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Abstract 

Purpose: This work aims to see whether Minkowski Functionals can be used to distinguish 

between cancer types before chemotherapy treatment has begun, and whether a response to 

treatment can be predicted by an initial scan alone.  

Methods: Fat-nulled T1w 3T DCE-MRI scans were taken of 100 cases of biopsy confirmed 

breast cancer and a series of binary images created on lesion containing slices. Minkowski 

Functionals were calculated for each binary image and the change in these values as the 

binary threshold was raised was described using 6th order polynomials. These polynomials 

were used to compare between patient sub-groups, for triple negative breast cancer (TNBC) 

status, chemotherapy response, biopsy grade, nodal status, and lymphovascular invasion 

status. 

Results: When using Minkowski Functionals statistically significant (p<0.05) differences 

were found between TNBC status, biopsy grade, and lymphovascular invasion status sub-

groups for all methodologies. The analysis performance did not appear to be affected by the 

number of threshold steps used. Most notably, very strong differences (p≤0.01) were found 

between TNBC and other intrinsic subtype patients. When analysed with a binary logistic 

regression model, an AUC value of 0.917 (0.846 – 0.987, 95% CI) for TNBC classification 

was found. 

Conclusion: The method of texture analysis presented here provides a novel way to 

characterise tumours, and demonstrates clear differences between cancer groups which are 

detectable before treatment begins, and can help with treatment planning as a valuable 

prognosis tool. 
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Introduction 

In the UK, breast cancer is the most common form of cancer in women with 49,936 new 

diagnoses in 2011 alone, making up 15% of all cancer cases (1). Due to increased public 

awareness of symptoms, improvements in detection methods, and more specialized and 

targeted treatment courses 5-year survival rates for breast cancer today are over 85%, a major 

improvement from the high mortality rates seen at the end of the 1980s (2). Unfortunately 

breast cancer is a heterogeneous disease presenting with varied pathological makeup and, 

currently, imprecise prediction of treatment response (3-6). For these reasons new detection, 

monitoring, and treatment methodologies are constantly being investigated to better understand 

and manage the disease.  

Triple negative breast cancer (TNBC) is a specific sub-group of disease and carries with it 

known complications. The status of three receptors within a patient’s tumour are tested – 

Estrogen (ER), Progesterone (PR), and Human epidermal growth factor (HER2) – and the 

combination of these statuses will determine a patient’s treatment regime (7, 8). Counter-

intuitively, despite the lack of targeted therapy triple negative tumours will tend to respond 

more readily to chemotherapy treatment due to their increased surrounding vasculature (9). 

Unfortunately even with the trend of a better response to chemotherapy patients with TNBC 

also experience higher rates of local recurrence, and ultimately a poorer prognosis (9, 10). 

Being able to identify patients who are triple negative early, and with higher confidence, is 

important to ensure they are placed on a suitable monitoring and treatment regime as early as 

possible. 

MRI is used to detect disease, and monitor treatment response in breast cancer patients and is 

an invaluable tool due to its exceedingly high sensitivity – close to 100% (11, 12) – and 

comparable specificity rates – 70-100% (13). Image texture is commonly used to examine MR 
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qualitatively by eye when looking for abnormalities in morphology like level of spiculation; 

functionality is examined in a similar fashion by searching for higher contrast uptake areas in 

Dynamic Contrast Enhanced (DCE-MRI) images (14). Both of these methods are first order 

analysis techniques, looking simply at relative pixel intensities. Texture analysis is a 

quantitative method of image analysis using higher order statistics to measure the morphology 

of a scan by examining the distribution and/or connectivity of pixel intensities. The most 

common form of texture analysis utilises grey-level co-occurrence matrices (GLCM) where a 

scan is described using a number of parameters calculated from a matrix of counting statistics 

(15). Minkowski Functionals (MFs) are a novel way of describing image texture which have 

previously been used in computed tomography (CT) and mammography (16-18) , and have 

recently been used to analyse MRI images to determine malignancy (19) in the breast, and 

measure response to chemotherapy (20, 21).  

Minkowski Functionals differ from other texture analysis techniques, as instead of examining 

MR scans directly they use a series of binary images created from scans using a rising threshold 

to remove pixels, offering an alternative method of interrogating MR images. Previous work 

on breast cancer using Minkowski Functionals has shown that it is possible to use them to 

distinguish between benign and malignant cases when used as a diagnostic tool (19), and they 

can also be used as a monitoring tool for chemotherapy response (20). The work presented here 

aims to see whether Minkowski Functionals can be used to predict response to chemotherapy 

treatment, and differentiate between cancer types, before the start of treatment. 

Materials and Methods 

Patient Cohort:  

This retrospective study was cleared for ethics approval. The data was taken from 100 cases of 

biopsy confirmed breast cancer (98 patients, with two presenting bilaterally) before the start of 
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neo-adjuvant chemotherapy (NAC), between April 2006 and September 2008. The median age 

of the cohort was 48 (range: 31-77 years). Details of cohort statistics are presented in Table 1. 

Median time between pre-treatment MR scan and commencement of chemotherapy was 11.5 

days (1-45 days), with the majority (59%) of patients receiving a combination of Epirubicin 

and Cyclophosphamide, followed by Taxotere (ECT), or a modified course of this treatment 

(73% including modifications). 

Patients were split into sub-groups following chemotherapy to look for correlations based on 

five criteria. Chemotherapy response: partial responders [40] were patients with a reduction of 

tumour longest diameter of 50% or more, and non-responders [49] with a reduction of tumour 

longest diameter of less than 50% (22). Biopsy grade (23, 24): grade 1/2 [38] or grade 3 [55]. 

Intrinsic Subtype status (25): TNBC [22] or all other statuses [49]. Nodal status (23, 24): 

positive lymph node involvement [46] or negative lymph node involvement [45]. 

Lymphovascular invasion status (26): positive lymphovascular involvement [32], or negative 

lymphovascular involvement [47]. 

MRI Protocol: 

All data was acquired using a dedicated 8-channel breast coil on a 3.0 T HDx (GE Healthcare, 

Milwaukee, WI) scanner. The images used for this study were obtained using a 3D dynamic 

contrast-enhanced (DCE) sagittal T1W fat nulled Volume Imaging for Breast Assessment 

(VIBRANT) sequence (10˚ flip angle, TR 4.1 ms, TE 1.6 ms, FOV 20x20 cm, 220x160 matrix, 

4/-2 mm slice/gap). The dynamic sequence included 12 phases; 2 pre-contrast phases followed 

by 10 post-contrast phases with a bolus injection of gadolinium (Magnevist at 0.05 mmol/kg; 

Schering, Kenilworth, NJ) being added prior to the third phase, followed by a 20mL saline 

flush. Median temporal resolution was 33.6 s (23.5-44.6 s). Images taken from the 2nd or 3rd 
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post-contrast phase (whichever phase correlates to one minute post-contrast) were used for 

analysis to provide the greatest tumour enhancement. 

Image Processing: 

Software was developed in house using MatLab 2013b (Mathworks, Natick, MA) to process 

the images taken from the scanner and perform texture analysis. Regions of Interest (ROI) were 

created semi-automatically on each slice by a trained researcher using a seed point method, 

expanding outward to enclose the entire lesion. Images were cropped around the ROI to leave 

only the pixel intensities within the ROI, and a single pixel border of 0s. The median of the top 

and bottom 1% of pixel intensities within the ROI were then calculated and pixels with values 

above or below their respective median were altered to the median value. This accounted for 

the inclusion of any erroneous pixels which may alter counting stats in this and other forms of 

texture analysis. The pixels were then scaled from 0-1. 

The cropped images were then converted into binary images, based on only including pixels 

with an intensity greater than a threshold which ranged from 0-1. By this method the first image 

is always set as the entire ROI as it includes all pixels above 0.0, and the final image is set as 

empty – as demonstrated in fig 1. For each binary image, three Minkowski Functional values 

are calculated to represent area (A), perimeter (U), and Euler value (χ). The three values are 

calculated using the equations: 

 𝐴𝐴 = 𝑛𝑛𝑠𝑠 [1] 

 𝑈𝑈 = −4𝑛𝑛𝑠𝑠 + 2𝑛𝑛𝑒𝑒 [2] 

 𝜒𝜒 = 𝑛𝑛𝑠𝑠 − 𝑛𝑛𝑒𝑒 + 𝑛𝑛𝑣𝑣 [3] 
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Where ns is given as the number of white pixels in an image, ne the number of edges of white 

pixels, and nv the number of vertices of white pixels. Examples of the counting statistics used, 

and corresponding MF values, are shown in fig. 2.   

Three sets of threshold values were used when generating the binary images corresponding to 

11, 51, and 101 processed images. These three sets were chosen to demonstrate the effect of 

threshold selection on analysis performance, as previous work has suggested that performance 

is not impeded by the number of images used (19). Before analysis, the MF values for Area 

and Perimeter for each binary image were scaled from 0-1 for each patient individually so as 

to be standardised and to represent the change in MF value as the threshold is changed. Euler 

values were left unaltered as they are already invariant with size. The mean MF values for each 

threshold level were calculated to aggregate a whole lesion across as many slices that it appears 

on. 

Statistical Analysis: 

Due to the low number of cases being used, non-parametric tests were used exclusively in the 

form of Mann-Whitney U-Tests to look for statistical differences between patient groups. SPSS 

v.20 (Chicago, IL) was used for analysis, and a p-value of 0.05 was decided as indicating a 

statistically significant difference.  

Preliminary testing:  

Mann-Whitney U-tests were used to compare between mean Minkowski Functionals for each 

threshold level, resulting in a total of 29 tests for each patient sub-group. Due to the large 

number of tests being performed on a relatively small data set, a new method of analysis was 

deemed necessary to reduce the possibility of type I errors. 

Secondary tests: 
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The change in means across threshold level was then described using a polynomial fit to 

characterise the data; 3rd, 4th, 5th, 6th, and 7th order polynomials were tested to determine how 

many coefficients were necessary to accurately describe, but not over fit, the change in MF 

values. U-tests were then conducted comparing the values of each term of the polynomial to 

find differences in the shape of the change of means as the threshold was changed. This is then 

repeated for all three Minkowski Functional parameters. A binary logistic regression (BLR) 

was used to determine classification performance for each cohort split where only statistically 

significant parameters were entered into the regression – or all parameters if none returned as 

significant. A stepwise backwards Wald method was used, with a cut value of 0.5, and the final 

model was decided as the one with least number of parameters included. 

Results 

Results from the preliminary tests showed that statistically significant differences can be seen 

between all patient sub-groups except chemotherapy response. A summary of these results is 

presented in Table 2.  

When determining how many orders were needed for polynomial analysis two measures of fit 

were examined, the adjusted r2 and normalised-RMS values – which can be seen in Figs. 3 and 

4. Both measures of performance improved as the number of terms is increased – with reduced 

change – and begin to plateau between 6th and 7th orders. These two results combined provide 

evidence for the use of 6th order polynomials to most accurately describe the data set and so 

this is what was chosen. Examples of the difference in rate of change of MF-values is illustrated 

in Fig. 5, where different curve shapes can clearly be seen for different patient groups. 

Table 3 shows the results obtained from using 6th order polynomials to describe the changes in 

MF values as the threshold is raised. Statistically significant differences were found between 

TNBC status, biopsy grade, and lymphovascular invasion status sub-groups for all threshold 
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step values. No statistically significant results were found for chemotherapy response or nodal 

status for any modality. The number of significant findings changed as the number of threshold 

steps increased, however the variation in number of significant parameters is small and 

remained comparable across all methods. TNBC status returned the highest number of 

significant differences, with highly significant differences found for all numbers of thresholds 

used, an example of these results is given in Table 4. 

Classification performance of 90.1% was found for TNBC status with sensitivity and 

specificity of 90.4% and 89.5% respectively. An ROC curve was plotted from the output of a 

binary logistic regression, seen in Fig. 6, returning an AUC of 0.935 (0.869 – 1.000 95% CI). 

Initial input parameters were chosen based on their significance during univariate analysis and 

a final model of 10 parameters (Perimeter 4-7, and Euler 1-6) was found to use the smallest 

amount of input parameters but remain significant. Classification performance of other groups 

are summarised as follows. Biopsy grade: 66.7%, (58.1% sensitivity and 74.0% specificity), 

AUC = 0.733 (0.633 – 0.833 95% CI) using a BLR with 4 parameters (Perimeter 3 and 5-7). 

Lymphovascular invasion: 68.4% (68.3% and 68.4%), AUC = 0.756 (0.648 – 0.864 95% CI) 

using a BLR with 5 parameters (Euler 1-5). Nodal status: 73.6% (73.3% and 73.9%), AUC = 

0.782 (0.687 – 0.876 95% CI) using a BLR with 11 parameters (Area 4 and 5, Perimeter 1-7, 

and Euler 6 and 7). Chemotherapy response resulted in no significant results or regression 

model. 

Discussion 

It should be noted that two options exist for determining threshold levels; as although the same 

values ranging between 0 and 1 are chosen for each case, due to the non-uniform nature of 

pixel-intensities in MR scans the values of threshold levels do not relate to the same absolute 

pixel intensity of each image. “Local” thresholds allow for a greater range of binary images to 
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be created from full-ROI to blank images for all slices for all patients. “Global” thresholds 

allow for a more direct comparison between cases as each image is thresholded at a set pixel 

intensity as opposed to a relative one, however, this would result in a higher number of 

duplicate full-ROI or blank images as some scans fall well above/below certain pixel 

intensities. For this reason local thresholds were chosen in this study. 

Nagarajan et. al (19) have concluded that there are diminishing returns when using higher 

numbers of binary images to perform texture analysis, and in other work it is common to use 

20 or fewer thresholds (20, 21). Similar numbers of statistical difference were found when 

using 11, 51 and 101 threshold levels agreeing with previous work (19-21) that an increased 

number of threshold levels does not inherently result in greater differential power.  

Second order polynomials were not included in this investigation as even the simplest curves 

(the area curves) would require a 3rd order polynomial to describe them based on visual 

inspection of their shape. The adjusted r2 term was used as opposed to r2 as it takes into account 

the addition of extra terms to create a closer fit.  

Work by Larkin et al. demonstrated the ability of Minkowski Functionals to predict response 

to chemotherapy before visual effects are seen (20). This was done by comparing the change 

in MF values (ΔA, ΔU, and Δχ) for scans taken before and after administration of 

chemotherapy drugs; in other words when chemotherapy treatment has already been decided 

upon and begun. This translates to a real world application of treatment 

monitoring/modification as opposed to true treatment prediction which would determine 

whether treatment should begin at all. The work conducted here used only pre-NAC scans and 

so is assessing if there is a detectable physiological difference between responsive and non-

responsive tumours. No significant differences were found between responders and non-

responders for any methodology used. 
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This new method of texture analysis has shown the ability to find a higher percentage of 

statistically significant indicators when differentiating between tumour statuses– particularly 

for TNBC status – than previous work by Ahmed et al. (4). Further, MFs have shown the ability 

to distinguish between lymphovascular invasion status, a task which is frequently unreported 

on but which holds important prognosis information (26). 

When focusing on the results for TNBC status, Minkowski Functionals have demonstrated that 

there is a morphological difference between triple negative tumours and other tumour types. 

The number of significant findings – in Euler value especially – suggests a greater variance 

and heterogeneous appearance in TNBC cases. The heterogeneous appearance in images would 

explain the dip in Euler value (more holes) followed by a higher peak (more islands) than in 

other intrinsic subtype cases, creating a possibility of detecting triple negative tumours from 

an MRI scan when taken before commencement of NAC. This extra form of analysis would be 

non-intrusive as scans are already taken, and would provide more information for prognosis, 

affecting treatment planning, and overall patient care.  

This study has a number of limitations. Firstly, as this was a single centre study a cohort of 100 

patients was available; which although large when compared to similar studies (5,9,18,19), is 

a low population size when considering statistical power. This may have biased the results and 

also may have led to over fitted results. When using the binary logistic regression, the number 

of retained input parameters is very high for some models when compared to their respective 

group sizes (10 parameters for group sizes of 22 and 49 when looking at TNBC vs. Other 

intrinsic subtypes) which reduces the statistical power of the analysis to only looking at large 

effects (27). It should also be noted that this work constitutes a training set and as such the 

findings presented here require testing/validation on a new cohort of patients. Further, given 

the nature of the study the number of statistical tests performed for inclusion in regression 
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models is large; however, no correction for the number of tests performed was undertaken in 

this work.  

Future work will hope to correct issues caused by small population sizes with the addition of 

new patients and possible inclusion of over sampling of existing data (28).  

In Conclusion, Minkowski Functionals have already proved themselves to be able to 

distinguish between image homogeneity and heterogeneity (an established marker of 

malignancy), and the work presented in this paper demonstrates their ability to distinguish 

between patients in different cancer sub-groups. The performance of Minkowski Functionals 

remained comparable as the number of threshold steps was increased and so it can be 

considered that only a small number of thresholds are required for accurate analysis.  Triple 

negative breast cancers were distinguishable when using Minkowski Functionals with a very 

high accuracy suggesting that there is an imaging abnormality about them when compared to 

other cancer types.  
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Table 1 

Breakdown of patient cohort 

 

 Number of Cases % (of known) Data 
Missing 

Age   - 
<45 30 30  
>=45 70 70  

Tumour Type   6 
NST 37 39  
Ductal 47 50  
Lobular 9 10  
Unknown 1 1  

NAC Treatment   6 
ECT 59 (73*) 63 (78*)  
NTT1 7 (8*) 7 (9*)  
NTT2 8 9  
FEC 1 1  
EC 3 3  
C 1 1  

Biopsy Grade   7 
Grade 1/2 38 41  
Grade 3 55 59  

Intrinsic Subtype Status   29 
Triple Negative 22 31  
All Other 49 69  

Nodal Status   9 
+ve 46 51  
-ve 45 49  

Chemotherapy Response   11 
Partial Responder 40 45  
Non Responder 49 55  

Lymphovascular Invasion Status   21 
+ve 32 41  
-ve 47 59  

    
* Indicates a modified treatment course. NST: No Specific Type. NAC Treatment codes, E: 
Epirubicin, C: Cyclophosphamide, T: Taxotere, F: Fluorouracil, NTT1: EC and Paxlitaxel, 
NTT2: EC, Paxlitaxel and Gemcitabine. 
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Table 2 

Summary of statistically significant differences (p<0.05) found between of patient 

sub-groups. 

 

 

 

TNBC 

Status 

Biopsy 

Grade 

Nodal 

Status 

Lymphovascular 

Invasion Status 

Chemotherapy 

Response 

Area 7 7 0 2 0 

Perimeter 7 5 4 3 0 

Euler 1 3 5 9 0 

Total 15 15 9 14 0 
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Table 3 

Comparison of the total number significant differences (p<0.05) for different image 

processing methodologies, using 6th order polynomials, on 1 minute post-contrast images, 

with 3 texture parameters. P-values were calculated using Mann-Whitney U-tests. 

 

 11 thresholds 51 thresholds 101 thresholds 

TNBC Status 11 12 11 

Biopsy Grade 1 1 1 

Nodal Status 0 0 0 

Lymphovascular Invasion 7 8 9 

Chemotherapy Response 0 0 0 
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Table 4 

Comparison of 6th order polynomials terms between triple negative breast cancer and other 

intrinsic subtype patients; calculated from MF values taken from 1 minute post-contrast 

images.   

 Mean ± Standard Deviation  

Texture Parameter TNBC All Others p-value 

Area 1 (x10-5) -1.80 ± 2.64 -0.02 ± 3.43 0.039 

Area 2 (x10-4) 6.53 ± 9.27 1.12 ± 11.57 0.071 

Area 3 (x10-3) -8.54 ± 12.59 -2.56 ± 14.81 0.126 

Area 4 (x10-2) 4.94 ± 8.26 1.92 ± 9.09 0.248 

Area 5 (x10-1) -1.41 ± 2.66 0.64 ± 2.79 0.291 

Area 6 (x10-1) 1.87 ± 3.87 0.96 ± 0.18 0.326 

Area 7 (x10-1) 0.91 ± 0.19 0.95 ± 0.20 0.364 

Perimeter 1 (x10-5) 1.38 ± 6.91 3.54 ± 5.96 0.238 

Perimeter 2 (x10-3) -0.29 ± 2.40 -1.20 ± 2.07 0.149 

Perimeter 3 (x10-2) 0.14 ± 3.15 1.53 ± 2.76 0.098 

Perimeter 4 (x10-1) 0.04 ± 1.97 -0.94 ± 1.76 0.045 

Perimeter 5 (x10-1) 0.34 ± 6.07 2.90 ± 5.55 0.030 

Perimeter 6 (x10-1) 0.60 ± 8.58 -4.14 ± 8.06 0.026 

Perimeter 7 0.73 ± 0.47 1.09 ± 0.36 0.001 

Euler 1 (x10-4) 6.47 ± 18.18 -3.50 ± 10.17 0.007 

Euler 2 (x10-2) -2.34 ± 6.43 1.00 ± 3.48 0.008 

Euler 3 (x10-1) 3.08 ± 8.83 -1.12 ± 4.56 0.012 

Euler 4 -1.81 ± 5.93 0.64 ± 2.90 0.014 

Euler 5 4.91 ± 20.02 -1.30 ± 9.20 0.019 

Euler 6 -6.10 ± 30.72 2.67 ± 13.43 0.033 

Euler 7 4.60 ± 15.98 0.63 ± 7.21 0.060 
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Figure 1: Demonstration of lesion segmentation, and binary image creation. The original T1w 

image (a) is segmented and then turned into binary images (b-l). Image (b) represent a threshold 

of 0.0 and so is the entire ROI, while image (l) represents a threshold of 1.0, and is thus blank. 
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Figure 2: A comparison of MF values for examples of a (a) ‘ring’ and a (b) ‘block’ image, both 

made up of 8 white pixels. Image (a) has counting stats of ns = 8, ne = 24, and nv = 16 giving 

MF values of A = 8, U = 16, and χ = 0; and image (b) ns = 8, ne = 22, and nv = 15, resulting in 

A = 8, U = 12, and χ = 1. 
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Figure 3: Visualisation of adjusted R2 values for the three Minkowski Functionals comparing 

between 3rd, 4th, 5th, 6th and 7th order polynomials. The analysis performance increases as order 

of polynomials increases, beginning to plateau between 6th and 7th orders. 
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Figure 4: Visualisation of the route-mean-square error (RMSE) for the three Minkowski 

Functionals comparing between 3rd, 4th, 5th, 6th and 7th order polynomials. Only Euler value 

experiences significant change, decreasing as order is increased and plateauing between 6th and 

7th order polynomials. 
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Figure 5: A comparison between the rate of change of MF values for (a) Area, (b) Perimeter, 

and (c) Euler value, for all Triple Negative (TNBC) and “Other” intrinsic subtype patients. The 

different parameter variations over threshold level are clear for each parameter. 
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Figure 6: ROC analysis curve for binary logistic regression predictive factors for TNBC vs all 

others. AUC = 0.935 (0.869 – 1.000 95% C.I.) with p-value < 0.0001.  
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Figure 7: A comparison between Triple Negative (TNBC) and “Other” intrinsic subtype 

status breast cancer tumours as analysed using Minkowski Functionals. Both tumours are 

grade III and of No Specific Type (NST), and images are grouped into columns of identical 

threshold levels. 

 


