
A comprehensive review on the application of nanofluid in heat pipe based on the 

machine learning: Theory, application and prediction

Abstract

This paper firstly introduces three paramount factors i.e. viscosity, thermal conductivity and stability that affect the application of mono and hybrid nanofluids in 

heat pipes. Secondly, tThe applications of nanofluids in various types of heat pipes are reviewed and the mechanism of heat transfer enhancement or inhibition is 

summarized. Thirdly, tThe applications of machine learning in nanofluids (thermal conductivity and dynamic viscosity) and heat pipes charged with nanofluids 

are presented. Finally, the challenges and opportunities are presented as the main contribution of this review paper including key findings in the form of 

conclusions. The main challenges include: (1) difference and uncertainty on thermal conductivity and viscosity, as well as undesirability on stability property of 

nanofluid; (2) lack of comprehension of time-dependent property of heat pipes; (3) limitation of predictive models based on machine learning; and (4) lack of an 

appropriate standard for selecting the appropriate machine learning algorithm. To tackle the above imminent challenges, further opportunities are revealed 

including: (1) exploring the mechanism at nanoscale and establishing unified standards, as well as exploring the effect of surfactant and smaller particle size; (2) 

focusing on the nanoparticle deposition layer; (3) establishing the large, exclusive large databases and expanding the input variables; and (4) defining specific 

standard by horizontal comparison and using more advanced algorithms. This review-based study provides the guidelines for the development of heat pipes 

charged with nanofluids and establishes the foundation for the application of machine learning technology in heat pipes and nanofluids.
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Abbreviation

ANN Artificial Neural Network

ANFIS Adaptive Neuro-fuzzy Inference System

BP Back Propagation

CART Category and Regression Tree

CHPSO Conjugate Hybrid Particle Swarm Optimization

CNN Convolutional Neural Network

CNTs Carbon Nanotubes

COOH-GnP Carboxyl-functionalized Graphene Nanoplatelet

COOH-MWCNT Carboxyl-functionalized Multi-Walled Carbon Nanotube

DI Deionization

DW Distilled Water

DWCNT Double-Walled Carbon Nanotube

EG Ethylene Glycol

EO Ethylene Oxide
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ETSC Evacuated Tube Solar Collector

GA Genetic Algorithm

GMDH Group Method of Data Handling

GNP Graphene Nanoplatelet

ICA Imperialist Competitive Algorithm

LHP Loop Heat pipe

LM Levenberg–Marquardt

LSSVM Least-square Support Vector Machine

MAE Mean Absolute Error

mLHP Miniature Loop Heat Pipe

MLP Multi-layer Perceptron

MSE Mean Square Error

MWCNT Multi-Walled Carbon Nanotube

MWCNT-Cys Multi-Walled Carbon Nanotube with Cysteine

MWCNT-GA Multi-Walled Carbon Nanotube with Gum Arabic

PAC Probably Approximately Correct

PHP Pulsating Heat Pipe

PSO Particle Swarm Optimization

PV/T Photovoltaic/Thermal

RBF Radial Basis Function

RF Random Forest

RNN Recurrent Neural Network

SDS Sodium Dodecyl Sulphate

SEM Scanning Electron Microscope

SOM Self-organizing Maps

SVM Support Vector Machine

TEM Transmission Electron Microscope

THP Thermosyphon Heat Pipe

TPCT Two-phase Closed Thermosyphon

UV/vis Ultraviolet–visible Spectroscopy

XRD X-ray Diffraction

1 Introduction

Heat pipes are one of the most efficient passive heat transfer technologies [1]. A heat pipe transports heat by phase change of the working fluid and has a high effective 

thermal conductivity (several thousand times higher than copper rod [2]), and an extremely low effective thermal resistance (0.05–0.4 °C/W [3]). The thermo-physical 

properties of the working fluids significantly affect heat transfer performance of heat pipes especially in the evaporator [4–6]. Several conventional working fluids have 

shown poor heat transfer characteristics, owing to their lower thermal conductivity. Therefore, an innovative working fluid is needed to enhance the transfer performance of 

the heat pipes [7].

Nanofluid, a colloidal mixture of conductive nanoparticles in the base fluid, shows higher thermal conductivity than conventional coolant and has a wide application 

prospect [8–11]. Thermo-physical properties (especially thermal conductivity and viscosity) affect heat transfer and flow behaviour. The major parameters influencing the 

nanofluid properties such as particle structure, shape, size, fluid type, temperature, surfactant and PH value etc., have been widely investigated [12–14]. Besides, the 

preparation of a stable suspension of nanofluid is paramount before implementing it in the application, as better stability will improve the efficiency of heat transfer 

equipment and reduce the size and fabrication cost of the equipment. Several results have been reported on various types of combinations of base fluids and nanoparticles. 

Some common base fluids and nanoparticles are illustrated in Fig. 1. The conventional nanofluids either have a good rheological property or a better thermal network. 

Recently, hybrid nanofluid, a homogeneous mixture of two or more nanoparticles type, has gained significant attention from researchers because of its encouraging 

improvement in thermo-physical, thermal transfer and hydrodynamic properties [15–19].

The application of nanofluids in heat pipes can be one of the most interesting techniques for heat transfer enhancement [20,21]. A plethora of studies have reported that the 

nanofluids can improve the boiling thermal transfer due to the modification of heated surface characteristics (e.g., size of cavities, surface wettability and roughness) by the 

nanoparticles depositing on the wall, as well as the changes of thermo-physical properties of the nanofluids (e.g., thermal conductivity and capillary force) [22–29]. 

Meanwhile, many attempts have been made to combine the advantages of nanofluids and heat pipes to obtain a higher heat transfer coefficient [30,31]. However, the micro 

factors in nanofluids such as instant clustering, particle charge condition and micro motion, contribute to the complicated thermo-physical properties of nanofluids and 

complex heat transfer mechanisms for heat pipes [32,33]. These problems lead to difficulties in obtaining accurate value and variation law, which should be determined by 

pre-experiments before designing the heat pipes with nanofluids, thus seriously limiting the development of nanofluids in heat pipes.

alt-text: Fig. 1

Fig. 1

Common base fluids and nanoparticles.



With the strong nonlinear mapping ability, machine learning algorithms such as Artificial Neutral Network (ANN) and Support Vector Machine (SVM) could provide the 

dimensionless and multiple-factors-considering solution, which can effectively tackle the above problems. Available studies have shown that the favourable confidence and 

high accuracy of the prediction model depend on selecting appropriate algorithms as well as considering all influencing factors [34–37]. However, in the previous studies, 

there is no agreement on the selection of the algorithm and the structure of the model. Therefore, it is imperative to review previous research to extract the significant 

knowledge.

The data of several publications on nanofluids, heat pipes and machine learning acquired in the Web of Science for the decade from 2010 to 2019 indicates that the 

publications on nanofluids are an order of magnitude less on the combination of nanofluids and heat pipes than on nanofluids. Besides, machine learning publications 

involving heat pipes or nanofluids are scarce [38–45]. In addition, the application of nanofluids in heat pipes has been reviewed only in a few number of articles, but not 

involving hybrid nanofluids. Furthermore, it is noteworthy that there is no review on the machine learning applied in heat pipes charged with nanofluids. However, 

uncertainty and nonlinearity of the heat transfer performance of heat pipes charged with nanofluids impede its potential practical applications. Therefore, it is significant to 

review machine learning techniques applied in this field to tackle the above-mentioned problems.

The originality of the systematic review involves presenting the application of hybrid nanofluids in heat pipes, pointing out the potential application of machine learning in 

heat pipes charged with nanofluids which is significant to tackle the uncertainty and nonlinearity of the heat transfer performance of pipes with nanofluids, and identifying 

the main challenges and opportunities on the application of nanofluids in heat pipes. This paper firstly introduces three main factors i.e., viscosity, thermal conductivity and 

stability that affect the application of mono and hybrid nanofluids in heat pipes. Secondly, the applications of nanofluids in various types of heat pipes are reviewed and the 

mechanism of heat transfer enhancement or inhibition is summarized. Thirdly, the applications of machine learning in nanofluids (thermal conductivity and dynamic 

viscosity) and heat pipes charged with nanofluids are represented. Finally, this review-based paper provides the challenges and opportunities to form the framework for 

future work and it also covers crucial findings in the form of conclusions.

2 Properties of nanofluids: thermal conductivity, viscosity and stability

The thermal conductivity, viscosity and stability of nanofluids are regarded as the primary factors that affect thermal systems with nanofluids. Up to date, there have been 

plenty of investigations. In this section, in order to provide a deep view about improving the thermal performance of heat pipes charged with nanofluids, some influencing 

factors on thermal conductivity and viscosity are reported and the stability of nanofluids used in the heat pipes is briefly discussed.

2.1 Thermal conductivity of nanofluids

This section reports some influencing factors on thermal conductivity, such as particle volume fraction, temperature, particle material, particle size, particle shape, base fluid 

and other influencing factors.

2.1.1 Thermal conductivity of conventional nanofluids

The influencing factors on thermal conductivity have been discussed. Summary is given below, and some typical studies about the thermal conductivity of conventional 

nanofluids are summarized in Table 1.

Particle volume fraction: The enhancement of thermal conductivity increases with particle concentration. However, the increasing rate is different [46–48].(i)

Temperature: The thermal conductivity of nanofluids increases with temperature, due to the clustering and Brownian motion of nanoparticles. More drastic 

Brownian motion could enhance the thermal conductivity. However, the clustering harms Brownian motion. Therefore, the rise of temperature seems to not 

invariably contribute to the improvement of thermal conductivity, and the results are reversed at times [49,50].

(ii)

Particle material: Generally, the higher thermal conductivity of nanoparticles results in greater enhancement in the thermal conductivity of nanofluids in the 

same volume loading. There are three classes of nanoparticles in general. The first class is advanced structural materials such as CNTs, graphene, which 

have extremely high thermal conductivity and may be favourable to obtain better dispersion, fluidity and applicability in a lower particle loading. Next is 

some metallic materials with high thermal conductivity such as Ag, Au, Fe, Cu, which show noticeable strengthening properties. The last class is the non-

metallic and metallic compound such as ZnO, SiC, SiO
2
, Al

2
O

3
, CuO, which shows better stability and chemical inertness, but lower thermal conductivity, 

compared with the above-mentioned one. However, the value of thermal conductivity of nanofluids is very different even for the same kind. Nevertheless, 

there is great uncertainly for a certain kind of nanofluid in a specific application, since the thermal conductivity of nanofluids is affected by some other 

factors such as aggregation, interfacial nanolayer, Brownian motion, surface charge state and thermal resistance of nanoparticles [51–53].

(iii)

Particle size: The thermal conductivity of nanofluids has a downward trend with the increment of particle size. Brownian motion and liquid layering around 

nanoparticles are two significant mechanisms for the enhancement of thermal conductivity of nanofluids. The above mechanisms in the smaller size of 

particle are extremely active and provide more contribution to the thermal conductivity of nanofluids. However, this conclusion is a speculative hypothesis 

and cannot be strictly verified, since the above mechanisms are difficult to be quantized and experimentally measured [49,54].

(iv)

Particle shape: Most nanoparticles are spherical and cylindrical shapes. Cylindrical particle exhibit higher thermal conductivity compared with spherical 

particle [55,56].

(v)

Base fluid: The mechanism of the influence of base fluid on thermal conductivity is complicated. This is because higher thermal conductivity is contributed 

by lower thermal conductive base fluid. However, high viscous fluids obstruct the Brownian motion due to higher stable nanofluid [57–59].

(vi)

Other factors: In preparation of the nanofluids, some other factors also influence the thermal conductivity of nanofluids such as standing time, ultrasonic 

time, pPH value and surfactant. pPH value and surfactant can improve the dispersion stability and thermal conductivity [60,61]. Generally, the moderate 

sonication is recommended, since the rigorous sonication time may contribute to the collapsing of nanoparticles and the brief sonication causes particle 

agglomerations [58,62].

(vii)

alt-text: Table 1

Table 1

Some typical studies on thermal conductivity of conventional nanofluids.

Nanofluids Diameter (nm) Volume fraction (%) Temperature (°C) Knf/Kbf

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely purposed for providing corrections to the table. To preview 

the actual presentation of the table, please view the Proof.



2.1.2 Thermal conductivity of hybrid nanofluids

In the previous section, effective parameters affecting the thermal conductivity of conventional nanofluids were mentioned. Therefore, this section mostly focuses on the 

thermal conductivity of hybrid nanofluids. Some typical studies about the thermal conductivity of hybrid nanofluids are summarized in Table 2.

The thermal conductivity of hybrid nanofluids is dependent on the thermal conductivity of mono nanoparticles [63]. Baghbanzadeh et al. [64] measured thermal 

conductivity of three types of nanofluids namely silica nanospheres, MWCNT and hybrid nanostructures based water nanofluids. It can be concluded that MWCNT based 

water nanofluids exhibited the highest increment, followed by hybrid nanofluids and silica. This is due to the thermal conductivity of the particles which is about 

1.38 W/(mꞏK) for silica and 3000 W/(mꞏK) for MWCNT. Furthermore, Suresh et al. [65] compared thermal conductivity of Al
2
O

3
–Cu/water and Al

2
O

3
/water nanofluids. 

The authors reiterated that the thermal conductivity enhancement of hybrid nanofluids is significantly higher than none-hybrid nanofluids. Meanwhile, the hybrid 

nanofluid's thermal conductivity ratio had a linear relationship with the particle's volume concentration. Generally, the thermal conductivity of hybrid nanofluids is similar to 

conventional nanofluids [65,66]. Amiri et al. [67] observed that the thermal conductivity in the same particle loading and temperature abided by this order: MWCNT-

Ag > MWCNT-Cys > MWCNT-GA > Ag/water > water. Meanwhile, temperature and particle loading are significant to thermal conductivity enhancement. Similar to 

conventional nanofluids, viscosity and thermal conductivity of base fluid have an effect on the thermal conductivity of hybrid nanofluids. In addition, the different hybrid 

combination of base fluids also affects the thermal conductivity of nanofluids [68]. Ma et al. [69] investigated the effect of base fluids mixture ratios on thermal conductivity 

enhancement (Al
2
O

3
–CuO/EG-W, Al

2
O

3
–Cu/EG-W and Al

2
O

3
–TiO

2
/EG-W). It was concluded that the thermal conductivity linearly decreased while the EG 

concentration increased because the thermal conductivity of water was higher than that of EG. Sundar et al. [70] studied the thermal conductivity of nanofluids that Co
3
O

4
-

GO hybrid nanoparticles dispersed in different base fluids such as, EG, water, (20 EG:80 W), (40 EG:60 W) and (60 EG:40 W). The thermal conductivity abided by this 

order water > (40 EG:60 W) > (60 EG:40 W) > EG.

2.2 Viscosity of nanofluids

The viscosity of nanofluids is also an extremely important factor that determines the pumping power, flow resistance and even the availability of nanofluids. This section 

reports several influencing factors on viscosity such as volume loading, temperature, particle size and other influencing factors.

2.2.1 Viscosity of conventional nanofluids

Table 3 provides some typical experimental data about the viscosity of conventional nanofluids in various research and the summary is given below.

Au/water [46] 10–70 0.00013–0.001 30–60 1.03–1.08

DWCNT/water [47] 5 0.75–1 Room 1.03–1.08

Cu/water [48] 26 1–2 30–60 1.14–1.24

Cu/water [143] 50–300 0.1–0.2 Room 1.04–1.24

Al2O3/water [49] 29–36 6–6.1 20–37 1.134–1.34

Al2O3/water [50] 36 2–10 27.5–34.7 1.08–1.29

Fe3O4/water [144] 6.7 1–3 10–40 1.028–1.151

SiC/water [145] 170 1–4 23–70 1.04–1.225

Cu/water [146] 25 0.2–0.8 (wt) Room 1.13–1.18

Cu/EG [62] <10 0.01–0.56 Room 1.002–1.410

Fe3O4/water [52] 6.7 6.3 Room 4

CuO/water [60] 25 0.03–0.30 Room 1.02–1.12

CNTs/water [53] 20–60 0–0.84 10–70 1.05–1.32

alt-text: Table 2

Table 2

Some typical studies on thermal conductivity of hybrid nanofluids.

Nanoparticles Base fluid Volume fraction (%) Temperature (°C) Knf/Kbf

Cu/MWCNT [66] DI water and EG 0.006–0.03 26.5–48.9 1.04–3.554

Al2O3–Cu [65] Water 0.1–2 Room 1.005–1.12

SiO2/MWCNT [64] DI water 0.1–1 (wt) 27–40 1.06–1.17

MWCNT-GA, MWCNT-Cys

MWCNT-Ag [67]

Water 0.5–1 (wt) 30–80 1.11–1.30

Ag/SiO2  [63] Water 1.5–3.5 15–40 1.01–1.03

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely purposed for providing corrections to the table. To preview 

the actual presentation of the table, please view the Proof.

Volume loading: A consensus that the viscosity of nanofluids increases with the increment of volume loading can be reached since almost all results support 

it [71,72]. CNTs nanofluid is regarded as a seriously promising working fluid due to the tremendous potential enhancement of thermal conductivity. Some 

studies have reported that adding an extremely slight amount of CNTs causes an unexpected reduction in the viscosity of the base fluid [73].

(i)

Temperature: The viscosity is expected to decrease at a high temperature due to weak intermolecular forces of attraction between base fluid and 

nanoparticles interface [74]. However, the effective viscosity ratios are variable in diverse research [75,76].

(ii)

Particle size: The effects of particle size are contradictory in a great number of reports. Such discrepancies are mostly due to complexity in instrument (iii)



2.2.2 Viscosity of hybrid nanofluids

Generally, similar to thermal conductivity, the viscosity of hybrid nanofluids is similar to conventional nanofluids [83]. Xian et al. [84] compared the viscosity of mono 

(COOH-GnP) and hybrid (TiO
2
-(COOH-GnP)) nanofluids. It can be concluded that viscosity increases with the increment of concentration and decreases with the growth 

of temperature in both mono and hybrid nanofluids. Wole-Osho et al. [85] performed an experimental investigation on the viscosity of Al
2
O

3
–ZnO/water hybrid nanofluids 

in three mixture ratios. A comparison made between the viscosity of hybrid nanofluids, and corresponding mono fluids is shown in Fig. 2. As can be seen, a combination of 

different nanoparticles can result in different properties compared with mono nanoparticles. The variations in properties require further investigations on hybrid 

nanoparticles. Similar to the conventional nanofluids, higher viscosity of the base fluid contributes more enhancement on the viscosity. Kumar et al. [86] investigated the 

viscosity of Al
2
O

3
–CuO (50/50) hybrid nanofluids in various mixture ratios of ethylene glycol and propylene glycol base fluid. It was concluded that hybrid nanofluid in 

30% propylene glycol as binary base fluid contributed 16.2% higher viscosity compared to pure propylene glycol.

2.3 Stability of nanofluids

Stability is the major hindrance to nanofluid practical application. Akbari and Saidi [87] revealed that the more stable nanofluid achieves better thermal performance, while 

the less stable nanofluid provides a worse thermal performance than water. Different approaches to prepare more stabilized nanofluids were used by researchers. For this 

purpose, stability enhancement methods and stability evaluation methods are commonly followed. Table 4 shows stability techniques, stability duration and stability 

evaluation methods used by some researchers.

calibration and experimental procedures [77,78].
Particle shape: The viscosity with rod-like nanoparticles is significantly higher than spherical ones [79].(iv)

Other factors: Other factors also influence the viscosity of nanofluids such as pPH value, base fluid and surfactant. pPH value can alter the dispersion and 

stability of nanofluids, furthermore lead to variation in viscosity [80]. The effects of surfactant on viscosity of nanofluids are ambiguous. Some researchers 

report that although surfactants can bring the increment in viscosity [76], others report that some surfactants increase viscosity only slightly and even present 

drag reduction [81]. Sunder et al. [82] revealed that higher viscosity base fluid contributed more enhancement of viscosity since the viscosity of nanofluids 

abided by this order 60:40% EG/W > 40:60% EG/W > 20:80% EG/W.

(v)

alt-text: Table 3

Table 3

Some typical studies on dynamic viscosity of conventional nanofluids.

Nanofluid Size (nm) Volume fraction (%) Temperature (°C) Viscosity ratio ( / )

Al2O3/water [147] 43 0.33–5 Room 1–2.36827

Al2O3/water [148] 28 5–6.17 Room 1.855–1.765

Al2O3/water [72] 13 1.3–2.78 Room 1.615–2.59

CuO/ethylene [71] 29 1–6.12 −35-50 1.102–3.032

CNTs/water [73] 15–30 0.2–1 6–65 0.930–1.706

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely purposed for providing corrections to the table. To preview 

the actual presentation of the table, please view the Proof.
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Fig. 2

A comparison made between the viscosity of hybrid nanofluids and corresponding mono fluids [85].

alt-text: Table 4

Table 4

Stability techniques, stability duration and stability evaluation methods used by some researchers.

Nanofluid
Method of 

preparation

Stability enhancement techniques

Stability duration & characterization used to evaluate stability

Dispersion method pH value/surfactant

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely purposed for providing corrections to the table. To preview 

the actual presentation of the table, please view the Proof.



In various stability enhancement approaches, techniques like changing pPH values, surfactant addition and ultrasonication are used. Considering nanofluids applied into 

heat pipes, researchers used these techniques to improve the stability of nanofluids.

In various stability evaluation approaches, techniques like spectral absorbance analysis, Zeta potential, centrifugation and sedimentation method are used to evaluate the 

stability of nanofluids. Besides, some characterization methods like TEM, SEM and XRD are used to identify the morphology of nanoparticles.

In summary, it can be concluded that the thermal conductivity and viscosity of nanofluids depend on several parameters and have the difference and uncertainty even for the 

same kind, since the thermal conductivity and viscosity of nanofluids are simultaneously affected by a multitude of factors, particularly micro factors for instance clustering, 

particle charge condition and micro motion etc. The thermal conductivity of nanofluids with advanced materials, e.g., graphene, CNTs, gold, is generally higher than that of 

the conventional nanofluids. Furthermore, these kinds of particles may be favourable to obtain better dispersion, fluidity and applicability in a low particle loading. Hitherto, 

the stability of nanofluids is not desirable. Meanwhile, a combination of different nanoparticles can result in different properties compared with mono nanoparticles. The 

variations in properties require further investigations on hybrid nanoparticles.

3 Application of nanofluids in various types of heat pipes

Since different heat pipes have different structure characteristics, it is imperative to compare the heat transfer effect and mechanism of nanofluids in different types of heat 

pipes. The application of nanofluids in heat pipes can be divided into three categories based on working fluid reflux power, such as conventional heat pipe, pulsating heat 

pipe, and closed two-phase thermosyphon. The first category namely conventional heat pipes are the heat pipes with capillary forces provided by sintered, meshes and 

micro-grooved metallic materials. The second category is pulsating heat pipes which is a self-sustained thermal driven oscillating heat pipe. The third category is the closed 

two-phase thermosyphon that the driven force of the fluid reflux is gravity. In this section, the application for conventional and hybrid nanofluids in three types of heat pipes 

is discussed and the mechanism of heat transfer enhancement or inhibition is summarized.

3.1 Application of conventional nanofluids in heat pipes

In this section, the application of conventional nanofluids in heat pipes (conventional heat pipe, closed two-phase thermosyphon and pulsating heat pipe) is discussed. Some 

typical studies about the thermal conductivity of conventional nanofluids are summarized in Table 5.

GNP/water [88] Two step 

method

Ultrasonication for 5 min and 

functionalization by diazonium 

salt

Maximum sedimentation of 16% after 480 h and remaining steady up to 840 h.

Graphite/water [149]
Two step 

method

Ultrasonication
Stability after 21 days. Zeta potential analysis is used to check the stability of 

nanofluid.

Al2O3/water,Al2O3/EG 

[97]

Two step 

method

Ultrasonication for 60 min No sedimentation occurred within 64 days.

Al2O3/water [150]

Two step 

method

Silane as the surface 

modifier. PH was adjusted 

to 9.1

Ag/water [98]

One step 

method

Stability for more than 85 days. Nanofluids after preparation is left for 8 h to 

examine their stability and spectral absorbance analysis by UV/vis 

spectrophotometer

Graphene oxide 

nanofluids [106]

One step 

method

Sodium dodecyl sulphate 

(SDS)

Characterized by TEM.

MWNTs-OH nanofluids 

[109]

Two step 

method

Ultrasonication for 60 min Stability was examined using a density measurement method

alt-text: Table 5

Table 5

The application of conventional nanofluid in heat pipes.

Type of heat pipe Type of nanofluids

Parameters affecting thermal behaviours
Maximum 

reduction of 

Thermal 

resistance

Concentration

Thermal 

conductivity 

(W/m.K)

Viscosity 

(mPa.s)

Input 

power/w
Inclination/°

Filling 

ratio

Sintered heat pipe [88] DS-GNP/water 2 vol%-5 vol% 0.62–0.73 0.50–1.07 20–120 0–70 30%–60% 26.4%

Sintered heat pipe [90] CuO/water and Al2O3/water 0.5–1.5 wt% 0.613–0.645 0.36–0.88 10–160 0–90 25.51%

Sintered heat pipe [96] Cu/water 1-2 wt% 25–150 21.7%

Helically-micro-grooved 

heat pipe [95]

Al2O3/water 10–65 0–90 20%–80% 18.2%

Horizontal micro-grooved 

heat pipe [89]

CuO/water 0.5 wt%-2 wt% 10–100 39%

Rectangular grooved wick 

heat pipes [94]

Al2O3/water 0-1 vol% 40–80 57.7%

Micro-grooves heat pipe [

91]

CuO/water 1 wt% 0.61–0.78 0.81–0.85 0–90 50% 50%

Mesh wick heat pipe [93] Al2O3/water 0.25 vol%-1.5 vol% 10–60 20%–90% 40%

Mesh sick heat pipe [150] Al2O3/water 5 wt%-10 wt% 0.62–0.72. 0.57–1.34 7.5–45 50%

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely purposed for providing corrections to the table. To preview 

the actual presentation of the table, please view the Proof.



3.1.1 Application of nanofluids in conventional heat pipes

For the conventional heat pipes, the addition of nanoparticles in the base fluid can greatly improve the heat transfer performance of heat pipes, including GNP [88], CuO [

89–91], Al
2
O

3
 [92–95], Cu [96], ZnO/TiO

2
 [97] and Ag [98]. The mechanism of heat transfer enhancement can be concluded for three reasons. The first reason is the 

enhancement of effective thermal conductivity of nanofluids. The second reason is the reduction of the solid-liquid contact angle of nanofluids, thus increasing the capillary 

force in heat pipes. The third reason is the formation of a thin porous layer on the surface of heat pipes, increasing the solid-liquid wettability and capillary force. 

Furthermore, there exists an optimal nanoparticle concentration to balance the capillary force and flow drag force [94]. Vijayakumar et al. [90] revealed that the optimum 

concentration of nanofluid in a heat pipe was dependent on the particle types and the thermal resistance of heat pipe is reduced with the growth of concentration of 

nanofluids. Putra et al. [99] proved that capillary pressure and gravity affect the thermal performance of LHPs. The thermal resistance of the LHP charged with nanofluids 

was less than one charged with pure water. Wang et al. [98] demonstrated that the heat transfer performance and start-up of heat pipe with Ag–H
2
O nanofluids have been 

improved compared with DI water. The Ag–H
2
O nanofluids with a low viscosity and a high thermal conductivity are expected to be the most promising working fluid. 

Yang et al. [89] explored the heat transfer characteristic of a micro-grooved heat pipe filled with CuO nanofluids. The results revealed that the heat transfer coefficients of 

the evaporator section could be enhanced by about 46% and the maximum enhancement rate of critical heat flux could be 30% compared with pure water.

3.1.2 Application of nanofluids in closed two-phase thermosyphons

Various nanofluids have been explored for use in the closed two-phase thermosyphon, including bauxite/water [100], Al
2
O

3
/water [101], TiO

2
/water [102], 

graphene/water [100,103–105], graphene oxide/water [106]. The effect of nanofluids on heat transfer characteristics of thermosyphon is complex. Most results reported an 

enhancement of heat transfer and few reported a deterioration of heat transfer. Its heat transfer characteristics are similar to the pool boiling characteristics. The sediment 

layer can enhance the number of nucleation sites, whereas slurry sediments will decrease the half cone angle or mouth radius of the cavity and decrease the number of 

nucleation sites. Cacua et al. [101] revealed that both the effect of the nanoparticle deposition and surfactant on the boiling heat transfer mechanism had to be taken into 

account to explain the improvement of THP thermal performance. Wlazlak et al. [106] observed that graphene oxide nanofluids enhanced heat transfer of a thermosyphon 

at low heat loads and this enhancement was limited to the evaporator. Zhao et al. [105] revealed that the addition of 0.05 wt% graphene/water nanofluid could cause a 

15.1% reduction of start-up time compared with water. Khandekar et al. [107] demonstrated that the thermal resistance of thermosyphon with nanofluids was higher 

compared with pure water (Fig. 3), due to the increment of wettability and entrapment by nanoparticles in the grooves of the surface.

3.1.3 Application of nanofluids in pulsating heat pipes

The addition of nanoparticles in base fluid can improve the heat transfer of the PHP by experimental and numerical analysis [108–113]. The heat resistance decreases with 

the increment of the temperature of PHP with nanofluids compared to that without nanoparticles. The mechanism was considered for two reasons. Firstly, the increment of 

temperature results in higher thermal conductivity as well as stronger oscillating motion of nanoparticle. In addition, the formation of a thin layer of porous sediments on the 

surface of PHP will enhance the thermal performance of PHP. Xu et al. [111] proposed a three-dimensional numerical model to investigate the thermal transfer 

characteristics of Ag/water nanofluids. The results revealed that the time for the maximum inflection point of the thermal resistance of the heat pipe was shortened. 

Moreover, the heat transfer characteristics of the heat pipe were affected by the heat input and filling ratio. Zhou et al. [110] reported that the maximum reduction of thermal 

resistance by 83.6% was achieved in the PHP charged with a 2 vol% GNP nanofluid in comparison with pure water at the same heat power (80 W) and filling ratio (62%).

3.2 Application of hybrid nanofluids in heat pipes

mesh Wick heat pipe [97] Al2O3/water, Al2O3/EG, TiO2/water, 

TiO2/EG and ZnO/EG

1 vol%-5 vol% 0.25–0.73 10–30 87%

Copper mesh heat pipe [

149]

Graphite/water 0.5 wt%-1.2 wt% 0.61–0.81 1.0–2.0 30–180 0–90 46%

Mesh wick heat pipe [98] Ag/water 0.0008 wt%-0.0032 wt% 0.65–1.15 0.79–0.80 65.29%

Thermosyphon [100] Bauxite nanofluid 1 wt%-4 wt% 200–400 24.3%

Thermosyphon [101] Al2O3/water 24%

Thermosyphon [102] TiO2/water 0.1–0.3 vol% 0.50–0.79 5–20 30–90 36.67%

Thermosyphon [104] Graphene/water 0.02 wt%-0.1 wt% 4–12 30–90 50%

Pulsating heat pipe [108] Ag/water 100 ppm–450 ppm 5–85 20%–80% 33%

Pulsating heat pipe [110] GNP/water 1.2–16.7 vol% 0.65–0.8 0.6–1.3 10–100 45%–90% 83.6%

Pulsating heat pipe [112] Graphene oxide/water 0.25–1.5 g/lit 0.63–0.65 0.93–1.11 10–70 40%

Pulsating heat pipe [113] Graphene/ethanol-water 0.1–1 mg/ml 0.34–0.52 0.55–2 20–60 25.16
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Fig. 3

The thermal resistance of thermosyphon with nanofluids and water [107].



To date, the effect of hybrid nanofluids on heat pipes has been investigated in a few studies, which has an uncertainty. Meanwhile, different volume concentrations and 

different combinations of nanoparticles can affect the thermal transfer performance of the heat pipes [114,115]. Ramachandran et al. [116] studied different nanofluid 

systems (Ag/water, Al
2
O

3
/water and Ag–Al

2
O

3
/water hybrid nanofluids). The results proved that the hybrid nanofluid system was not much effective compared to the 

mono nanofluid system Fig. 4. Zufar et al. [117] revealed that the hybrid nanofluids shorten the start-up time of PHP and lower heat power could achieve start-up pulsations 

compared with water. Xu et al. [118] investigated the effect of different nanoparticle mixture ratios of Al
2
O

3
–TiO

2
/H

2
O hybrid nanofluids on the heat transfer performance 

of TPCT. The results indicated that the 25% Al
2
O

3
 + 75% TiO

2
–H

2
O hybrid nanofluid contributed to the best transfer performance and was effective compared to the 

mono nanofluid system.

Based on the above analysis, nanofluids can extremely improve the heat transfer of heat pipes (thermal resistance was reduced by 18.2%–87%), and nanofluids with high 

thermal conductivity and low viscosity are most welcome in application. Advanced nanomaterials, e.g., graphene, GNTs, Ag, exhibit higher heat transfer enhancement of 

heat pipes compared to metal oxides. Meanwhile, there exists an optimum concentration for nanofluids. Hybrid nanofluids can lead to high thermal performance of heat 

pipes. However, the study on the thermal characteristics of heat pipes filling with hybrid nanofluids is still in the initial stage. More research need to be carried out.

Furthermore, it can be found that no general correlations exist in heat pipes charged with nanofluids, since the thermal performance of heat pipes depend not only on the 

thermal properties of nanofluids, such as nanoparticle size, thermal conductivity, viscosity and stability, but also on the operating condition and structural parameters. It is 

extremely arduous to find accurate relationships among different heat pipe types and experimental setups. There is a lack of comparability between different experimental 

works conducted by different groups even under similar experimental conditions. Machine learning technology could shed a light on tackling the complexity of nanofluids 

heat transfer and provide guidance for the optimal design of various types of heat pipes.

4 Machine learning: thermal conductivity, viscosity and thermal performance of heat pipes with 

nanofluids

The confidence and accuracy of the predictive model depend on selecting appropriate algorithms and considering all influential factors. Therefore, in this section, the 

mechanisms of ANNs and LSSVM are elaborately introduced to provide deep insight, and the applications of machine learning approaches in modelling thermal 

conductivity, viscosity of nanofluids and thermal performance of heat pipes charged with nanofluids are discussed.

4.1 Machine learning methods

In engineering problems and systems, the regression type of machine learning approach is often used to recognize the association between input and output variables of a 

system. The machine learning predicting the viscosity and thermal conductivity of nanofluids as well as performance of heat pipes mainly includes ANNs and LSSVM. 

Among them, ANNs are acceptable for large sample cases, because they have the ability to model complex nonlinear relationship and generalization, although they have a 

high demand for computing resources. LSSVM is acceptable for small samples, which is arduous to deal with large samples. The general classification of these used 

approaches is explained and represented in Fig. 5.

4.1.1 Artificial neural networks

ANNs have a set of linked neurons relating the input data to appropriate output by statistical weights. Fig. 6 illustrates the schematic structures for a typical ANN. In ANNs 

models, ,  is presented as an input value of th neurons:
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Fig. 4

The effect of heat load on the thermal resistance of heat pipe [116].
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Fig. 5

Categories of regression algorithms.

(1)



where  is the weight vector between the th neuron and the th neuron,  indicates the neuron's state:
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According to the employed algorithm, various functions are developed as activation function. Feed-forward ANNs such as MLP-ANN and RBF have been widely used in 

the scientific area. This type of network consists of various neurons in three distinct layers including: an input layer which attains the input data; one or more inter-layers, 

namely hidden layers which carry out the processing step; and an output layer which is connected to the forecasted output result with predefined weight functions. In 

general, the structure parameters of these networks such as the number of neurons and layers should be pre-determined and significantly influence the accuracy and time 

consumption. Moreover, GMDH does not need to pre-determine the structural parameters such as the number of the hidden layer and the number of active neurons, due to 

the self-regulation feature. ANFIS combines the functions of neural network and fuzzy reasoning system, and it has the advantages of high processing speed, self-learning 

ability and easy to solve nonlinear problems with fuzzy logic. In addition, large samples size is the pre-condition of the employment of ANN. Several optimization 

algorithms such as PSO, LM, ICA and GA are employed in ANN for minimizing the error. Details of these algorithms are represented in Refs. [36,119].

4.1.2 Least square Support Vector Machines

SVM-based algorithms have a cost function. A more accurate result can be achieved by minimizing the cost function. The main advantage of SVMs is relatively simple and 

straightforward optimization, which is due to the existence of their convex objective function, and it is suitable for the small sample size or high-dimensional data. Its 

performance is mainly up to the kernel function. To overcome this restriction that the SVM method cannot address the overfitting problems, the LSSVM method is 

developed to make it feasible to overcome the overfitting. Generally, the LSSVM nonlinear function is,

To minimize the topology, the fitting error function is defined to solve the regression problem:

The general process of LSSVM-based methods is demonstrated in Fig. 7. In the modelling process, the step in which the obtained model is evaluated by optimization 

algorithms is crucial to achieving an accurate model. GA and PSO are the most applicable optimization algorithms.

(2)
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Structure of ANN topology.

(3)

(4)
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4.2 Prediction of thermal conductivity by machine learning approaches

The thermal conductivity and viscosity which are affected by a multitude of factors and have complexity and uncertainty should be determined by pre-experiments before 

designing the thermal system used with nanofluids. Machine learning in the area to perform prediction is extremely pivotal since the number of experiments is reduced and 

then the costs are reduced. The review on the application of machine learning methods in predicting the thermal conductivity of conventional and hybrid nanofluids is 

carried out.

4.2.1 Prediction of thermal conductivity of conventional nanofluids

Machine learning has been widely employed to predict the thermal conductivity of nanofluids [120–124]. Some typical studies on machine learning in thermal conductivity 

of nanofluids and their corresponding R
2
 values used for evaluating the model confidence are summarized in Table 6. It is seen that temperature, concentration and 

nanoparticle size, were commonly taken as the input variables. The maximum R
2
 value is 0.99, although a low value of 0.875 is also noticed. In some cases, R

2
 is not 

enough to validate the results obtained and other measures such as MSE may also be applied to confirm the validation of the predictions. The neural network structure such 

as number of hidden layers and neurons, and weight coefficient should be precisely designed in a particular problem to improve the prediction accuracy. Hemmat Esfe et al. 

[123] predicted the thermal conductivity of Al
2
O

3
/water nanofluids by utilizing the MLP-ANN and mathematical correlation. The results indicated that the ANN model 

was more accurate compared with mathematical correlation, based on these statistical criteria of R-squared and MSE. Tahani et al. [124] demonstrated the accuracy of the 

ANN model was acceptable because the R
2
 value was 0.999. Ariana et al. [37] predicted the thermal conductivity of Al

2
O

3
/water nanofluid by utilizing the MLP-ANN. 

The results indicated that the MSE for the test and training stage was 6.3 × 10
−4

 and 3.3 × 10
−4

,respectively which prove the high accuracy of the model.

Considering more influential factors contribute to more precise results [36]. For instance, Longo et al. [125] presented two ANN models for predicting the thermal 

conductivity of oxide-water nanofluids. One of them accounts for the effect of temperature, particle loading and thermal conductivity of nanoparticles, while the other one 

accounts for the effect of nanoparticle size in addition to the above-mentioned factors, which exhibits better performance.

Several novel models, such as coupling optimizing intelligence methods and optimal algorithms, can contribute to higher accuracy. For instance, Ahmadi et al. [126] 

presented two models, LSSVM-GA model and GMDH model, to estimate the thermal conductivity of CuO/EG nanofluid. The results showed that the R-squared values 

Process of LSSVM models.

alt-text: Table 6

Table 6

Machine learning research in thermal conductivity of conventional nanofluids.

Nanofluid Input variables Algorithms R-squared value

Al2O3/water [123] Temperature, concentration Correlation, MLP 0.991, 0.99988

COOH-MWCNTs/antifreeze [151] Temperature, concentration Correlation, ANN 0.988

MgO/water [152] Temperature, concentration Correlation, ANN

Al2O3/EG, Al2O3/water [36]. Size, temperature, concentration GMDH 0.9958, 0.9462

Al2O3/water [37] Size, temperature, concentration MLP 0.971875

Twenty-six nanofluids [153] Size, temperature, concentration ANN 0.9309

Al2O3/water-EG [154] Temperature, concentration Correlation, ANN 0.9955, 0.9993

Al2O3/water [126] Size, temperature, concentration LSSVM, LM-BP, SOM 0.89999, 0.87575, 0.88125

CuO/EG [127] Size, temperature, concentration LSSVM-GA, GMDH 0.991, 0.994

Al2O3/water-EG [120] Temperature, concentration ANN 0.9974

CuO/water-EG [121] Temperature, concentration Correlation, ANN

CNTs/water [122] Temperature, concentration Correlation, ANN

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely purposed for providing corrections to the table. To preview 

the actual presentation of the table, please view the Proof.



for the LSSVM-GA model and GMDH model were 0.994 and 0.991. In another research [127], LSSVM-GA and GMDH were used to predict the thermal conductivity of 

Al
2
O

3
/water. The results revealed that these algorithms are appropriate tools for estimating thermal conductivity.

4.2.2 Prediction of thermal conductivity of hybrid nanofluids

Similar to the conventional nanofluids, several studies have been proposed to predict the thermal conductivity of hybrid nanofluids [128,129]. Machine learning research in 

thermal conductivity of hybrid nanofluids are listed in Table 7. The model structure also affects predictive accuracy and ability [35]. For instance, Hemmat Esfe et al. [34] 

proposed a 2-layer ANN model for thermal conductivity ratio of MWCNT-SiO
2
/EG nanofluids. The results revealed that the structure with 10 neurons in each layer 

contributed to the highest accuracy. Kannaiyan et al. [130] proposed a MLP-ANN model for thermal conductivity of Al
2
O

3
–SiO

2
/water hybrid nanofluids. The results 

revealed that the structure, which chose two hidden layers, with 10 neurons in each layer, was optimal.

4.3 Prediction of viscosity by machine learning approaches

In this section, a review on the application of machine learning methods in predicting the viscosity of conventional and hybrid nanofluids is carried out.

4.3.1 Prediction of viscosity of conventional nanofluids

Some typical studies on machine learning in viscosity of nanofluids and their corresponding R
2
 values used for evaluating the model confidence are summarized in Table 8. 

It is seen that temperature and concentration were commonly taken as the input variables. The maximum R
2
 value is 0.99, although a low value of 0.96 is also noticed. The 

neural network structure and weight coefficient should be precisely designed in a particular problem to improve the prediction accuracy. Esfe et al. [131] proposed an ANN 

model to estimate the dynamic viscosity of TiO
2
/water. The ANN model utilized one hidden layer with four neurons, which was extremely accurate with R-squared value 

of 0.9998. Kumar et al. [132] reported a structure which chose 6 neurons in hidden layers based on the results of testing various structures and MSE value of above 

mentioned structure was 0.01118.

Considering more influential factors contribute to more precise results [133]. For instance, Esfe et al. [134] predicted the dynamic viscosity of Fe/water nanofluids at 

different sizes (37, 71 and 98 nm), temperature and volume fraction, by utilizing the ANN. The results indicated that considering the size of nanostructure as another input 

variable led to more accuracy and comprehensive model.

Different algorithms are compared to obtain an optimal prediction model. For instance, Ahmadi et al. [135] predicted the dynamic viscosity of Fe
2
O

3
/water nanofluids at 

different sizes, temperatures and volume fractions by utilizing the GHPSO ANFIS, MLP, GA-RBF, and LSSVM. The results indicated that the maximum value of R-

squared among the above-mentioned approaches belonged to GA-RBF, namely 0.9982.

4.3.2 Prediction of viscosity of hybrid nanofluids

alt-text: Table 7

Table 7

Machine learning research in thermal conductivity of hybrid nanofluids.

Nanofluid Input variables Algorithms R
2

 value

Al2O3–SiO2/water [130] Temperature, concentration MLP

CuO-SWNTs/EG-water [155] Temperature, concentration Correlation, MLP

Cu–TiO2/water-EG [156] Temperature, concentration Correlation, MLP 0.995, 0.999

MWCNT-SiO2/EG [34] Temperature, concentration Correlation, MLP 0.9864, 0.9977

CNT-Fe3O4/water [157] Temperature, concentration MLP 0.999

Cu–Zn/water [119] Temperature, concentration Correlation, ANFIS

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely purposed for providing corrections to the table. To preview 

the actual presentation of the table, please view the Proof.
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Table 8

Machine learning research in viscosity of conventional nanofluids.

Nanofluid Input variables Method(s) R-square value(s)

ZnO-EG [158] Temperature, concentration Correlation

MWCNT/water [159] Temperature, concentration ANN

TiO2/water [131] Temperature, concentration Correlation, ANN 0.999

Fe3O4/paraffin [160] Temperature, concentration, shear rate GMDH 0.96

Fe-EG [133] Temperature, concentration Correlation, ANN

Fe2O3/water [135] Temperature, concentration, size CHPSO-ANFIS, MLP, GA-RBF, LSSVM 0.9974,0.9970, 0.9982,0.9930

Different nanofluids [161] Temperature, concentration, size Hybrid GMDH 0.995

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely purposed for providing corrections to the table. To preview 

the actual presentation of the table, please view the Proof.



The machine learning approaches for estimating the viscosity of hybrid nanofluids and their corresponding R-squared values used for evaluating the model confidence are 

listed in Table 9. The model structure also affects predictive accuracy and ability. For instance, Esfe et al. [136] proposed an ANN model for dynamic viscosity of Al
2
O

3
 - 

MWCNT/5W50 nanofluids. The results revealed that the structure with 35 neurons provided the highest accuracy. Moghaddari et al. [137] designed the ANN model in 

which the designed hidden layer had 20 neurons, and R-squared value for the model was 0.9897.

In addition to temperature and concentration, the shear rate and viscosity of base fluids were also regarded as input variables. For example, Nadooshan et al. [138] predicted 

the dynamic viscosity of SiO
2
-MWCNT/10W40 nanofluids at different shear rates, temperatures and concentrations by utilizing the ANN. The results indicated that the 

MSE and R-squared values were 1.94 × 10
−4

 and 0.9948 respectively. Utilizing the ANN, Moghaddari et al. [137] predicted the dynamic viscosity of various hybrid 

nanofluids including MWCNTs. The R-squared value for ANN model was 0.9897.

4.4 Prediction of performance of heat pipes charged with nanofluids

Machine learning has been applied to predict the thermal performance of heat pipes charged with nanofluids and proved to be an extremely powerful and efficient 

predictive tool. Limited studies on the application of machine learning in heat pipes charged with nanofluids are listed in Table 10. Different nanoparticles including CNT, 

CNT-Ag, Ag, Al
2
O

3
, and Fe

3
O

4
 are considered. Thermal efficiency, thermal resistance and temperature were considered the output variables. The input variables include 

operating conditions (input power magnetic field strength, mass rate in condenser section and filling ratio), the properties of nanofluids (concentration and thermal 

conductivity) and structure of heat pipes (the ratio of inner diameter to the length). Presently, the heat pipe in this field of study is mainly thermosyphon and pulsating heat 

pipe. Kahani and Vatankhah [139] designed an optimized MLP-ANN to predict the thermal performance of thermosyphon heat pipe charged with Al
2
O

3
/water nanofluids. 

The results showed that volume concentration was the paramount parameter for estimating the thermosyphon performance. Several novel models coupling optimizing 

intelligence methods and optimal algorithms are considered for predicting the performance of heat pipes charged with nanofluids. Shanbedi et al. [140] proposed a LM-

ANN model to estimate the thermal performance of thermosyphon heat pipe with CNT/water and CNT-Ag/water nanofluids. The results obtained were in reasonable 

agreement with the experimental results. The GA-MLP model was used to predict the thermal efficiency and resistance of thermosyphon with Ag/water nanofluids at a 

magnetic field by Salehi et al. [141]. Some algorithms were compared by Malekan et al. [142]. The results revealed that the MLP model presented the best predictive 

performance, followed by ANFIS, and GMDH.

Based on the above analysis, it can be concluded that machine learning approaches, especially ANNs, could provide significant information on the thermal performance of 

heat pipes with nanofluids. Prediction accuracy can be improved by combining the optimization algorithms (PSO and GA) and intelligent methods, and considering more 

input variables such as particle size. Furthermore, the structure of ANN is required to be optimized for the best fit in each case, and the most appropriate method for 

predictive modelling might be different in different case studies.

5 Challenges – current status and deficiency

The combination of nanofluids and heat pipes is efficient and practical, which could be another attractive new subject in thermal systems. To enable this, several identified 

scientific challenges need to be tackled. These are detailed below.
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Table 9

Machine learning research in viscosity of hybrid nanofluids.

Nanofluid Input variables Method(s) R-square value(s)

MgO-MWCNT/EG [158] Temperature, concentration Correlation

MWCNT-Si O2/AE40 [162] Temperature, concentration Correlation, ANN

SiO2-MWCNT/10W40 [138] Temperature, concentration, Shear rate ANN 0.9948

CuO-MWCNT/SAE 5W-50 [163] Temperature, concentration Correlation, ANN 0.998, 0.9998

Various nanofluids including MWCNTs [137] Temperature, concentration, viscosity of base ANN 0.9897

Al2O3-MWCNT/5W50 [136] Temperature, concentration Correlation, ANN 0.982, 0.998

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely purposed for providing corrections to the table. To preview 

the actual presentation of the table, please view the Proof.
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Table 10

Machine learning research in thermal performance of heat pipes charged with nanofluids.

Method Heat pipe Nanofluid Input variables Output variables R
2

LM-MLP [140] Thermosyphon
CNT/water and CNT-

Ag/water

Input power and concentration Temperature

GA-MLP [141] Thermosyphon Ag/water Magnetic field strength, concentration and input power
Thermal efficiency and thermal 

resistance

MLP [139]
Wickless heat 

pipe

Al2O3/water
Input power, concentration, filling ratio and mass rate in 

condenser section

Thermal efficiency of wickless heat 

pipe

0.9822

MLP, ANFIS and GMDH 

[142]

Pulsating heat 

pipe

Fe3O4/water and 

γFe2O3/water

heat power, thermal conductivity and the ratio of inner diameter 

to the length

Thermal resistance

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely purposed for providing corrections to the table. To preview 

the actual presentation of the table, please view the Proof.



5.1 Challenges in the properties of nanofluids

In the properties of nanofluids, the main challenges focus on difference and uncertainty on thermal conductivity and viscosity of nanofluids, undesirability on stability 

property of nanofluid, as well as inadequate cognition on the mechanism and characteristics of hybrid nanofluids.

5.1.1 Difference and uncertainty on thermal conductivity and viscosity of nanofluids

There are difference and uncertainty on thermal conductivity and viscosity of nanofluids even for the same kind, since the thermal conductivity and viscosity of nanofluids 

are simultaneously affected by a multitude of factors particularly micro factors for instance clustering, particle charge condition and micro motion etc. The difference and 

uncertainty lead to hardly getting accurate design value and variation law, thus seriously hindering the more popular application of nanofluids.

5.1.2 Undesirability on stability property of nanofluids

The stability of nanofluids is critical to maintaining the constant thermal performance of nanofluids and heat transfer performance of systems applied with nanofluids. The 

agglomeration tendency and sedimentation of nanoparticles increase with time, thus thermal performance decreases with time. Several research have focused on improving 

the stability, but the results are still undesirable. In addition, the effects of surfactant on thermo-physical performance (thermal conductivity and viscosity) of nanofluids are 

ambiguous. Some researchers report that although surfactants can improve the dispersion, they also cause the increment in viscosity and decrement in thermal conductivity. 

Others report that some surfactants improve the dispersion and thermal conductivity and increase viscosity only slightly and even present drag reduction.

5.1.3 Inadequate cognition on the mechanism and characteristics of hybrid nanofluids

A noticeable thermal conductivity enhancement of hybrid nanofluids compared to normal nanofluids has been reported. However, the complex heat transfer and rheological 

mechanisms of hybrid nanofluids have not been sufficiently understood. So far, several types of hybrid nanoparticles have been investigated, such as: Al
2
O

3
/CNT, Cu–

TiO
2
, CNT-Au and many more. Each nanoparticle presents its characteristics. The selection of nanoparticles is significant for the thermal conductivity and stability of 

hybrid nanofluids. This is because the combination of nanoparticles with better stability but low thermal conductivity and better thermal conductivity might improve the 

thermal conductivity and stability of nanofluids. However, what nanomaterials and what proportion will contribute to the hybrid nanofluid exhibiting the best thermal 

performance is not yet clear.

5.2 Challenges in the application of nanofluids in heat pipes

In the application of nanofluids in heat pipes, the major challenges include no appropriate standard for selecting the nanofluids in heat pipes, lack of comprehension of the 

time-dependent property of heat pipes charged with nanofluids and application of nanofluids in heat pipes restricted in terms of technology, economic and environment.

5.2.1 No appropriate standard for selecting the nanofluids in heat pipes

Nanofluids with high thermal conductivity and low viscosity are welcome in application. However, the increment in thermal conductivity is invariably at the expense of 

viscosity. Meanwhile, it is unclear what kind of nanofluids is most suitable for various types of heat pipes under different application scenarios.

5.2.2 Lack of comprehension of the time-dependent property of heat pipes charged with nanofluids

The agglomeration tendency and sedimentation of nanoparticles increase with operation time, thus thermal performance of heat pipes charged with nanofluids will 

deteriorate. However, time-dependent properties of heat pipes charged with nanofluids are rather rarely investigated. Without a clear comprehension of the time-dependent 

property for heat transfer performance of heat pipes charged with nanofluids, the heat pipes charged with nanofluids will not be widely applied.

5.2.3 Application of nanofluids in heat pipes restricted in terms of technology, economic and environment

Firstly, the technical standards such as filling rate and inclination angle of heat pipes charged with nanofluids and evaluation standards have not yet been formulated, which 

also hinder their application at the industry level. Secondly, the cost of nanofluids is a paramount issue for the wide application of nanofluids, and if the cost is too high 

(compared to the benefits) it will also hinder the application of nanofluids. Finally, the application of nanoparticles affects the environment in both positive and negative 

ways. On the one hand, nanofluid has a multitude of benefits for the environment such as fuel-saving, saving raw materials and wood preservatives. On the other hand, 

there are also potential risks and devastating effects on the environment. For instance, nanoparticles in the air can cause air pollution and ozone layer depletion, and it might 

disturb the soil environment and aquatic ecosystem by interfering with the composition of microbial population. To date, there are few literatures on evaluating heat pipes 

charged with nanofluids from technical, economic and environmental aspects.

5.3 Challenges in the predictive models based on machine learning

In the predictive models based on machine learning, there are some problems including limitation of predictive models based on machine learning approaches, little 

attention on data volume as indicator and the difficulty in determination of data volume, and no appropriate standard for selecting the most precise machine learning 

method.

5.3.1 Limitation of predictive models based on machine learning

Established by the machine learning, the predictive models are only applicable to their own experimental scope under a specific condition, which may eclipse the predictive 

models. Utilizing the predictive model, it could be easy and accurate to identify the optimum concentration of nanofluids before application without pre-experiments and 

numerical calculations. However, if the predictive model is not universal, then the main purpose of the model that reduces calculation time and the cost of pre-experiments 

will not be achieved. Meanwhile, there are some available models that only consider limited influencing factors, without considering the shape and type of nanoparticles, 

which may affect the accuracy and comprehensiveness of the models.

5.3.2 Little attention on data volume as indicator and difficulty in determination of data volume

In addition to the accuracy of prediction, the data volume is also a significant indicator for evaluating machine learning methods. However, little attention is current being 

paid to the data volume issue. The sampling size is vital in machine learning approach. It is necessary to seriously consider the size of the data that are used to train the 

model, since more data could carry high expenses in data production and collection, while small sized data may easily lead to random or systematic errors during the model 

training, which might obscure the internal regularity of subject. A balance of compromise between the cost and sample size should be identified before building the 

sampling data.

5.3.3 No appropriate standard for selecting the most appropriate machine learning algorithm

The most appropriate method for predictive modelling might be different in different case studies. The standard for select the appropriate methods have not yet been 

established, which is the major challenge in the future. Presently, the ANN is a popular method for the nanofluids simulation and prediction. However, comparisons among 



all algorithms of various ANNs have not yet been undertaken and the most appropriate algorithm and structure have not yet been identified.

6 Opportunities for future works

To tackle the above challenges, further opportunities for future research and development are identified and these are outlined below:

6.1 Opportunities in the properties of nanofluid

Given the current development status and challenges, the solutions for the properties of nanofluids are outlined as, exploring the thermo-physical properties of nanofluids 

and establishing unified standards, improving the stability of nanofluids, and investigating the heat transfer mechanism and characteristics of hybrid nanofluids.

6.1.1 Exploring the thermo-physical properties and establishing unified standards

Micro factors such as clustering, particle charge condition and micro motion are the main reason for difference and uncertainty. Methodical research at nanoscale should be 

carried out to unveil the intricate mechanisms of thermo-physical properties. The different preparation method of nanofluid, thermal conductivity and viscosity measurement 

and characterization procedures are the main source of inconsistent data. Therefore, unified standards in these areas should be established to minimize difference. 

Meanwhile, the approach of preparation, the stability method, duration and evaluating method should be introduced in all studies.

6.1.2 Improving the stability of nanofluids

The stability of nanofluids is crucial to the long-term performance of heat pipes charged with nanofluids. More research is needed to explore the effect of surfactants on 

nanofluids. Both viscosity and thermal conductivity of nanofluid should be considered when selecting surfactants. In addition, further reducing the size of nanoparticles 

(<10
−9

) and rational designing composition ratio of hybrid nanoparticles might find more stable particles than nanoparticles, and new mechanisms should be developed to 

avoid sedimentation and agglomeration.

6.1.3 Investigating the heat transfer mechanism and characteristics of hybrid nanofluids at nanoscale

The complex rheological changes and heat transfer mechanism of hybrid nanofluids have not been sufficiently understood. Therefore, more research at nanoscale is needed 

to understand them and make use of hybrid nanofluids in heat pipes. In addition, more experiments need to be performed to investigate the properties of various hybrid 

nanofluids because each nanoparticle presents its own characteristics. Therefore, we can identify what nanomaterials and proportion can contribute to hybrid nanofluids 

exhibiting the best thermal performance and employ them to various heat pipes.

6.2 Opportunities in the application of nanofluids in heat pipes

Given the current development status and challenges, the solutions for the application of nanofluids in heat pipes are outlined as, using advanced nanoparticles and 

conducting more systematic investigations, focusing on the nanoparticle deposition layer and life expectancy of heat pipes, and developing the heat pipes charged with 

nanofluids in technical, economic and environmental aspects.

6.2.1 Using advanced nanomaterials and conducting more systematic investigations

Some advanced and precious nanomaterials like CNT, Graphene, Au and Ag, achieve better dispersion and lower viscosity at very low concentration. Therefore, the 

application of those advanced nanoparticles could be a significantly promising direction. Meanwhile, more systematic and carefully planned investigations should be carried 

out to establish fundamental results for diverse heat pipes charged with different nanofluid species subjected to variable operating conditions and help to form the industry 

standard for selecting appropriate nanofluids in various cases.

6.2.2 Focusing on the nanoparticle deposition layer

The nanoparticle deposition layer is the main reason to significantly affect the heat transfer performance of heat pipes. The morphology and thickness of the nanoparticle 

deposition layer changed with operation time is not well understood, which should be intensively investigated to understand the time-dependent property of heat pipes 

charged with nanofluids. For instance, whether the deposition layer becomes thicker or maintains a constant thickness during the operation should be explored. Meanwhile, 

the life expectancy of heat pipes charged with nanofluids should also be considered. Before the heat transfer performance of heat pipes charged with nanofluids fail, it is 

necessary to replace the new nanofluids and clean the heat pipes timely.

6.2.3 Developing the heat pipes charged with nanofluids in technical, economic and environmental aspects

Before thermal systems applied with heat pipes and nanofluids transform from small-scale experiments to large-scale industrial production, the reliability of thermal systems 

must be evaluated in technical, economic and environmental aspects. Unified technical and evaluation standards should be formulated to promote mass production of heat 

pipes charged with nanofluids. More attention should be paid on low-cost production techniques which could provide great thermal performance of nanofluids. In addition, 

natural non-toxic and non-polluting nanoparticles are encouraged for the investigation, and green technologies should also be developed for preparation of nanoparticles or 

nanofluids.

6.3 Opportunities in the predictive models based on machine learning

Given the current development status and challenges, the solutions for the application of nanofluids in heat pipes are outlined as, establishing the large, exclusive large 

databases and expanding the input variables, serving the data volume as the evaluated indicator and verifying the adequacy of data volume, and defining specific standard 

by horizontal comparison and using the more advanced algorithm.

6.3.1 Establishing the large, exclusive large databases and expanding the input variables

Large, Eexclusive large databases for all thermo-physical properties of various nanofluids and the thermal performance of various heat pipes applied with nanofluids should 

be established and used to train the universal predictive models. Effort to establish the large databases can firstly be made including the advanced nanofluids and proper 

ranges of nanoparticles size and concentration. Utilizing the predictive model to identify the optimum nanoparticle concentration for each nanofluid must be the next step in 

heat pipes research. In addition, adding the input variables such as the particle type and shape not only could solve the limitation of prediction model, but also improve the 

comprehensiveness and accuracy of the model.

6.3.2 Serving the data volume as the evaluated indicator and verifying the adequacy of data volume

At the same prediction accuracy, if the amount of data required by the prediction model is small, the number of experiments and simulation calculations required will be 

reduced. Therefore, the data volume is also a significant indicator for evaluating machine learning methods, which should be paid more attention. The probably 



approximately correct (PAC) learning, which can measure the learnability of a specific machine learning algorithm with a specific sampling size, is recommended to verify 

the sufficiency of sampling size by minimal empirical risk.

6.3.3 Defining specific standard by horizontal comparison and using the more advanced algorithm

An appropriate machine learning approach to establish the predictive model is also the key to ensuring the performance of machine learning models. Therefore, more 

rigorous horizontal comparisons about the advantages and disadvantages of various machine learning approaches are needed to define the criteria to find their best range of 

applicability. Also, attention should be paid to a number of issues including the fine tuning of the algorithm structures and problem objectives, the modification of the 

governing equations, and the form of the input parameter, etc. In addition, with the rapid development of computer technology, more advanced machine learning (deep 

learning, e.g., convolutional neural network (CNN), recurrent neural network (RNN), etc.) technology has been applied to a multitude of fields, and has been proven to 

have better prediction effect than traditional algorithms. Therefore, the combination of large databases for nanofluids and the state-of-the-art machine learning technology 

will provide a new method for this field.

7 Conclusions

The thermal conductivity and viscosity of nanofluids depend on many parameters and have the difference and uncertainty. Advanced nanoparticles such as graphene, 

CNTs, etc., are encouraged to be explored due to high thermal conductivity and an unexpected reduction in the viscosity at low concentration. The different preparation 

methods of nanofluid, measurement and characterization procedures are the main source of difference and uncertainty on thermal conductivity and viscosity of nanofluids. 

Unified standards in these areas should be established to minimize difference. In addition, the effects of surfactant on thermo-physical performance of nanofluids are 

ambiguous. The stability of nanofluids can be improved by further reducing the size of nanoparticles (<10
−9

) and rational designing composition ratio of hybrid 

nanoparticles.

For majority of heat pipes, the addition of nanoparticles can extremely increase the heat transfer (thermal resistance was reduced by 18.2%–87%) mainly due to the higher 

thermal conductivity of nanofluids and the increment of nucleation sites, and there exists an optimum concentration for nanofluids. However, it is unclear what kind of 

nanofluids is most suitable for various types of heat pipes under different application scenarios. Therefore, more systematic investigations should be carried out to help to 

form industry standard for selecting appropriate nanofluids in various cases.

Much work mentioned in this paper has demonstrated that machine learning approaches especially ANNs could give excellent prediction. Higher prediction accuracy can 

be achieved by coupling the optimization algorithms (PSO and GA) and the intelligent methods. However, the prediction model has limitations which could be addressed 

by establishing large, exclusive large databases and expanding the input variables such as the particle type and shape. Presently, the evaluation of the prediction model is 

only the prediction accuracy, and the data volume should also be considered. In this review, the PAC learning is recommended to verify the sufficiency of sample size by 

minimal empirical risk. However, the most appropriate method for predictive modelling might be different in different case studies. Therefore, more rigorous horizontal 

comparisons are needed, and more advanced machine learning such as CNN and RNN is encouraged to combine with large databases of nanofluids to form a universal 

model.
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Highlights

• There are some differences and uncertainties on thermal conductivity and viscosity of nanofluids.

• There is a lack of comprehension of the time-dependent property of heat pipes.

• There is a limitation of predictive models based on machine learning techniques.

• The mechanism of thermo-physical properties for nanofluids at nanoscale should be explored.

• The exclusive large databases should be established and the input variables should be expanded.

Queries and Answers

Q1

Query: Please confirm that the provided email “zwang@gdut.edu.cn” is the correct address for official communication, else provide an alternate e-mail address to replace the existing

one, because private e-mail addresses should not be used in articles as the address for communication.

Answer: It is correct.

Q2

Query: Please note that author’s telephone/fax numbers are not published in Journal articles due to the fact that articles are available online and in print for many years, whereas

telephone/fax numbers are changeable and therefore not reliable in the long term.

Answer: It is alright. Thank you.

Q3

Query: Have we correctly interpreted the following funding source(s) and country names you cited in your article: Department of Science and Technology of Guangdong Province,

China; European Commission, European Union; National Key R&D Program of China, China?

Answer: Yes

Q4

Query: Please confirm that given names and surnames have been identified correctly and are presented in the desired order and please carefully verify the spelling of all authors' names.

Answer: Yes



Q5

Query: Your article is registered as a regular item and is being processed for inclusion in a regular issue of the journal. If this is NOT correct and your article belongs to a Special

Issue/Collection please contact l.daniel@elsevier.com immediately prior to returning your corrections.

Answer: Yes


