, U_{0020}\}, \quad L_{\mathcal{R}''} := \{U_{0002}, U_{0010}, U_{0021}\}.
\]

Similarly, in the case of the triplet \{\(\mathcal{R}_*, \mathcal{R}'_*, \mathcal{R}''_* \)\} of kind \(\mathcal{C}_2 \) which contains \(\mathcal{R}_* \) as in (29) we see that

\[
L_{\mathcal{R}'_*} := \{U_{0001}, U_{0010}, U_{0022}\}, \quad L_{\mathcal{R}''_*} := \{U_{0002}, U_{0011}, U_{0020}\}.
\]

So the three lines \{\(L_{\mathcal{R}}, L_{\mathcal{R}'}, L_{\mathcal{R}''} \)\} are a regulus in the 3-flat \(\langle L_c, L_d \rangle \), and the three lines \{\(L_{\mathcal{R}_*}, L_{\mathcal{R}'_*}, L_{\mathcal{R}''_*} \)\} are the opposite regulus, the 9-set supporting the two reguli being that hyperbolic quadric \(\mathcal{H}_3 \) in the 3-flat \(\langle L_c, L_d \rangle \) which has \(L_c \) and \(L_d \) as its two external lines. Of course similar considerations apply to all twelve of the planes in PG(3, 3) of kind \(\mathcal{F}_2 \). Thus each of the six pairs of lines in \(\mathcal{L}_4 \) gives rise to a pair of opposite reguli and hence to a set of \(6 \times 2 \times 3 = 36 \) lines \(L \subset \omega_2 \). Each such \(L \) gives rise to a rogue \(\mathcal{R} \) of kind \(\mathcal{C}_2 \), namely to \(\mathcal{R} = L^\perp \cap \omega_4 \).

Theorem 17. Suppose that a 27-set \(\mathcal{R} \subset \omega_4 \) is a rogue of kind \(\mathcal{C}_3 \). Then \(\langle \mathcal{R} \rangle \) is a 6-flat in PG(7, 2).

Proof. By Theorem 9 there are four triplets in \(\omega_4 \) of kind \(\mathcal{C}_3 \), which arise from the four planes \(\xi_r = 0, r \in \{1, 2, 3, 4\} \). Consider the plane \(P = PV_3 \) with equation \(\xi_4 = 0 \). Then, see (3), it gives rise to the following triplet of 27-sets

\[
\mathcal{R} := \{U_{ijk}\}, \quad \mathcal{R}' := \{U_{ijk1}\}, \quad \mathcal{R}'' := \{U_{ijk2}\}, \quad i, j, k \in \mathbb{F}_3 = \{0, 1, 2\}.
\]

It quickly follows that \(\langle \mathcal{R} \rangle, \langle \mathcal{R}' \rangle \) and \(\langle \mathcal{R}'' \rangle \) are 6-flats, namely

\[
\langle \mathcal{R} \rangle = \{U_{0000}\}^\perp, \quad \langle \mathcal{R}' \rangle = \{U_{0001}\}^\perp, \quad \langle \mathcal{R}'' \rangle = \{U_{0002}\}^\perp,
\]

where \(\{U_{0000}, U_{0001}, U_{0002}\} = L_d \). Of course the other three triplets in \(\omega_4 \) of kind \(\mathcal{C}_3 \) are associated in a similar way with the other three lines \(L_a, L_b, L_c \in \mathcal{L}_4 \).

4 Intersection properties

4.1 Introduction

If \(\Delta_1 \) and \(\Delta_2 \) are any two distinct triplets of 27-set denizens of \(\omega_4 \) note that

\[
\mathcal{N}(\Delta_1, \Delta_2) := \{R_1 \cap R_2 : R_1 \in \Delta_1, R_2 \in \Delta_2\}
\]

is an ennead of 9-sets which provides a partition of \(\omega_4 \). For suppose that \(H_1 \) and \(H_2 \) are two \((Z_3)^3\) subgroups of \(G_{\omega_4} \) whose orbits in \(\omega_4 \) yield the triplets \(\Delta_1 \)
and Δ_2. Then the $(Z_3)^2$ subgroup $H = H_1 \cap H_2$ yields one member \{hu, $h \in H$\} of the ennead of 9-sets (30), the other members of the ennead being the other orbits of H in ω_4.

Since the origin of the present research arose from our interest in Segre varieties $S_3(2)$ in PG(7, 2), let us at least look at the different kinds of intersection $S \cap R$ of a Segre variety $S \subset \omega_4$ with another 27-set denizen R of ω_4. Such an intersection we will term a section of the Segre S. Recall from Theorem 13 that a Segre variety $S \subset \omega_4$ arises as $S_H := \{hu, h \in H\}$ from a $(Z_3)^3$ subgroup $H < G_{81}$ which is of class C_0, being the image, under the isomorphism A in (18), of a 3-dimensional subspace V_3 such that the projective plane $P = PV_3 \subset PG(3, 3)$ is of kind P_0.

Lemma 18. Suppose that $P = PV_3 \subset PV(4, 3)$ is a projective plane of kind P_0. Then the 13 lines $L \subset P$ fall into three $G(L_4)$-orbits:

(i) 3 lines of kind Λ_4;

(ii) 6 lines of kind Λ_6;

(iii) 4 lines of kind Λ_3.

Proof. Without loss of generality we may, see Remark 14, consider the particular plane $P = \{v \in (F_3)^4 : \langle T \rangle \}$, where $V_3 = \langle T \rangle$ (31).

In detail the 27 elements of $V_{\beta, \gamma, \delta}$ are:

\[
\begin{array}{ccc}
0000 & 1221 & 2112 \\
2121 & 0012 & 1200 \\
1212 & 2100 & 0021 \\
\end{array}
\]

In the display (31) the rows of each 9-set are orbits of $\langle T_\gamma \rangle$ and the columns of each 9-set are orbits of $\langle T_\delta \rangle$, where T_λ denotes the translation which maps
\(\mu \in (F_3)^4 \) to \(\lambda + \mu \in (F_3)^4 \); of course \((T\lambda)^2 = T_{2\lambda}\). Incidentally observe from (31) that, in conformity with (22), \(V_{\beta\gamma\delta}\) is that 3-dimensional subspace of \(V(4,3)\) having the equation

\[\xi_1 + \xi_2 + \xi_3 + \xi_4 = 0. \]

Using the basis \(B\), with \(\zeta_n\) as in (12), we see, in the shorthand notation of Eq. (14), that \(S_{\beta\gamma\delta}\) thus consists of the following 27 points:

\[
\begin{array}{cccc}
 u & 1256 & 3478 \\
 5678 & 56u & 78u \\
 1234 & 12u & 34u \\
 2358 & 25u & 38u \\
 58u & 137u & 246u \\
23u & 468u & 157u \\
1467 & 16u & 47u \\
 67u & 248u & 135u \\
14u & 357u & 268u \\
\end{array}
\]

Observe that each 9-set in (32) is a Segre variety \(S_{2}(2)\), whose generators are the rows and columns in the display, these being orbits of, respectively, \(\langle A\rangle\) and \(\langle A\rangle\).

Acting upon \(S_{\beta\gamma\delta}\) with a \(Z_3\) subgroup of \(G_{81}\) which is not in \(\langle A\rangle;A\rangle;A\rangle\); for example with \(\langle A\rangle\); will produce the siblings \(S'_{\beta\gamma\delta}\); \(S''_{\beta\gamma\delta}\) of \(S_{\beta\gamma\delta}\); these siblings being the images under \(\theta\) of the two affine subspaces in \(V(4,3) = (F_3)^4\) which are translates of \(V_{\beta\gamma\delta}\).

Recalling the proof of Lemma 18, let us make the following choices of representatives for the three kinds of 2-dimensional subspaces \(V_2 \subset V_{\beta\gamma\delta}\):

(i) \(\langle \beta, \gamma \rangle\), (ii) \(\langle \delta, \beta + \gamma \rangle\), (iii) \(\langle \beta - \gamma, \beta - \delta \rangle\).

For the choice (i) the nine elements of \(V_2 = \langle \beta, \gamma \rangle\) are those in the first 9-set in (31). The corresponding section \(\theta(V_2)\) of \(S_{\beta\gamma\delta}\) is the first of the three \(S_{3}(2)\) varieties in (32).

For the choice (ii) the nine elements of \(V_2 = \langle \delta, \beta + \gamma \rangle\) satisfy \(\xi_1 = \xi_2\) and are those underlined in:

\[
\begin{array}{cccc}
 0000 & 1221 & 2112 \\
 2121 & 0012 & 1200 \\
 1212 & 2100 & 0021 \\
 2211 & 0102 & 1020 \\
 1002 & 2220 & 0111 \\
 1012 & 0211 & 2202 \\
1122 & 2010 & 0201 \\
 0210 & 1101 & 2022 \\
 2001 & 0222 & 1110 \\
\end{array}
\]

We will term the resulting section \(\theta(V_2)\) of the \(S_{3}(2)\) a 3-generator set: it consists of three parallel generators of \(S_{3}(2)\) which meet a ‘perpendicular’ \(S_{2}(2)\) in three points no two of which lie on the same generator of the \(S_{2}(2)\).

Finally the nine elements of \(V_2 = \langle \beta - \gamma, \beta - \delta \rangle\) satisfy \(\xi_4 = 0\) and are those underlined in:

\[
\begin{array}{cccc}
 0000 & 1221 & 2112 \\
 2121 & 0012 & 1200 \\
 1212 & 2100 & 0021 \\
 2211 & 0102 & 1020 \\
 1002 & 2220 & 0111 \\
 1012 & 0211 & 2202 \\
1122 & 2010 & 0201 \\
 0210 & 1101 & 2022 \\
 2001 & 0222 & 1110 \\
\end{array}
\]

We will term the resulting section \(\theta(V_2)\) of the \(S_{3}(2)\) a fan:

Definition 19. A subset \(F\) of nine points of a \(S_{3}(2)\) is a fan (= far-apart nine) if no two points of \(F\) lie on the same generator. (So if \(F\) is a fan for a \(S_{3}(2)\) then the 3 generators through each of the 9 points of \(F\) account for all \(3 \times 9 = 27\) generators of \(S_{3}(2)\).)
We may summarize the foregoing as follows.

Theorem 20. A section of a Segre variety $S_4(2)$ in ω_4 is either (i) a $S_2(2)$, or (ii) a 3-generator set, or (iii) a fan.

4.3 Hamming distances and troikas

In the GF(3) space $V(4, 3) = (F_3)^4$ we have been employing the basis $B_\varepsilon := \{\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4\}$, see (20). Using this basis it helps at times to make use of the associated Hamming distance $hd_\varepsilon(\rho, \sigma)$ between two elements $\sigma, \tau \in (F_3)^4$, as defined by

$$hd_\varepsilon(\rho, \sigma) = wt_\varepsilon(\rho - \sigma).$$

Remark 21. If ρ, σ belong to the same row in (21) observe that $hd_\varepsilon(\rho, \sigma) = 2$, while if ρ, σ belong to different rows then $hd_\varepsilon(\rho, \sigma)$ is odd.

The next lemma demonstrates that some aspects of orthogonality in the GF(2) space $PG(7, 2)$ can be neatly dealt with in GF(3) terms.

Lemma 22. Two points $p_\rho, p_\sigma \in \omega_4$ are orthogonal or non-orthogonal according as $hd_\varepsilon(\rho, \sigma)$ is even or odd.

Proof. For two points $u_h(i), u_h(j) \in L_h$ we have $u_h(i) \cdot u_h(j) = 1 + \delta_{ij}$. Hence if $\rho = ijk$ and $\sigma = i'j'k'l'$ it follows that $p_\rho \cdot p_\sigma = \delta_{i'i'} + \delta_{j'j} + \delta_{kk'} + \delta_{ll'}$, whence the stated result. \hfill \square

A description of the different sections of a Segre variety $\mathcal{S} \subset \omega_4$ can sometimes be helped by the use of the alternative basis $B_\Xi := \{\beta, \gamma, \delta, \alpha\}$ for $V(4, 3) = (F_3)^4$. Here, as in (21), $\beta = 1221$, $\gamma = 2121$, $\delta = 2211$, $\alpha = 1111$.

The change of basis equations are therefore:

\begin{align*}
\beta &= \varepsilon_1 - \varepsilon_2 - \varepsilon_3 + \varepsilon_4, \\
\delta &= -\varepsilon_1 - \varepsilon_2 + \varepsilon_3 + \varepsilon_4, \\
\varepsilon_1 &= \beta - \gamma - \delta + \alpha, \\
\varepsilon_2 &= -\beta + \gamma - \delta + \alpha, \\
\varepsilon_3 &= -\beta - \gamma + \delta + \alpha, \\
\varepsilon_4 &= \beta + \gamma + \delta + \alpha.
\end{align*}

Observe that the chosen ordering of the elements of the basis B_Ξ results in the change of basis matrix M having the simple properties $M^t = M = M^{-1}$.

So in $V(4, 3)$ we now have available the Hamming distance in the basis B_Ξ, namely

$$hd_\Xi(\rho, \sigma) := wt_\Xi(\rho - \sigma), \quad \rho, \sigma \in (F_3)^4,$$

where $wt_\Xi(\lambda)$ denotes the weight of an element $\lambda \in V(4, 3)$ in the basis B_Ξ.

Lemma 23.

\begin{align*}
wt_\Xi(\lambda) = 2 &\iff wt_\varepsilon(\lambda) = 2, \\
wt_\Xi(\lambda) = 3 &\iff wt_\varepsilon(\lambda) = 3, \\
wt_\Xi(\lambda) = 1 &\iff wt_\varepsilon(\lambda) = 4, \\
wt_\Xi(\lambda) = 4 &\iff wt_\varepsilon(\lambda) = 1.
\end{align*}
Proof. The results (34) follow immediately from (33).

Let us also define the Hamming distance \(\text{hd}(p_\rho, p_\sigma) \) between two points \(p_\rho, p_\sigma \in \omega_4 \) to be

\[
\text{hd}(p_\rho, p_\sigma) := \text{hd}_\Sigma(\rho, \sigma).
\]

Observe that this definition does not depend upon the choice of the point \(u \) used in the bijective correspondence \(\theta_\nu \) in (19), due to the invariance of \(\text{hd}_\Sigma \) under translations: \(\text{hd}_\Sigma(\lambda + p, \lambda + \sigma) = \text{hd}_\Sigma(\rho, \sigma) \). Suppose that we confine our attention to points \(p, p', \ldots \) on a particular Segre variety in \(\omega_4 \), say \(S = S_{\beta,\gamma,\delta} \) in (32). Then observe that \(\text{hd}(p, p') = d \), \(d \in \{1, 2, 3\} \), provided that \(p' \) can be obtained from \(p \) only by the use of at least \(d \) of the generating subgroups \(\langle A_\beta \rangle, \langle A_\gamma \rangle, \langle A_\delta \rangle \) of \(S \). In particular distinct points \(p \) and \(p' \) lie on the same generator of \(S \) if and only if \(\text{hd}(p, p') = 1 \). This Hamming distance on \(S \) appears also in [5].

Definition 24. (i) A troika on a given \(S_3(2) \) variety \(S \) in \(\omega_4 \) is a set of three points of \(S \) which are \(\text{hd}_\Sigma = 3 \) apart.

(ii) The centre of a troika \(t = \{p_1, p_2, p_3\} \) is the point \(c(t) = p_1 + p_2 + p_3 \).

For example, the three points \(u, 246u, 357u \in S_{\beta,\gamma,\delta} \) in (32) are \(\text{hd}_\Sigma = 3 \) apart and so form a troika. Alternatively this follows from (34) since \(0000, 0111, 0222 \) in (31) are \(\text{hd}_\Sigma = 3 \) apart.

Theorem 25. (i) A fan \(F \) for a Segre variety \(S \) in \(\omega_4 \) can be uniquely expressed as the union \(F = t \cup t' \cup t'' \) of a triplet of troikas.

(ii) The three troikas \(t, t', t'' \) in \(F \) share the same centre, say \(c_F \).

(iii) Moreover a fan \(F \) for \(S \) determines uniquely a triplet \(T = \{F, F', F''\} \) of fans such that \(F \cup F' \cup F'' = S \). Further, \(L(T) := \{c_F, c_{F'}, c_{F''}\} \) is one of the lines of the \(H_7 \)-tetrad \(L_4 \).

Proof. Suppose that \(S = \theta_4(V_3) \) and that \(F \subset S \) is a fan which contains \(u \).

(i) So \(F = \theta_u(V_2) \), \(V_2 \subset V_3 \), where the projective line \(L = \mathbb{P}V_2 \) is of kind \(\Lambda_3 \), with line pattern \((0, 3, 1, 0)\). Consequently \(L \) has a unique point \(\langle \lambda \rangle \) with \(\text{wt}(\lambda) = 3 \). Hence the element \(0000 \in (\mathbb{F}_2)^4 \) has the unique extension \(V_1 := \{0000, \lambda, 2\lambda\} \) to a 3-set of elements of \(V_2 \) which are Hamming distance 3 apart. So the point \(u \) belongs to a unique troika \(t \subset F \), namely \(t := \theta_u(V_1) = \{u, A_\lambda u, A_{2\lambda} u\} \).

If \(V_2 = \langle \lambda, \mu \rangle \), the two translates \(T_\rho(V_1), T_2\rho(V_1) \) of \(V_1 \) in \(V_2 \) yield two other troikas \(t' = A_\rho t, t'' = A_{2\rho} t \), giving rise to the claimed unique decomposition \(F = t \cup t' \cup t'' \).

(ii) Since \(\text{wt}(\lambda) = 3 \), precisely one of the coordinates of \(\lambda \) in the basis \(B_z \) is zero. First suppose \(\lambda \) satisfies \(\xi_4 = 0 \). Then for \(\mathbb{P}V_2 = \mathbb{P}(\langle \lambda, \mu \rangle) \) to be of kind \(\Lambda_3 \) the element \(\mu \) must also satisfy \(\xi_4 = 0 \). So a point \(p \in F \) must be of the form \(U_{i,j,k} \). Hence that troika \(\{p, A_\lambda p, A_{2\lambda} p\} \subset F \) which contains \(p \) has centre

\[
c = (I + A_\lambda + (A_\lambda)^2)U_{i,j,k} = U_{0000}.
\]

So the same point \(c = U_{0000} \), which lies on the line \(L_d \in L_4 \), is the centre of each of the three troikas in \(F \). Of course, if instead \(\lambda \) satisfies \(\xi_i = 0 \) for \(i = 1, 2, 3 \),
then the analogous reasoning shows that the common centre of the three troikas in \(\mathcal{F} \) is \(U_{0000} \in L_a \), \(U_{0000} \in L_b \) or \(U'_{0000} \in L_c \), according as \(i = 1, 2 \) or \(3 \).

(iii) We are dealing with \(S = \theta_u(V_3) \) where \(V_3 \) is of the form \(V_3 = V_2 \oplus \langle \nu \rangle \), \(V_2 = \langle \lambda, \mu \rangle \), and where we may choose \(\nu \) to have wt \(\nu = 4 \). The fan \(\mathcal{F} = \theta_u(V_2) \) determines a triplet \(\mathcal{T} = \{ \mathcal{F}, \mathcal{F}', \mathcal{F}'' \} \) of fans, where \(\mathcal{F}' = A_o(\mathcal{F}) \) and \(\mathcal{F}'' = A_{2o}(\mathcal{F}) \), such that \(\mathcal{F} \cup \mathcal{F}' \cup \mathcal{F}'' = S \). Moreover if \(c_\mathcal{F} = U_{0000} \) as in (35) then \(c_\mathcal{F}' = A_o c_\mathcal{F} \), \(c_\mathcal{F}'' = A_{2o} c_\mathcal{F} \) will be the other two points \(U_{0001}, U_{0002} \) of the line \(L_4 \). Similarly for the other three cases considered in (ii) above, where \(\{ c_\mathcal{F}, c_\mathcal{F}', c_\mathcal{F}'' \} \) is one of the other lines of the tetrad \(\mathcal{L}_4 \).

In the paper [11] the fact that a Segre variety \(S = S_3(2) \) in PG(7, 2) determines a distinguished tetrad \(\mathcal{L}_4 \) of lines which span PG(7, 2) only emerged rather late, see [11, Section 4.1]. One of the motivations for the present paper was to come to a clearer understanding of the relationship between \(S \) and \(\mathcal{L}_4 \). This can now be achieved: see the next theorem, where it is shown how to obtain the same tetrad \(\mathcal{L}_4 \) from any of the 24 copies of a Segre variety \(S_3(2) \) in the 81-set \(\omega_4 \).

Theorem 26. A Segre variety \(S \) in \(\omega_4 \) determines precisely four triplets \(\mathcal{T}_i \), \(i \in \{1, 2, 3, 4\} \) of fans; further the resulting four lines \(L_i := L(\mathcal{T}_i) \) are the four lines of the \(\mathcal{H}_7 \)-tetrad \(\mathcal{L}_4 \).

Proof. A Segre variety in \(\omega_4 \) is of the form \(S = \theta_u(V_3) \) where the projective plane \(P = PV_3 \subset PG(3, 3) \) is of kind \(\mathcal{P}_0 \). Now, see (31), there are precisely 8 elements of \(V_3 \) of weight 3, and these form 4 pairs, say \(\{ \pm \lambda_1 \}, \{ \pm \lambda_2 \}, \{ \pm \lambda_3 \}, \{ \pm \lambda_4 \} \). Consequently the element 0000 \(\in V_3 \) has precisely 4 extensions, namely \(\{0000, \lambda_i, -\lambda_i\}, \quad i = 1, 2, 3, 4 \), to a 3-set of elements of \(V_3 \) which are Hamming distance 3 apart. Hence the point \(u = \theta_u(0000) \) lies in precisely 4 troikas and, by Theorem 25(i), in precisely 4 fans \(\mathcal{F}_i \), \(i = 1, 2, 3, 4 \). By Theorem 25(iii) each of the resulting 4 triplets \(\mathcal{T}_i = \{ \mathcal{F}_i, \mathcal{F}_i', \mathcal{F}_i'' \} \) of fans determines a line \(L(\mathcal{T}_i) \) of the tetrad \(\mathcal{L}_4 \). Further, from the proof of Theorem 25(iii), we see that these lines are distinct.

4.4 Future research

We are of the opinion that some further investigation of the denizens of \(\omega_4 \), and of their interactions, should prove worthwhile. Moreover such an investigation should not be confined to the 27-set denizens arising from Theorem 9, since at least some of the 9-set denizens of \(\omega_4 \) arising from Theorem 10 deserve attention. In particular the 9-sets in \(\omega_4 \) which arise from those lines in the table (23) which have weight pattern \((0, 0, 4, 0) \) are certainly noteworthy. For suppose that \(V(2, 3) \subset V(4, 3) \) is such that \(L = PV(2, 3) \) is of kind \(\Lambda_7 \), and so wt \(\rho \) is 3 for every nonzero element \(\rho \in V(2, 3) \). It follows that any pair of distinct elements \(\rho, \sigma \) of \(V(2, 3) \) are Hamming distance 3 apart, and hence, by Lemma 22, the points \(p_\rho, p_\sigma \) are non-perpendicular: \(p_\rho \cdot p_\sigma = 1 \). In this easy manner we have constructed a 9-cap \(N = \{ p_\rho \}_{\rho \in V(2, 3)} \) on the quadric \(\mathcal{H}_7 \). Moreover under the
action on N of G_{81} we will obtain a partition of the 81-set ω_4 into an ennead of quadric 9-caps.

References

Ron Shaw, Centre for Mathematics, University of Hull, Hull HU6 7RX, UK
r.shaw@hull.ac.uk

Neil Gordon, Department of Computer Science, University of Hull, Hull HU6 7RX, UK
n.a.gordon@hull.ac.uk

Hans Havlicek, Institut für Diskrete Mathematik und Geometrie, Technische Universität, Wiedner Hauptstraße 8–10/104, A-1040 Wien, Austria
havlicek@geometrie.tuwien.ac.at