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Abstract: A novel method of quantifying the effectiveness of the suppression of ventricular 

activity from electrocardiograms (ECGs) in atrial fibrillation is proposed. The temporal 

distribution of the energy of wavelet coefficients is quantified by wavelet entropy at each 

ventricular beat. More effective ventricular activity suppression yields increased entropies 

at scales dominated by the ventricular and atrial components of the ECG. Two studies are 

undertaken to demonstrate the efficacy of the method: first, using synthesised ECGs with 

controlled levels of residual ventricular activity, and second, using patient recordings with 

ventricular activity suppressed by an average beat template subtraction algorithm. In both 

cases wavelet entropy is shown to be a good measure of the effectiveness of ventricular 

beat suppression. 
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1. Introduction 

Atrial fibrillation is a cardiac arrhythmia in which the small upper chambers of the heart beat rapidly 

and not coordinated with the large ventricular chambers. It is the most prevalent abnormal heart rhythm 

in the elderly and a major health concern and drain on health service resources due to an aging  

population [1,2]. Atrial fibrillation is a significant risk factor for stroke, accounting for a third of all 

strokes and is a contributing factor for heart failure [1].  

There is a range of therapeutic options for atrial fibrillation which attempt to restore the normal heart 

rhythm or reduce symptoms and stroke risk [1]. However, success rates of restoring sinus rhythm are 

relatively poor, particularly in patients with the persistent classification of the arrhythmia which is more 
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resilient to termination [1]. Hence the optimum treatment for a specific patient is unknown and is the 

focus of much clinical research. 

The electrocardiogram (ECG) is one of the main diagnostic tools for cardiac disease and arrhythmias. 

It records the electrical potentials generated by the cardiac muscles and cells that cause the heart to 

contract and relax. The ECG is completely non-invasive using electrodes placed on the skin at 

appropriate anatomical locations. The atrial and ventricular activations on the ECG are distinct but 

because the atrial muscle mass is much smaller than that of the ventricles the electrical signal associated 

with atrial activation is proportionally smaller. In the case of normal sinus rhythm, the atrial activation 

is seen as a distinct feature on the ECG called the P wave which, although small in amplitude, can be 

readily observed because it occurs when the ventricles are electrically quiescent. However, in the case 

of atrial fibrillation where the atria beat continuously and rapidly, there is no discrete P wave and atrial 

activations manifest as a low amplitude and rapidly fluctuating signal called the fibrillatory wave or f-wave. 

Much of the f-wave is obscured by the large QRST complex which is the manifestation of the electrical 

activation and recovery phases of each ventricular beat. The f-wave yields useful information about the 

underlying arrhythmia. For example, the atrial activation rate can be determined non-invasively rather 

than by invasive electrophysiological study [3,4], it contains information about the complexity of the 

underlying atrial propagation [5,6] and the effects of treatment can be quantified and predicted [7–11]. 

Analysis of the continuous f-wave requires suppression of the large ventricular activity from the  

ECG [8]. Many algorithms have been proposed to achieve this objective [12–19]. These algorithms take 

advantage of the disassociation of the atrial and ventricular activities to estimate the underlying atrial 

component during ventricular beats. One such algorithm is average beat subtraction (ABS) [20]. ABS 

subtracts a template QRST complex at each ventricular beat to provide an estimate of the underlying 

atrial signal. This template is derived from the average QRST complex from a collection of many beats 

from the same ECG lead. The disassociation between atrial and ventricular activities ensures there is 

little atrial activity in the average QRST complex. The effectiveness of the algorithm is limited because 

beat-by-beat QRST morphology changes due to heart rate fluctuations and respiration for example, so 

that the average beat cannot accurately represent in all beats the actual beat [21]. This results in residual 

ventricular activity remaining in the estimated atrial signal. Despite this limitation ABS remains one of 

the most widely used algorithms in clinical studies [22]. Several enhancements to the basic ABS 

algorithm have been proposed to ameliorate these limitations but all ventricular suppression algorithms 

have their limitations and do not completely remove the ventricular activity. 

This brings us to the focus of the present study which has the aim of quantifying the effectiveness of 

ventricular suppression from the ECG in atrial fibrillation using wavelet entropy. Despite the substantial 

research effort in developing ventricular suppression algorithms, little attention has been given to 

quantifying the effectiveness of these algorithms in terms of the residual ventricular activity. Some 

studies have looked at the effectiveness of suppression algorithms in terms of estimated clinical 

parameters, for example dominant frequency, amplitude of the estimated atrial signals or reduction in 

spectral power concentration [14,23–26]. Many studies have used computer simulations or synthesised 

ECGs with known and completely separable ventricular and atrial activities [17]. In the present study a 

wavelet based approach is proposed to quantify ventricular activity suppression. Wavelet analysis has 

been demonstrated to be useful in a range of applications related to ECG analysis [27]. Wavelet analysis 
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is potentially well suited to quantification of residual ventricular activity after QRST suppression 

because of its ability to localise signal features in time and scale [27]. 

The aim of the present study is to demonstrate wavelet entropy as a tool to quantify the effectiveness 

of QRST suppression in the ECG of atrial fibrillation. Note that in this study wavelet analysis is not used 

to suppress the ventricular activity, the focus is on wavelet techniques for quantifying residual ventricular 

activity in the QRST suppressed signal and could be applied regardless of the suppression algorithm 

used. In this study the previously referred to ABS algorithm is used because of its simplicity and known 

limitations that serve to illustrate the effectiveness of the wavelet residual activity measurement. 

Examples to illustrate the wider applicability of the approach are also included. 

2. Methods 

2.1. Ventricular Activity Suppression by Average Beat Subtraction 

The aim of ventricular activity suppression is to eliminate the components of the ECG originating 

from the ventricles so that only the components originating from the atria remain, allowing the analysis 

of the f-wave unhindered by ventricular activity [25]. The major ventricular components to be suppressed 

are the QRS complex corresponding to ventricular depolarisation and T wave corresponding to 

ventricular repolarisation. One of the simplest suppression algorithms is the ABS algorithm. Noting that 

during atrial fibrillation the atrial and ventricular electrical activities are disassociated enables the 

calculation of an average ventricular beat template that is free of any underlying atrial activity. 

Subtraction of the ventricular beat template at each ventricular beat then yields an estimate of the 

underlying f-wave. The basic ABS algorithm can be enhanced in several ways, for example by 

morphological clustering or separate QRS and T wave templates [28]. However, for the purpose of the 

present study only the basic ABS algorithm without these refinements is considered. This serves  

to illustrate the limitation of the algorithm with the proposed method of quantifying the residual  

ventricular activity. 

The first step of the ABS algorithm was to generate the QRST template specific to the particular ECG 

lead under analysis. Each ventricular beat was located using an automatic threshold based QRS detector. 

The locations of the R wave peaks were identified as r(j), j = 1: nb where nb is the total number of beats. 

Defining the beat window wb = [−w1, ... −2, −1, 0, 1, 2, ... w2] with limits −w1 and w2 which straddle 

the entire QRST segment relative to the R wave peak, the collection of all QRST segments  

was constructed  

X = [x1, x2,..., xnb]T (1)

where xi is the i-th QRST segment the same length as the beat window. 

The average beat template, denoted qrstav, was then calculated as the mean value across all beats 

according to 

qrstav (k) =
1

nb
X(

j =1

nb

 k, j)  (2)

where k denotes the sample number and j the beat number. 
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Having derived the average beat template it remains to subtract the template from each beat resulting 

in the QRST suppressed ECG. Samples outside the beat window remain unchanged. 

Inevitably the QRST suppressed ECG contains some residual ventricular activity because the average 

beat template is not an accurate model of the ventricular activity at every beat. Wavelet analysis was 

used to detect the residual ventricular activity as described in the following section. 

2.2. Wavelet Analysis for Identifying Residual Ventricular Activity 

The continuous wavelet transform is the correlation of a signal with an analysing wavelet function 

across a range of scales and translations of the wavelet function. The mother wavelet has the form 

ψa,b (t) =
1

a
ψ t − b

a

 
 
 

 
 
  (3)

and the continuous wavelet transform of the signal x(t) is defined by 

T(a,b) =
1

a
x(t)ψ* t − b

a

 
 
 

 
 
 dt

−∞

∞

  (4)

where ψ* is the complex conjugate of the wavelet function and a and b are the scale and translation 

parameters respectively. The transform provides a measure of similarity between the signal and wavelet 

function at specific scale and translation. There are numerous mother wavelet functions but an 

appropriate choice is one with similarity of shape to the analysed signal. In practice this choice is not 

critical as many wavelets have similar properties and are able to characterise similarity with good 

localisation in both scale and translation. In the present study the n-th order derivative of Gaussian 

probability density function with general form ψ (n )(t) = dn (e− t 2 2) dt n  was used with n = 4 or  

“Gaus4” wavelet. It was anticipated that this wavelet would provide good localisation of the residual  

ventricular activity. 

Having identified a mechanism for localising the residual ventricular activity using wavelet analysis, 

a novel wavelet entropy method was then designed to quantify the residual activity.  

2.1. Wavelet Entropy Measure of Residual Ventricular Activity 

Entropy is well known for its characterisation of the information content of a signal: a highly variable 

signal yields greater information than one that varies little. This concept has been extended to the 

frequency and wavelet domains by considering the spectral and wavelet energy distributions [29]. A 

signal with wide variation in spectral content is considered to yield greater information content and hence 

has greater entropy than one with a narrow spectral distribution. As such wavelet entropy characterises 

the ‘organisation’ of a signal and has found use in biomedical applications such as the analysis of EEG 

and ECG [30,31]. 

Following wavelet analysis of a signal, the energy at a particular scale and translation is given by 

E(a,b) = T(a,b)
2
. (5)

Following a similar definition of the wavelet energy probability distribution by Sello [29], who 

calculated the distribution across scales at each translation or time point, here the distribution is 



Entropy 2015, 17 6401 
 

 

calculated across translations at each scale according to Equation (6): 

P(a,b) =
T(a,b)

2

T(a,b)
2
db

 (6)

and the corresponding wavelet entropy is given by 

S(a) = − P(a,b) log(P(a,b))db . (7)

In Equations (6) and (7) translation variable b is effectively the time variable, so the integral is across 

the duration of the signal of interest. In this case the wavelet entropy provides an indication of the 

temporal distribution of wavelet energy at each scale. The entropy of a scale with a broad temporal 

energy distribution will be greater than one with a narrow temporal distribution. With regard to the 

current application to QRST suppressed ECG, any residual ventricular activity will be expressed as 

wavelet energies which are not evenly temporally distributed but with a periodicity corresponding to the 

ventricular rate. Conversely, the continuous f-wave will have a relatively constant temporal energy 

distribution. Further, the atrial and ventricular wavelet energies will likely occur at different scales due 

to the different frequency content of the QRST and f-waves. Hence the temporal energy distribution may 

yield information about the effectiveness of ventricular suppression in the ECGs of atrial fibrillation. 

Optimum suppression of ventricular activity would be expected to maximise the wavelet entropies at 

scales corresponding to ventricular and atrial activations. To explore the measurement of effectiveness 

of ventricular activity suppression, three wavelet entropy based indices were defined: 

(i) Ventricular scale band wavelet entropy (WEvent) defined as the minimum wavelet entropy at 

scales corresponding to predominantly ventricular activity. Since the ventricular activity, 

particularly the QRS complex, contains higher frequency components than the f-wave, the 

frequency range 12.5 to 50 Hz with corresponding scales for the “Gaus4” wavelet of 20 to 5 

respectively was used in this study. Motivation for choosing the minimum entropy in this 

waveband was the observation that the minimum entropy is highly influenced by the degree of 

QRS residual. 

(ii) Atrial scale band wavelet entropy (WEaf) defined as the average wavelet entropy across scales 

corresponding to predominantly the f-wave. The f-wave has frequencies typically in the range 

3 to 10 Hz and the corresponding scales for the “Gaus4” wavelet are 80 to 25 respectively for 

the sample rate used in this study.  

(iii) Wide scale ventricular and atrial band wavelet entropy (WEva) defined as the average wavelet 

entropy across scales containing both the above atrial and ventricular scale bands specifically  

5 (minimum scale of WEvent) to 80 (maximum scale of WEaf). This serves to define a single 

index for quantifying the quality of ventricular suppression taking account of both atrial and 

ventricular scale wavelet entropies.  

3. Experimental Studies and Discussion 

Application of the entropy measures of residual ventricular activity from QRST suppressed ECGs in 

atrial fibrillation was demonstrated in two experimental studies. First, a study with synthesised ECGs in 
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which different amplitudes of residual ventricular activity were simulated. Second, a study on real ECGs 

of patients in atrial fibrillation to which the ABS ventricular suppression algorithm was applied.  

Both studies utilised the ECG recordings from 10 atrial fibrillation patients for which ethical approval 

was obtained and all patients provided informed consent. The ECGs were recorded at a sample rate of 

500 Hz, amplitude resolution of 5 µV and bandwidth of 0.05 to 100 Hz. Lead V1 was analysed since it 

is the most commonly analysed lead for atrial fibrillation studies due to its high amplitude f-wave in 

most patients [25]. However, to show wide applicability of the technique, examples for QRST 

suppression in multi-lead ECGs using blind source separation are provided.  

3.1. Study on Synthesised ECGs 

Using the patient recordings for lead V1, for each patient a series of 10 synthesised single beat ECGs 

with decreasing levels of residual ventricular activity were constructed as follows. First, the longest  

f-wave segment free of ventricular activity was identified in each recording. Second, in each recording 

the average QRST complex was calculated. Third, 10 synthesised single beat ECGs were constructed by 

adding to the segment of ventricular free f-wave the average QRST with decreasing levels of amplitude 

as in Equation (8). 

(10 )
( ) , 1:10

9 av

i
ECGsyn i fwave qrst i

−= + = . (8)

This generated 10 synthesised ECGs for each patient, 100 ECGs in total, each simulating QRST 

suppressed ECGs with different levels of QRST suppression ranging from completely unsuppressed  

(i = 1) to completely suppressed (i = 10). Figure 1 shows the synthesised ECGs for one patient along 

with the results of the wavelet entropy analysis for these synthesised ECGs. 

From Figure 1, decreasing levels of residual ventricular activity gave rise to increasing wavelet 

entropy, particularly WEvent. This was a result of the decreased wavelet energies at the high frequency 

ventricular scales and consequently the more even energy distribution across the duration of the ECG 

segment as can be seen in the wavelet energy contour plots (Figure 1). This result is confirmed for all 

simulations in Figure 2, which shows the wavelet entropies for the synthesised ECGs constructed from 

all patient ECGs. Clearly, more effective ventricular activity suppression gave significantly higher 

ventricular and atrial scale entropies. Compared to no suppression at all (ECGsyn(1)) wavelet entropies 

were significant higher (all p < 0.001, paired t-test) across all levels of suppression (ECGsyn(i), i = 2: 10) 

with the most significant increase for complete suppression (WEvent: ECGsyn(1) = 3.45 (0.36) vs. 

ECGsyn(10) = 5.48 (0.24), p < 0.0000001 and WEaf: ECGsyn(1) = 5.14 (0.23) vs. ECGsyn(10) = 5.85 (0.31), 

p < 0.00001 and WEva: ECGsyn(1) = 4.85 (0.32) vs. ECGsyn(10) = 5.82 (0.28), p < 0.00001).  

The simulation study suggests that most effective ventricular suppression was achieved when WEva 

increased from 4.85 (0.32) (no suppression) to 5.82 (0.28) (complete suppression).  



Entropy 2015, 17 6403 
 

 

 

Figure 1. Wavelet analysis of electrocardiograms (ECGs) synthesised from one patient with 

decreasing levels of residual ventricular activity (columns 1 to 10). Columns show the 

analysis of each synthesised ECG with column 1 having the maximum residual QRST 

amplitude and the final column having no residual QRST. (Row 1) Synthesised ECG 

segments of 600 samples (1.2 s) duration with decreasing amplitudes of residual QRST. 

(Row 2) Wavelet coefficients of the ECG displayed as a colour contour map. (Row 3) 

Wavelet energy displayed as a colour contour map. (Row 4) Wavelet entropy as a function 

of scale with ventricular wavelet entropy (WEvent) indicated by a red horizontal line, atrial 

wavelet entropy (WEaf) indicated by a black horizontal line and wide scale band wavelet 

entropy (WEva) indicated by a green horizontal line. 
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Figure 2. Wavelet entropies WEvent, WEaf and WEva for all synthesised electrocardiograms 

(ECGs). (a) Bar charts of wavelet entropies for synthesied ECGs grouped by patient 

simulation. For each patient the bars are ordered by increasing levels of QRST suppression 

(Blue: ECGsyn(1), no suppression, red: ECGsyn(10), total suppression). (b) Boxplots of 

wavelet entropies of synthesised ECGs, bar indicates median and boxes indicate interquartile 

range across patients at each suppression level. 

3.2. Study on Real ECGs with ABS Ventricular Suppression 

The aim of this study was to demonstrate the application of the method to real ECGs with ventricular 

beats suppressed by the ABS algorithm. It demonstrates how the “quality” of ventricular beat 

suppression can be quantified beat-by-beat. Lead V1 from the ECGs of the 10 patients were analysed. 

The ABS algorithm was used to suppress QRST at each beat as previously described. The effectiveness 

of ventricular suppression was quantified by the wavelet entropy measures on a beat-by-beat basis for 

the first 10 beats of each recording by comparing the entropies for unsuppressed and suppressed ECGs. 

Figure 3 illustrates the analysis for a single patient recording. It shows the unsuppressed and ABS 

suppressed beats along with their wavelet entropies for the first 10 beats in one patient recording. 

Wavelet entropy for the suppressed beats, particularly WEvent, clearly correlates with the extent of QRST 

suppression. Notably for example, the ABS algorithm performed very well with no visible residual 

activity in beat 1 for which the corresponding WEvent = 4.8, but performed poorly in beat 6 for which 

WEvent = 3.8. Over all analysed beats for this subject, ventricular beat suppression significantly increased 
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wavelet entropies (WEvent: 3.19 (0.10) vs. 4.35 (0.37), p < 0.000001 and WEaf: 5.03 (0.10) vs. 5.25 (0.09), 

p < 0.001 and WEva: 4.74 (0.09) vs. 5.17 (0.08), p < 0.000001, paired t-test).  

 

Figure 3. Wavelet analysis of 10 beats from one patient (columns 1 to 10). Columns show 

the analysis of each beat. (Row 1) The unsuppressed electrocardiogram (ECG) segment of 

300 samples (0.6 s) duration. (Row 2) Wavelet entropy as a function of scale for the 

unsuppressed ECG with ventricular wavelet entropy (WEvent) indicated by a red horizontal 

line, atrial wavelet entropy (WEaf) indicated by a black horizontal line and wide scale band 

wavelet entropy (WEva) indicated by a green horizontal line. (Row 3) The ECG segment after 

QRST suppression by the average beat subtraction (ABS) algorithm. (Row 4) Wavelet 

entropy as a function of scale for the suppressed ECG with ventricular wavelet entropy 

(WEvent) indicated by a red horizontal line, atrial wavelet entropy (WEaf) indicated by a black 

horizontal line and wide scale band wavelet entropy (WEva) indicated by a green horizontal line. 

This result is confirmed for all the patient recordings in Figure 4. For each patient recording there is 

considerable variability of wavelet entropies (as indicated by the interquartile range in Figure 4) across 

beats. Such variability of performance is expected with the basic ABS algorithm since beat to beat QRST 

morphology changes are common, due for example to respiratory or postural changes. Overall across 

the 10 patient recordings and considering the mean wavelet entropies for each suppressed and 

unsuppressed recording, ABS achieved very highly significant increases in WEvent (3.48 (0.02) vs.  

4.76 (0.12), p < 0.00001, two-sample t-test) and WEaf (5.06 (0.04) vs. 5.49 (0.05), p < 0.00001) and  

WEva (4.78 (0.04) vs. 5.41 (0.05), p < 0.00001). 
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Figure 4. Wavelet entropies (WEvent, WEaf and WEva) of patient electrocardiograms (ECGs) 

with unsuppressed and suppressed ventricular activity with the average beat subtraction 

(ABS) algorithm. Boxplots show the median (red line) and interquartile range (box) of 

entropies over the first 10 beats. For each patient the box on the left is for the unsuppressed 

ECG and the box on the right is for the ABS suppressed ECG. 

3.3. Application to Multi-Lead ECG  

To demonstrate the general applicability of the wavelet based indices, the application to multi-lead 

ECGs was considered. Multi-lead f-wave extraction techniques based on blind source separation 

techniques such as principal and independent component analysis have been developed [7,16]. These 

algorithms consider the atrial and ventricular activities of the ECG to arise from mixtures of signals from 

the atrial and ventricular sources. The blind source separation process aims to separate the atrial and 

ventricular activities into different components considering all recorded leads. Here we consider 

principal component analysis as the blind source separation algorithm [7,15,32]. Figure 5 shows a patient 

12-lead ECG along with the first 4 principal components and their associated wavelet entropies.  

V1 showed the most prominent f-wave in the 12-lead ECG. The first three principal components were 

dominated by ventricular activities and their WEva values were 4.56, 4.78, 5.04 reflecting the progressive 

suppression of the ventricular activity in these components. The forth principal component contained the 

separated f-wave and had WEva of 5.51. The f-wave obtained by the ABS algorithm applied to V1 is also 

shown for comparison and its WEva was 5.46. 
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Figure 5. Wavelet analysis of the 12-lead electrocardiogram (ECG) of one patient with atrial 

and ventricular activities separated by principal component analysis and average beat 

subtraction (ABS). (Row 1) The unsuppressed 12-leave ECG segment of 500 samples  

(1.0 s) duration. The f-wave is visible in lead V1. (Row 2) The first 4 principal components 

of the 12-lead ECG (PC to PC4). The first three principal components (PC1, PC2, PC3) were 

dominated by ventricular activity. PC4 contained the separated f-wave. The f-wave extracted 

from lead V1 by the ABS algorithm is also shown. (Row 3) Wavelet entropy as a function 

of scale for each principal component and ABS extracted f-wave with ventricular wavelet 

entropy (WEvent) indicated by a red horizontal line, atrial wavelet entropy (WEaf) indicated 

by a black horizontal line and wide scale band wavelet entropy (WEva) indicated by a green 

horizontal line. 

3.4. Comparison to Other Measures of the Effectiveness of Ventricular Beat Suppression 

Few measures to quantify the effectiveness of ventricular beat suppression have been described. In 

simulation scenarios where the definitive underlying f-wave signal is known indices such as cross 

correlation and normalised mean square error can been used [14]. It is more challenging in the case of 

real ECGs where the underlying f-wave is not known. Some studies have simply compared the amplitude 

of the f-wave in the suppressed QRST segment with the amplitude in the TQ segment where there is no 

ventricular activity on the reasonable assumption that any residual activity is likely to increase the signal 

amplitude [24]. A more robust solution was proposed by Alcaraz et al. with the ventricular residue index 

(VR) [14] 

( )2

,....,
2

1

1
( ) max ( )

1
( )

i

i i
i

r H

i AA AAQ k r H r H
k r H

AA
n

VR x k x k
x n

Q

+

= − += −

=

= ⋅


 
(9)

where VRi is the ventricular residue at beat i, Q the number of sample points across the beat segment, 

xAA is the QRST suppressed ECG, ri is the sample point of the R wave peak and H specifies a window 

of length 2H + 1 sample points centered on ri and encompasses the QRS interval. 
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Conceptually VR can be considered similar to the ratio of the energy of the residual QRS to the energy 

of the entire segment [33]. Lower VR indicates more effective ventricular suppression. Implementations 

of this algorithm used H corresponding to 50 ms assuming a QRS interval of approximately 100 ms for 

all beats for all patients [14,33], presumably to avoid the difficult detection of the true onset and offset 

of the QRS complex and the additional computational burden. Clearly the effectiveness of the algorithm 

is dependent upon the specified window since choosing a window which is too small potentially misses 

residual activity occurring outside the window. This is most apparent because VR does not take account 

of any residual T wave, which may be substantial if not suppressed adequately [34]. This limitation is 

avoided in the wavelet entropy approach because it considers the wavelet energy across scale bands 

corresponding to T wave as well as QRS complex, so that residual T wave is captured by the approach.  

To illustrate this Figure 6 compares VR and wavelet entropy index WEva for two synthesised cases: 

(a) QRST suppression and (b) QRS suppression but no T wave suppression. As expected, for case (a) 

(QRST suppression) WEva increased and VR decreased as the residual ventricular activity reduced. 

However, for case (b) (QRS suppression only) where significant T wave residual existed, rather than VR 

being greater than case (a), it was smaller, wrongly suggesting improved ventricular suppression. The 

wavelet entropy measure on the other hand accurately reflected the residual T wave because WEva was 

smaller relative to case (a), suggesting less effective ventricular suppression. 

 

Figure 6. Comparison of wide scale band wavelet entropy (WEva) and residue index (VR) 

for synthesised electrocardiograms (ECGs) with decreasing levels of residual ventricular 

activity: (a) QRST suppression; and (b) QRS suppression but no T wave suppression.  

(Row 1) Synthesised ECG segments of 900 samples (1.8 s) duration with decreasing 

amplitudes of residual QRST. (Row 2) Same as row 1 but without T wave suppressed to 

simulate an f-wave with large T wave residual. (Row 3) WEva for simulated cases (a) (blue 

line) and (b) (green line). Note residual T wave results in lower WEva as would be expected. 

(Row 4) VR for simulated cases (a) (blue line) and (b) (green line). Note residual T wave 

results in lower VR. 
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4. Conclusions  

New measures to quantify the quality of ventricular activity suppression of the ECG in atrial 

fibrillation based on wavelet entropy have been proposed. They are based on entropy as a measure of 

the temporal energy distribution of wavelet coefficients of ECG beat segments. Superior suppression 

results in higher entropy values due to the broad temporal energy distributions at ventricular and atrial 

scale bands. This reflects the removal of the highly concentrated (in scale and time) energy associated 

with the ventricular activity. The measures have been shown to be effective on both synthesised and real 

ECGs. Not only do they have application in the assessment of ventricular activity suppression  

beat-by-beat as demonstrated in the present study, but also in comparing the effectiveness of different 

ventricular suppression algorithms, which will be the focus of future work. 
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