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We consider the quantum-witness test of macroscopic realism and derive an upper bound for pos-
sible violations of this equality due to quantum mechanics. The bound depends only on the number
of possible outcomes for the blind measurement at the heart of the witness protocol. Mirroring re-
cent results for the related Leggett-Garg inequality, we show that quantum mechanics can saturate
the algebraic bound for large systems. We also establish a connection between the quantum witness
and the trace distance between density matrices, and discuss how the quantum witness can be used
to obtain a bound on the Hilbert-space dimension of the system under study.
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I. INTRODUCTION

Macroscopic realism, as codified by Leggett and
Garg [1], posits that: 1) a system with two or more
macroscopically-distinct states open to it will, at every
time, actually be in one or another of those states; and
2) it is possible to ascertain which of these states the
system is in without disturbing it. Leggett and Garg
derived a class of inequalities to test whether these as-
sumptions hold true for a given system [1]. Needless to
say, neither assumption holds under quantum mechanics,
and violations of these inequalities are taken as evidence
for quantum-coherent behaviour. These inequalities have
been tested for a wide range of quantum-mechanical sys-
tems (see Ref. [2] for a review; more recently [3, 4]), and
violations of the Leggett-Garg inequalities (LGIs) have
been observed in line with quantum-mechanical predic-
tions.
The subject of the current paper is a related test of

macroscopic realism, the quantum witness of Ref. [5] (de-
scribed as no-signalling-in-time in Ref. [6]). Consider two
observables, A and B, measured at times t = 0 and t > 0
respectively. Let {ai} ; i = 1, . . . ,M be the outcomes
of measurement A with probabilities P (ai), and let b be
a particular outcome of measurement B. Based on the
joint measurement of these two observables we can con-
struct the probability of obtaining result b in the later
measurement as

P ′(b) =

M
∑

i=1

P (b |ai)P (ai), (1)

with P (b |ai) the conditional probability of finding out-
come b at time t given result ai at time t = 0. The
notation P ′ here is to remind us that this probability
is determined in a presence of the measurement of A.
Since the results of this measurement are discarded, we
describe this A measurement as a blind measurement.
We can of course determine the probability of outcome b
without this prior measurement and we denote this P (b).
The quantum witness is then defined as the difference

W ≡ |P (b)− P ′(b)| . (2)

Under the tenets of macroscopic realism, the presence
of the blind measurement, if carried out non-invasively,
should not affect the subsequent evolution of the system.
The two probabilities should thus be the same and we
obtain the quantum-witness equality:

W = 0. (3)

This is equivalent to the statement that the Chapman-
Kolmogorov equation [7] applies to the probabilities asso-
ciated with (non-invasive) measurement outcomes under
macroscopic realism.

The quantum witness tests the same underlying as-
sumptions as the LGIs and can similarly be violated by
quantum mechanics. The key advantage of Eq. (3) over
the LGIs is its simplicity. The quantum witness was ex-
perimentally tested, and violated, in Ref. [3]. A test of
macroscopic coherence in molecular interferometry using
the quantum witness has also been proposed [8].

The questions we pose here are: What are the max-
imum violations of Eq. (3) under quantum mechanics,
and how do they depend on the system size and the type
of measurements we make?

The corresponding questions for the LGIs were inves-
tigated in Ref. [9]. The simplest three-term LGIs (see
Ref. [2]) have an upper bound of 1 under macroscopic
realism. From the earliest work [1] it was known that
the maximum value for a two-level quantum system is
3
2
. This result was later extended to hold for systems

of arbitrary system size but with bipartite measurement
projectors [10]. In Ref. [9], however, it was found that
this bound can be exceeded, even up to the algebraic
bound of three, if a more general measurement scheme
is adopted. In an N -level system, it was shown that
intermediate measurements described by 2 < M ≤ N
projectors could produce greater violations of the LGIs
than is the case for M = 2. The greatest violations were
found in the “von Neumann” measurement limit when
M = N .

As far as we are aware, little is known about the max-
imum quantum values of Eq. (2). The central result of
the current work is that, in general, we find the maximum
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violation of the QW equality is given exactly by

Wmax = 1− 1

M
. (4)

This bound depends only on M , the number of possi-
ble outcomes of the blind measurement, and arises from
the maximisation of the entropy of the post-measurement
state. In the limit of large M (which necessitates large
system size sinceM ≤ N), the witness can reach its alge-
braic maximum of 1. Eq. (4) is an exact result for arbi-
trary system sizeN and outcome numberM . This simple
result contrasts strongly with corresponding bounds de-
rived in Ref. [9] for the LGIs. These results were known
only numerically, and then only for small systems, N ≤ 9,
and for a particular model in the N → ∞ limit.
In deriving Eq. (4), we shall show how the quantum

witness is related to the trace distance [11], a measure of
distance between two density matrices, recently studied
itself as a measure of “quantumness” [12, 13]. Equa-
tion (4) also opens up the possibility of using the quan-
tum witness as a dimension witness [14, 15] for quantum-
mechanical systems.
The paper is structured as follows. In Sec. II, we write

down the quantum-mechanical expression for the witness.
We then derive Eq. (4) by considering the unitary evo-
lution of pure states in Sec. III. In Sec. IV, we connect
the quantum witness to the trace distance, and prove that
the pure-state bound from the preceding section is indeed
an upper bound for all states and evolutions. Sec. V dis-
cusses the use of the quantum witness as a dimension wit-
ness. In Sec. VI, we consider some simple examples and
demonstrate how maximum violation may be achieved in
practice. We then finish with some discussions.

II. QUANTUM WITNESS

We begin by writing a quantum-mechanical expression
for the witness W . We consider an N -dimensional quan-
tum system with density matrix ρ at t = 0. The evolution
of this state from time t = 0 to time t = t we describe
with the completely-positive trace-preserving map Φ. Let
Πb be the projector corresponding to the measurement
outcome b, not necessarily one-dimensional. We shall
only consider projective measurements in this work. For
the directly-measured probability, we have then

P (b) = Tr
{

ΠbΦ [ρ]
}

. (5)

The blind measurement we specify in terms of the pro-
jectors {Πa

i } with i = 1, . . . ,M . These projectors form a

complete set,
∑M

i=1 Π
a
i = 1, but are not necessarily one-

dimensional, 2 ≤M ≤ N . After the blind measurement,
the system is left in the state

σ =

M
∑

i=1

Πa
i ρΠ

a
i . (6)

The required blind-measurement probability is then

P ′(b) = Tr
{

ΠbΦ [σ]
}

. (7)

Quantum-mechanically, therefore, the witness reads

W =
∣

∣

∣ Tr
{

Πb (Φ [ρ]− Φ [σ])
}

∣

∣

∣ . (8)

III. PURE-STATE VIOLATIONS

We begin by considering the case of pure states and
unitary evolution. The maximum value of the witness is
simple to find under these conditions and, as we show in
the next section, the maximum value holds also for the
full problem.
Let us assume that ρ is the pure state ρ = |φ〉〈φ| and

that Πb is the one-dimensional projector Πb = |ψb〉〈ψb|.
We assume that Φ describes a unitary evolution that can
be absorbed into the definition of Πb. In this case

W =

∣

∣

∣

∣

∣

∣

∣〈ψb|φ〉
∣

∣

2 −
M
∑

i=1

∣

∣〈ψb|Πa
i |φ〉

∣

∣

2

∣

∣

∣

∣

∣

. (9)

If we choose initial and final measurement states to be
identical, |ψb〉 = |φ〉, we have

W = 1−
M
∑

i=1

[〈φ|Πa
i |φ〉]2 = 1−

M
∑

i=1

[P (ai)]
2. (10)

Under the constraint,
∑M

i=1 P (ai) = 1, this is maximised
when all the probabilities are equal: P (ai) = 1

M . We
thus obtain the bound of Eq. (4).
For a qubit with M = N = 2, we obtain W qubit

max = 1
2
.

This is the value reported in Ref. [6] for a Mach-Zehnder
interferometer. Also consistent with this maximum is
the value of W ≈ 0.45 reported for a two-level system
in Ref. [5]. When the measurement A consists of just
two projectors, M = 2, the quantum bound for the wit-
ness is exactly the same as for the qubit, irrespective of
the system size. This result is consistent with Ref. [8]
in which a maximum value of W ≈ 0.48 was reported
for an extended system with a dichotomic intermediate
measurement [16]. With M = N we obtain

W vN
max = 1− 1

N
, (11)

which is the maximum violation possible for a given sys-
tem size N . In analogy with the corresponding result for
the LGI [9], we shall call this the von Neumann bound.
It results from a complete collapse of the wave function
under measurement A.

A. Entropy

We can gain insight into this result by using the or-
thogonality of the projectors to rewrite Eq. (10) as

W = 1− Tr
{

σ2
}

= SL(σ), (12)



3

which is the linear entropy of the post-measurement state
σ. Under the conditions considered in this section then,
the maximum value of W arises when the entropy of the
post-measurement state is at a maximum. This occurs
when σ is the completely mixed state σ = N−1

1.
As an aside, we note that this form suggests the defi-

nition on an entropic quantum witness, given as the dif-
ference in the entropy between the results of the B mea-
surement with and without the blind measurement:

Went ≡ |H ′(B)−H(B)| . (13)

Here H(B) is the Shannon entropy

H(B) = −
∑

i

P (bi) logP (bi), (14)

with bi the various results of the B-measurement, and
P (bi) their probabilities. H ′(B) is defined in the same
way but with P ′(bi) replacing P (bi). An analogous gen-
eralisation of the Leggett-Garg inequalities in terms of
entropies was discussed in Refs. [17, 18].

IV. CONNEXION TO THE TRACE DISTANCE

The trace distance between two density matrices, ρ and
σ, is defined as [11]

D (ρ, σ) ≡ 1

2
Tr {|ρ− σ|} , (15)

where |A| =
√
A†A is the positive square-root of A†A.

This definition is equivalent to the maximisation

D (ρ, σ) = max
Π

Tr {Π(ρ− σ)} , (16)

with respect to all projectors, Π. Comparing this with
Eq. (8), we find that the maximisation of the quantum
witness over all possible B-measurements gives precisely
the trace distance of the two time-t density matrices:

max
Πb

W
(

Πb,Φ[ρ],Φ[σ]
)

= D (Φ[ρ],Φ[σ]) . (17)

Here we have explicitly written out the relevant argu-
ments of the witness. This immediately implies that the
witness is bounded from above by the trace distance of
the two density matrices at time t:

W ≤ D (Φ[ρ],Φ[σ]) . (18)

The trace distance therefore provides a convenient way
to calculate an upper bound for a specific pair of density
matrices. This we can do by finding the eigenvalues Λi

of the Hermitian matrix Φ[ρ]−Φ[σ] and calculating D =
∑

i |Λi|.
Furthermore, from Eq. (18) follow some interesting

properties. Firstly, since it is contractive, the trace dis-
tance never increases under the evolution described by
Φ. Thus we have

W ≤ D (Φ[ρ],Φ[σ]) ≤ D (ρ, σ) , (19)

and the witness is bounded by the trace distance of the
density matrices at the time of the Ameasurement, t = 0.
We can then use further properties of the trace dis-

tance to show that Wmax of the previous section is the
maximum violation with a fixed M for all initial states
(including mixed states) and all measurement choices.
Let us begin by writing the initial density matrix as a
pure state decomposition: ρ =

∑

n pn|φn〉〈φn|. The mea-
sured density matrix is correspondingly σ =

∑

pnσn with
σn =

∑

iΠ
a
i |φn〉〈φn|Πa

i . We then use the joint convexiv-
ity of the trace distance [11] to write

D

(

∑

n

pn|φn〉〈φn|,
∑

n

pnσn

)

≤
∑

n

pnD (|φn〉, σn) .

In a given decomposition, one particular pure state, |φm〉
say, will give the maximum value of D (|φm〉, σm). Set-
ting pn = δnm therefore maximises the trace distance for
this decomposition. Maximising over all possible decom-
positions, we obtain

W ≤ max
|φ〉

D

(

|φ〉,
∑

i

Πa
i |φ〉〈φ|Πa

i

)

. (20)

An explicit form for the bound results from the double
optimisation

Wmax = max
Πb,|φ〉

Tr

{

Πb

(

|φ〉〈φ| −
M
∑

i=1

Πa
i |φ〉〈φ|Πa

i

)}

,

= max
Πb,|φ〉

M
∑

ii′=1

〈φ|Πa
iΠ

bΠa
i′ |φ〉 (1− δii′) . (21)

The state |φ〉 can be found by maximising this with re-
spect to the coefficients 〈φ|Πa

iΠ
bΠa

i |φ〉, subject to the
constraint

∑

ii′ 〈φ|Πa
iΠ

bΠa
i′ |φ〉 = 〈φ|Πb|φ〉. At maximum,

this gives all contributions to the sum equal, and we ob-
tain

Wmax = max
Πb

〈φ|Πb|φ〉
(

1− 1

M

)

. (22)

Finally, this is optimised by choosing Πb to include the
state |φ〉. The simplest projector that achieves this is, of
course, the one-dimensional projector Πb = |φ〉〈φ|. We
then recover Eq. (4). This shows that the conditions
studied in Sec. III are indeed those leading to the most
general maximisation of W .

V. DIMENSION WITNESS

Since the number of projectors must always be less
then or equal to the dimension of the Hilbert space,
M ≤ N , we have W ≤ 1 − 1

M ≤ 1 − 1
N . Therefore,

a measurement of the quantum witness allows us to con-
clude that the dimension of the underlying Hilbert space
satisifies

N ≥ 1

1−W
, (23)
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and the quantum witness discussed here functions as a
dimension witness [14] for quantum-mechanical systems
(for classical systems, Eq. (23) gives N ≥ 1, which is
trivial).
In Ref. [15], Brunner et al. defined a dimension wit-

ness that compares measurements on a number of dif-
ferent preparations of the quantum system under inves-
tigation. Formally, this quantity shares some degree of
similarity with the quantum witness studied here, and
the upper bound for it was found, as here, by using a
connexion with the trace distance. For Brunner’s wit-
ness to give useful information about the dimension of
the system’s Hilbert space, the number of preparations
considered must exceed the Hilbert-space dimension. In
comparison, the quantum witness compares just two den-
sity matrices which, in Brunner’s construction, would
yield no information about the dimension. The reason
that the QW is capable of acting as a dimension witness
is that the two density matrices in question are not arbi-
trary, but rather precisely related to one another through
the act of the witness’ blind measurement. Thus, in only
comparing two, albeit related, density matrices the QW
appears as a rather simple and efficient dimension wit-
ness.

VI. EXAMPLE SYSTEMS

In this section we consider some simple examples of
how this upper bound may (and may not) be achieved
in practice. As we are interested in maximum violations,
we consider pure-state evolution and the von Neumann
limit M = N .

A. Precessing spin

Consider a spin of length j = N/2 in a static magnetic
field with Hamiltonian

H = Ω(Jx cos θ + Jz sin θ) . (24)

Here, Ω sets the energy scale (~ = 1) and θ is an an-
gle that describes the orientation of the field. The cor-
responding unitary time-evolution operator is U(t) =
e−iHt. We assume that measurements are restricted to
the Jz basis with projectors Πm = |m〉〈m|, where |m〉
is shorthand for the state |j;m〉; m = −j, . . . ,+j. We
assume that the final measurement projector is Πb =
| − j〉〈−j|. The system is prepared in state | − j〉 at a
time t = −τ , such that the state just prior to the blind
measurement is ρ = U(τ)| − j〉〈−j|U †(τ). The witness
for von Neumann measurement then reads

W =

∣

∣

∣

∣

∣

|〈−j|U(2τ)| − j〉|2

−
+j
∑

m=−j

|〈−j|U(τ)ΠmU(τ)| − j〉|2
∣

∣

∣

∣

∣

. (25)

FIG. 1. The value of quantum witness W for a precessing
spin of length j = 1 as a function of time τ . Results for several
values of the angle θ are shown. The overall maximum value
is obtained by setting θ = π/4 and Ωτ = π. This gives
W = 5/8, which is greater than the qubit value of one-half,
but less than the maximum value Wmax = 2/3 predicted by
Eq. (11) for N = M = 3 (indicated by the horizontal line).

The j = 1
2
case (qubit) is straightforward. We set

θ = 0 in the Hamiltonian to obtain

W qubit = 1
2
sin2(Ωt). (26)

This has a maximum value of 1
2
, as given by Eq. (11),

when 2Ωt is an integer multiple of π. In obtaining this
maximum, it is the first term in the witness that is ex-
actly zero. This illustrates that the maximum can also
be found with orthogonal |ψ〉 and |φ〉.
The results for j = 1 are a bit more involved and these

are shown in Fig. 1. The value of the witness depends
on the direction of the magnetic field. The maximum
violation occurs for θ = π/4 and at a time Ωt = π, where
it takes a value of W = 5/8. This is, however, less than
the value of W = 2/3 predicted by Eq. (11). Neither
adding a Jy component to the Hamiltonian, nor changing
the relative duration of the two time evolutions serves to
increase this value. Thus, subject these dynamics and
measurements, the value W = 5/8 is the best that can
be achieved for the precessing spin.

B. Controlled evolution

The above failure to saturate the bound can be seen
as a result of the restriction of the time-evolution oper-
ator U to SU(2) rotations. Let us therefore consider a
second scenario in which the quantum dynamics can be
chosen freely. We consider two different evolutions: one
from t = −τ to t = 0, and then one from t = 0 to t = τ ,
and design the second to be the inverse of the first. This
is reminiscent of a Ramsey experiment (see Refs. [3, 19]
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FIG. 2. Value of the quantum witness for a j = 1 system
with controlled evolution described by the two angles θ and φ.
The maximum value found here is W = 2/3, which saturates
the upper bound of Eq. (11).

for connections with tests of macrorealism) with two π/2
pulses returning the system to the initial state. The vari-
able time delay of the Ramsey experiment, however, is
replaced here by either the presence or absence of the
A measurement. With this choice the first term in the
witness is equal to unity, and we have

W =

∣

∣

∣

∣

∣

∣

1−
+j
∑

m=−j

|〈−j|U †ΠmU | − j〉|2
∣

∣

∣

∣

∣

∣

. (27)

Considering the j = 1 spin again, let us choose the uni-
tary evolution operator to be

U =





cos θ 0 sin θ
sin θ sinφ cosφ − cos θ sinφ

− sin θ cosφ sinφ cos θ cosφ



 . (28)

This gives the witness as

W = |1− 1
4
(3 + cos 4φ) cos4 θ − sin4 θ|, (29)

a result plotted in Fig. 2. The maximum value of this
expression occurs at e.g. θ = arccos

√

2/3 and φ = 3π/4,
where is takes the value of W = 2/3. This saturates the
bound of Eq. (11) for N =M = 3.

C. Algebraic limit

Eq. (11) makes it clear that in the (N,M) → ∞ limit,
we should be able to achieve the algebraic bound for the
quantum witness. We now give a concrete example of
how this might be achieved.
Consider a single bosonic mode with Fock states |n〉

and let the evolution operator from time t = −τ to t =
0 be the displacement operator D(α) with displacement

parameter α, and that from t = 0 to t = t be its inverse
D(−α). With initial state and final projector equal to
the vacuum state |0〉〈0|, the important matrix elements
of the displacement operator are [20]

〈n|D(α)|0〉 = 1√
n!
αne−|α|2/2. (30)

From an expression analogous to Eq. (27), we obtain a
value for the witness

W = 1− e−2|α|2I0(2|α|2), (31)

with I0(z) a modified Bessel function of the first kind.
For large z, this has the asymptotic form I0(z) ∼
ez/

√
2πz, such that, for large displacements we obtain

W ∼ 1− 1

2
√
π|α| . (32)

Clearly this gives the algebraic bound W = 1 in the
limit |α| → ∞. This may at first seem surprising as
|α| → ∞ is usually thought of as the classical limit for
coherent states, and yet the witness reaches in “most
quantum” value in this limit. This is resolved by noting
that the measurement here is of an extreme quantum
nature, and resolves the coherent states down to the level
of the individual Fock states.
As discussed in Ref. [9], the evolution of a bosonic

mode under displacements can be used to approximate
to the dynamics of the spin model of section Sec. VIA in
the large-spin limit and with θ = 0. This approximation
identifies α =

√

j/2Ωt. The algebraic bound is therefore
attainable in the large-spin limit of the precessing spin.
The difference between the witness and its algebraic limit
is seen to scale as j−1/2. This is the same behaviour as
was observed for the LGI applied to this model.

VII. DISCUSSION

Our main result is the explicit bound for the quantum
witness, Eq. (4), which depends only on the number of
different outcomes for the blind measurement. Since this
number is naturally limited by the number of quantum-
mechanical levels possessed by the system, our result
shows that, the larger the system, the greater the possible
violation of the witness. Fundamentally it is the greater
information gained about the system by the measurement
at t = 0, and the corresponding greater “collapse” of the
wave function, that is responsible for these increased vi-
olations. This is reflected in Eq. (12), which equates the
value of the witness under ideal conditions to the linear
entropy of the system after the blind measurement.
Qualitatively these results mirror those known for the

LGI. The advance of the current study is that, since the
quantum witness is a significantly simpler object than
the Leggett-Garg correlators, the bounds here have been
derived analytically for arbitrary N and M .
We have also determined the relationship between the

quantum witness and the trace distance. This we used
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here in establishing the upper bound for W . This con-
nection should also be useful in calculating the maximum
violation possible for a given quantum evolution, as well
as determining the measurements required to obtain this
value. This result also ties the experimentally-testable
quantum witness to more formally-defined measures of
“quantumness” [13, 21]. Indeed, the trace norm itself
has recently been considered as a measure of quantum-
ness [12, 13], were the density matrix under scrutiny is
compared with a particular set of classical states. The
quantum witness studied here can thus be seen as an in-
dicator of this class in which the comparator state is the

very specific state that results from the witness’ blind
measurement. Finally, we note that this comparison of a
state and its measured counterpart enables the quantum
witness to act as a particularly-simple dimension witness.
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