1	A Test of the Biogenicity Criteria Established for
2	Microfossils and Stromatolites on Quaternary Tufa and
3	Speleothem Materials Formed in the "Twilight Zone" at
4	Caerwys, U.K.
5	
6	A.T. Brasier ^{1*} , M.R. Rogerson ² , R. Mercedes-Martin ² , H.B. Vonhof ³ and J.J.G.
	-

7 Reijmer³.

8 1*: Corresponding Author: School of Geosciences, Meston Building, University

9 of Aberdeen, Old Aberdeen, Scotland, UK. AB24 3UE. Email:

10 <u>a.brasier@abdn.ac.uk;</u> Telephone: +44(0)1224 273 449; Fax: +44(0)1224 278

11 585.

12 2: Department of Geography, Environment and Earth Science University of

13 Hull Cottingham Road, Hull, UK. HU6 7RX

14 3: Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan

15 1085, 1081HV, Amsterdam, The Netherlands

16

17 **Running title:** Biogenicity of tufa stromatolites

19 Abstract

20 The ability to distinguish the features of a chemical sedimentary rock that can 21 only be attributed to biology is a challenge relevant to both geobiology and 22 astrobiology. This study aimed to test criteria for recognizing petrographically the 23 biogenicity of microbially influenced fabrics and fossil microbes in complex Quaternary stalactitic carbonate rocks from Caerwys, UK. We found that the 24 25 presence of carbonaceous microfossils, fabrics produced by the calcification of 26 microbial filaments, and the asymmetrical development of tufa fabrics due to the more rapid growth of microbially influenced laminations could be recognized as 27 biogenic features. Petrographic evidence also indicated that the development of 28 29 "speleothem-like" laminae was related to episodes of growth interrupted by 30 intervals of non-deposition and erosion. The lack of any biogenic characteristics in these laminae is consistent with their development as a result of variation in the 31 32 physico-chemical parameters that drive calcite precipitation from meteoric waters 33 in such environmental settings.

Key words: microfossil, stromatolite; biogenicity; carbonate; tufa; speleothem

36 Introduction

37	The ability to distinguish those features of a chemical sedimentary rock that can
38	only result from biology has proven to be a challenge for carbonate deposits (e.g.,
39	Wright and Barnett, 2015). As such an aim is essential for astrobiology and
40	geobiology research (e.g., Cady and Noffke, 2009), we tested the ability to
41	recognize signs of life and identify fossilized microbiota in Quaternary tufas and
42	speleothem materials with the use of biogenicity criteria developed to recognize
43	ancient microfossils (Sugitani et al., 2007; Wacey, 2009) and stromatolites (Buick
44	et al., 1981; Hofmann, 2000). Of particular relevance to life detection in
45	carbonates is the issue of a boundary that has been somewhat arbitrarily drawn
46	between "speleothem" terrestrial carbonate rocks that form in dark caves,
47	typically consisting of coarse columnar crystals that grow at rates of up to around
48	100 microns per year and are assumed to be essentially abiotic (e.g., Fairchild et
49	al., 2006; Frisia and Borsato, 2010), and spring and stream "tufa" carbonate rocks.
50	The latter are very similar to speleothem carbonate rocks, but they form in spring,
51	stream and lake settings where photosynthetic cyanobacteria, algae and plants
52	abound (e.g., Andrews and Brasier, 2005; Brasier et al., 2010) and are most
53	commonly comprised of small "micritic" calcite crystals. Unlike speleothems,
54	tufas are increasingly presumed to be biotically influenced (e.g., Freytet and
55	Verrecchia, 1998; Arp et al., 2001; Pedley, 2014). Tufas grow more rapidly than
56	speleothems, at rates of several millimeters to centimeters per year. There is

57	increasing recognition that tufa and speleothem systems form part of a continuum
58	that also includes hydrothermal "travertines" (Rogerson et al., 2014), which
59	suggests that some aspects of speleothem growth are likely to be enhanced by
60	microbial growth in some instances (Cacchio et al., 2004).

61

To test whether existing biogenicity criteria for microfossils and stromatolites 62 63 could distinguish biotic from abiotic features in chemical sedimentary precipitates, we applied them to the potentially complex specimens that grow in 64 65 the so-called "twilight zone" at the entrance to modern caves (see Jones, 2010), 66 and in caverns of Quaternary tufa deposits. Carbonate rocks that formed in a twilight zone where there is a transition from tufa to speleothem carbonate rocks 67 68 include the Holocene barrage tufa deposit located at Caerwys, north Wales, UK (Figs. 1 and 2; Pedley, 1987). This tufa deposit contains several meter-scale 69 70 cavities or caverns that are locally decorated with speleothem-like stalactitic 71 calcite. The cavities are a primary feature that formed behind "curtains" of petrified moss that draped over tufa dams known as "barrages" (Figs. 2 and 3). 72 We examined whether characteristics of the fabrics of specimens that formed in 73 74 these twilight zone conditions could be differentiated from those formed biotically 75 under the influence of photosynthesisers ("tufa-like"), and those formed 76 abiotically in the dark ("speleothem-like"). We also determined which

petrographic criteria developed for distinguishing biotic from abiotic precipitates
were most successful when applied to these Holocene specimens, with potential
implications for early Earth studies and astrobiology searches.

80

81 Abiotic vs biotic origins of tufas and speleothems

82 Calcite precipitation in streams where tufas form was, until recently, most

commonly viewed as a purely physico-chemical process (e.g., Zhang et al., 2001)

84 in which CO_2 outgasses from fluids causing them to become supersaturated with

85 respect to calcite, as reflected in the net thermodynamic equilibrium equation:

86
$$Ca^{2+} + 2HCO_3 <-> CaCO_3 + CO_2 + H_2O$$

 CO_2 gas enrichment in meteoric waters occurs where they filter through biogenic 87 88 CO₂-rich soil zones. The partial pressure of CO₂ builds in these environments so modern soil zone pCO₂ commonly considerably exceeds that of atmospheric CO₂. 89 90 Calcite precipitation (Eq. 1) is typically associated with outgassing of this gas-rich fluid at spring effluents and where such fluids flow over obstacles like boulders or 91 92 tree roots (e.g., Zhang et al., 2001). Recently this model has been challenged by 93 Hammer and co-authors (2010) who found that dissolved gas concentrations 94 decrease very little by turbulence caused by flow over surface irregularities, which led them to conclude that the most important role of turbulence was to 95

96	increase precipitation rates by bringing solutes to and from the calcite surface
97	during turbulent mixing in the water column. Though the formation of stalactite
98	and stalagmite speleothems in caves has most commonly been attributed to
99	abiotic calcite precipitation driven by such physico-chemical processes (e.g.,
100	Frisia and Borsato, 2010), field studies (Freytet and Verrecchia, 1998; Vazquez-
101	Urbez et al., 2009; Glunk et al., 2011) and laboratory experiments with viable
102	biofilms collected from modern stream settings (Rogerson et al., 2008; Pedley et
103	al., 2009) have demonstrated that both abiotic and biotic processes influence
104	calcite precipitation in streams.
105	Recent experiments and field studies have also demonstrated that tufa
106	precipitation can be significantly enhanced, even driven, by microbial
107	extracellular polymeric substances (EPS) (e.g., Rogerson et al., 2008; Glunk et al.,
108	2011; Pedley et al., 2014). The EPS of non-viable organisms has also been
109	implicated in tufa formation (Rogerson et al., 2008). Biofilms of some species of
110	cyanobacteria are reportedly associated with their own specific microfabrics
111	(Freytet and Verrecchia, 1998), and such petrographic evidence would support the
112	hypothesis that some cyanobacteria exert direct control on tufa formation.
113	

114 Diagenetic alteration following deposition adds further complexity to the ability

to determine the biogenicity of precipitated carbonate rocks like tufas and

116	speleothems. In spring or stream carbonate deposits, primary biofabrics may be
117	rapidly overprinted and recrystallized generating textures that appear abiotic
118	(Jones and Peng, 2012). For example, diagenetic changes transform primary tufas
119	from finely crystalline (micritic) to more coarsely crystalline (sparry) calcite, the
120	fabric changing either by aggrading neomorphism (Love and Chafetz, 1988;
121	Janssen et al., 1999) or simply continued growth of favored crystals (Brasier et
122	al., 2011). Yet characterizing all coarse, sparry calcite fabrics as either alteration
123	products or abiotic would be an over-simplification (Brasier et al., 2011) that
124	could lead to many microbial fossils, both ancient and modern, being overlooked.
125	

126 Materials

127 The Caerwys tufa

The tufa deposit studied here was found to the south of the village of Caerwys in north Wales, UK (Figs. 1 and 2). The waters that formed the tufa were sourced from a spring in the Carboniferous limestone (Pedley, 1987). Tufa precipitation at Caerwys has been constrained via radiocarbon techniques to the Holocene and pre-Holocene 'Late Glacial' intervals (Preece and Turner, 1990). Deposition has now ceased but a small analogous active site is found nearby at Ddol (Preece and Turner, 1990). The Caerwys tufa forms a veneer of Quaternary terrestrial

135	carbonate rock over the underlying geology. It grew in a steep stream that flowed
136	down the scarp-face of a Carboniferous Limestone outcrop, with a series of
137	cascading pools developing behind arcuate tufa dams or "barrages" that were
138	oriented transverse to flow (Fig. 2; Pedley, 1987). The Caerwys system would
139	have resembled the currently active tufa-depositing stream at Alport, Derbyshire,
140	UK (Fig. 3). In both cases (Caerwys and Alport) unconsolidated micrite muds are
141	found in the pools between the barrages. Some of these pools contain isolated
142	decimeter-scale thrombolitic heads constructed by calcifying cyanobacteria, green
143	algae, and invertebrates. The barrage dams themselves comprise indurated but
144	vuggy carbonate walls that include a similar assemblage of fossil organisms.
145	Though extensively quarried, the internal fabric of the barrage system is visible
146	(Fig. 2) and preserved as a site of special scientific interest (SSSI).

Lithostratigraphy and mollusc biostratigraphy of the quarry were described by Preece (1978; 1982) and a facies model was compiled by Pedley (1987). Tufa oxygen and carbon isotopes were detailed and their Quaternary climate implications discussed by Garnett et al. (2006). The latter estimated summer water temperatures were in the range of 13 to 16.5 °C on the basis of tufa and gastropod δ^{18} O values.

155 Specimens exhibiting the continuum of tufas and speleothems

156	Pedley (1990) described calcitic tubes of tufa formed by fringe cements that
157	encrusted larger plants (macrophytes). The samples analyzed in this study fit that
158	basic description and calcite encrustations of macrophytes are identified by their
159	morphology. Internally they have a central longitudinal cavity that may remain
160	open or may have been filled by clastic grains (commonly but not necessarily of
161	tufa carbonate) or calcite cement. They are differentiated from hollow abiotic
162	stalactites such as "soda straws" in that they contain preserved carbonaceous
163	matter or recognizable impressions of organisms that become encrusted when
164	mineralized. In swampy paludal marshes and pool margins, most plant stems
165	grow upwards and, when encrusted by carbonate, become stalagmite-like deposits
166	(Pedley, 1990). In barrage systems, however, many plants including bryophytes
167	live on the overhangs of the barrage (dam) front, their stems and branches
168	hanging downwards. This leads to pendant, stalactite-like calcite-encrusted
169	structures (Fig. 2). Externally these calcitic encrustations appear indistinguishable
170	from "speleothem" stalactites or stalagmites formed in caverns. Encrustations
171	may be <10 mm to several tens of centimeters in width, and range from a few
172	centimeters to meters in length. Such encrustations are common but under-
173	reported for modern karst settings. The oldest known examples may be the
174	pendant cavity-filling cements of the 2.75 Ga Fortescue Group, Australia, which
175	were interpreted as biogenic by Rasmussen et al. (2009).

177 Methodology

178	Eleven different tubular specimens from Caerwys, each several centimeters in
179	length, were collected. All were examined in hand specimen and using standard
180	petrographic microscopy techniques. Specimens were injected with blue resin,
181	and both longitudinal and transverse thin-sections were prepared and analyzed.
182	All rocks were found to be minimally or non-luminescent when viewed under UV
183	light. Cathodoluminescence (CL) microscopy revealed that none of the specimens
184	luminesced. Thin-sections were examined and photographed with the use of
185	polarized light microscopy. Carbonaceous filaments entombed in calcite were
186	distinguished from dark micritic calcite by partially dissolving the specimen with
187	acetic acid. Similar petrographic histories were elucidated from all eleven
188	specimens, such that we could select two representative specimens, labelled S3.2
189	and Caerwys 1, for detailed study.

190

191 **Results**

192 The descriptions of hand-specimen scale observations are followed by

193 microscopic observations for specimen S3.2, followed by the same for specimen

194 Caerwys 1. The terms micrite (crystals $<4\mu$ m diameter), microspar (4 to 10 μ m

195 diameter), and spar (>10 μ m diameter) are used to indicate crystal sizes and do not 196 reflect the origin of the grains.

197

198 Specimen S3.2: Hand-specimen scale observations

Specimen S3.2 is a downward-tapering stalactitic rock (Fig. 4) that was collected as a float specimen that was found adjacent to the central barrage outcrop in the quarry (Fig. 2b and 2c). Internally there is strong asymmetry, and at least six separate components of the visible fabric of the sample, referred to here as Zones 1-6, were delineated (Fig 5).

204 Zone 1 is located in the central section of the porous tufa, which is permeated by 205 c. 50 to 100 µm diameter hollow tubes of calcite that form shrub-like growths 206 oriented downward at around 55 degrees from horizontal (Fig. 4b). From 207 examination of longitudinal and transverse sections it was possible to discern that these growths formed via micritic calcite encrustation of a biological (likely 208 209 cyanobacterial) substratum. The asymmetrical nature of the sample, when viewed 210 in cross-section, is due to the more extensive outward growth of this primary 211 depositional fabric in one direction away from the point of initiation. Denserlooking white patches of tufa, developed on one (likely the upstream) side of this 212 213 sample, cover an area around 3 mm across and a centimeter in length.

214	Zone 2 (Fig. 5) consists of micrite intergrown with dark brown sparry calcite fans,
215	with the latter being dominant. Each fan is around 1 to 3 mm across, and all fans
216	grew toward the outward edge of the specimen. This zone forms a band around 1
217	cm thick on one side of the specimen (the side toward which Zone 1 micrite
218	prograded), and is traceable continuously around the perimeter, though it narrows
219	to <1 mm thick on the opposite side of the sample.
220	Zone 3 in hand-specimen consists of a 1 to 2 mm thick light brown band that
221	envelops calcite of Zone 2, and is capped by a darker brown 1 mm thick band.
222	Internally these bands contain several very fine sub-mm thick cream colored
223	laminae. These bands are thicker where they developed below cm-scale
224	overhangs.
225	Zone 4 is recognizable in hand-specimen only as a white band that separates
226	brown calcite below it from very similar-looking brown calcite above, which is
227	designated as Zone 5. Note than Zone 4 appears brown in thin-section (Fig. 5).
228	Zone 6, the outer casing of the specimen, consists of a layer of cream colored
229	botryoidal calcite, around 2 mm thick on one side and 6 mm thick on the other.
230	This outer zone seems to be divided into two bands by a very thin dark lamina.
231	

232 Specimen S3.2: Microscopy

233	Two thin-sections of sample S3.2 were made from the cut specimen. Scans of
234	these are shown in Figure 4, one from the transverse sawn section (S3.2A) and the
235	other from the longitudinal sawn section (S3.2B). Petrographic analysis of these
236	thin sections confirmed that Zone 1 comprises 6.5 to 26 μm (mostly c. 20 $\mu m)$
237	diameter dominantly sub-vertically oriented biological filaments that were
238	encrusted by 18 to 50 μ m thick walls of calcite (Figs. 4, 5 and 6a). The
239	carbonaceous filaments themselves have mostly been oxidized, leaving behind
240	empty calcite tubes (Figs. 6a and 7a), though some tubes contain carbonaceous
241	material that resembles hollow and partially decomposed cyanobacterial
242	trichomes within a sheath (Figs. 7b and c). The central parts of each calcite tube
243	that would have been in contact with the carbonaceous filament are comprised of
244	an envelope of small microcrystalline crystals. The remaining outer part of each
245	calcite tube wall is constructed of radiating c. 20 μ m diameter spar crystals (Fig.
246	7a). Also in Zone 1 is a cluster of hollow calcite tubes that ranged from 250 to
247	$500 \mu\text{m}$ across (Fig. 7d). These each have an inner zone of microspar (crystals c.
248	20 μm diameter) followed by two rings of larger sparry crystals, each c. 45 μm
249	thick. Some of these tubes have sparry calcite fan growths on one side, which
250	marks the start of Zone 2.

252	The first Zone 2 sparry calcite fans (Figs. 4, 5 and 6a) nucleated directly on the
253	spar of Zone 1 encrusted tubes. These two spar types are, in some locations, in
254	optical continuity, which indicates that Zone 1 spar acted as a template for
255	precipitation and growth of Zone 2 spar. Some curved, dark micritic growth lines
256	within the fans are traceable between fans (Fig. 6a). Fans interfered with each
257	other where they touched during growth. Some fans terminated in smooth curved
258	surfaces; others were flat-topped (e.g. Fig. 8); and several exhibited pointed
259	euhedral crystal terminations. Growth of Zone 2 seemingly ceased for extended
260	periods of time (perhaps months?) on at least three occasions. These cessations
261	are marked by dark micritic layers from which new fans nucleated. The latter are
262	indicated by their different crystallographic orientations from the underlying fans
263	(Fig. 6a). A magnified view of one of the Zone 2 fans, shown in Fig. 8, reveals
264	that the carbonaceous filaments interpreted as entombed cyanobacteria are
265	dominantly but not exclusively oriented sub-parallel to the direction of crystal
266	growth. They are c. 2 μ m wide and 40 μ m long, distinctly narrower than the
267	carbonaceous filaments of Zone 1. These narrower filaments cross through some
268	of the finer, μm scale crystal growth bands within the fans (Fig. 8). The μm scale
269	growth bands were likely formed on approximately diurnal timescales (Andrews
270	and Brasier, 2005). Pedley (1987) suggested spar-entombed carbonaceous
271	filaments of the Caerwys quarry could be Schizothrix or Phormidium sp.
272	cyanobacterial fossils on the basis of growth form and diameter.

274	The contact between Zones 2 and 3 of this specimen (Figs. 4, 5, 6 and 9) is sharp
275	in places though more transitional in others due the optical continuity of
276	subsequent crystal growth. At its base, Zone 3 comprises numerous (at least six)
277	couplets of micrite and columnar sparite (Fig. 9b). A micrite band c. 5 μ m thick
278	forms the nucleation region for numerous crystals of spar (mostly c.100 μm
279	diameter) in several locations in the specimen. Petrography revealed that several
280	of the latter columnar spar crystals, commonly with length to width ratios >6,
281	developed through competitive growth of crystals that nucleated in this band (e.g.,
282	Figs. 9c and 9d). Other columnar crystals stem from lower horizons that include
283	Zone 2 spar crystals (e.g., Fig. 9a). Inclusions in the columnar crystals appear as
284	bands oriented perpendicular to the direction of growth and parallel to (and
285	commonly in close proximity to) the bands of micrite (e.g., Fig. 9c and 9d). The
286	inclusions were identified primarily within the calcite crystals rather than between
287	them.
288	Most intriguing near the top of Zone 3 (Figs. 4, 5 and 10) is a patch a few mm

across that includes a series of circular to oval pores that range from 100 to 240

 $\,$ 290 $\,$ $\,$ μm in diameter (Fig. 10). The latter are most easily interpreted as transverse

cross-sections of hollow tubes. One tube oriented longitudinally in the thin-

section extends for at least 2.2 mm. At higher magnification it was determined

273

293	that the walls of these tubes are thinly lined with dark micrite, surrounded by
294	cylinders comprised of spar crystals 100 to 400 μ m in diameter (Fig. 10c and
295	10d). The latter are differently aligned from the columnar calcite host, radiating
296	outward from the tube center. The crystals aligned parallel to the direction of
297	growth of the columnar spar are elongated upward, forming flame-like growth
298	shapes. These crystals evidently grew contemporaneously and in competition with
299	the surrounding columnar spar.
300	Zone 4 was recognized petrographically by the re-appearance of micrite on one
301	side of the specimen (Fig 5b). This zone is laterally traceable into spar via two c.
302	5 μ m thick sub-parallel micritic bands that mark its top and bottom. The micrite
202	commisses a nonexe naturally of national that in studies hallow types of a 120 year

303 comprises a porous network of peloids that includes hollow tubes of c. 130 µm 304 diameter.

305 Zone 5 spar crystals terminations range from pointed to flat or broken and are 306 delineated by inclusions (see Fig 5 and Fig. 11). In places they are draped in 307 continuous bands of dark, dust-like micrite that infilled the depressions and smoothed out the topography (Fig. 11a). Most spar crystals terminate at these 308 309 micrite layers, though this was not always the case (Fig. 11b). For example, in one 310 place a fragment of micrite 340 µm across adhered to the specimen surface (Fig. 311 11) and sits flat on a micritic layer. Spar crystals nucleated on this detrital micrite inclusion, though they were later out-competed by other columnar crystals. 312

313 Further, the protrusion formed by this blob of micrite clearly affected

development of the overlying layers (Fig. 11).

315	The tops of Zone 5 columnar crystals formed the substrate for Zone 6 crystal
316	growth. Zone 6 crystals (Fig. 5 and Fig. 12) are distinctly different from those of
317	Zone 5 and appear as networks of needle-like laths. The latter are arranged along
318	the faces of a crystal lattice (Figs. 12a and 12b). These laths are sub-crystals
319	(crystallites sensu Kendall and Broughton, 1978) that range individually in size up
320	to c. 1 mm long and 50 μ m wide and that link to form larger millimeter-to-
321	centimeter scale composite crystals (Frisia and Borsato, 2010). These composite
322	crystals are sometimes in optical continuity with the Zone 5 columnar calcite on
323	which they grew (Fig. 12).

324

314

325 Specimen Caerwys 1: Hand-specimen scale observations

Caerwys 1 is an 8 cm long specimen that grew in a stalactitic fashion. It was
collected from a cavern within *in situ* barrage deposits located in the center of the
quarry. This specimen was collected from directly adjacent to the much larger
stalactitic rock shown in Fig. 2c. In longitudinal section it was possible to
recognize the sample has a highly porous center surrounded by several c. 0.5 to 1
mm thick layers that alternate with much thinner (c. 100 µm thick) lighter colored

layers (Fig. 13). At least three layers were traced in the specimen, though inplaces the layers appear to be merged or truncated.

334

335 Specimen Caerwys 1: Microscopy

A thin-section of Caerwys 1 was stained with Alizarin Red S and Potassium 336 337 Ferricyanide. The pink color confirmed its non-ferroan calcite composition. The 338 central cavity (Fig. 13) of this specimen is highly porous, evidenced by the blue resin (Fig. 14), and divided into several empty pockets by walls of sparry calcite. 339 One empty pocket is lined with 20 µm diameter microspar crystals (Fig. 14a) that 340 341 are partially intergrown and form a porous network. On both sides of this initial 342 cavity fill are crystal fans of sparry calcite, with crystal lengths of 80 to 150 µm. 343 Adjacent to the sparry calcite fans at the top of the specimen is a second empty 344 pocket, 3 mm across, that was progressively filled by 300 µm diameter sparry 345 calcite fans (Fig. 14b). These grew inwards from all sides toward the cavity center. Dark-colored inclusions within some of these fans are oriented along 346 crystallite boundaries (Fig. 14c and 14d). The origin of these filamentous 347 348 microfossil-like inclusions is discussed further below. The bulk of the specimen is 349 comprised of layers of columnar sparry calcite that grew primarily outward as 350 fans (Fig. 14e-g). Each crystal is c. 500 µm long and 50 to 100 µm wide. These sparry layers correspond to the thick, lighter colored layers observed in hand 351

specimen that are separated by laminae of micrite c. 130 µm thick (Fig. 13 and
Fig. 14f). There is evidence that columnar sparry calcite fans were partially
dissolved prior to or during deposition of the micrite layers (Fig. 14e), as some of
the micrite layers are a little thicker (c. 230 µm) and more porous, particularly one
layer close to the outside of the specimen (Fig. 14g).

357

358 Discussion

The criteria of Sugitani et al. (2007) and Wacey (2009) developed to establish the biogenicity of potential microbial fossils were applied to evaluate the biogenicity of the fossil-like objects in the two samples studied. For these specimens, their Quaternary age and sedimentary origins are not in doubt. These rocks have never been buried to any significant depth, so the characteristics of the precipitates and the fabrics were developed in the original sedimentary depositional environment.

366 Biotic vs abiotic growth of Specimen S3.2

367 A complex growth history of Specimen S3.2 was unravelled on the basis of the

368 petrographic analysis, with different growth zones exhibiting different degrees of

- biotic influence. The oldest part of the specimen (in Zone 1; Figs. 5a and b)
- 370 comprises dense, white colored calcitic tufa that contains clusters of hollow

371	carbonaceous tubes of fossilized cyanobacterial trichomes preserved inside
372	sheaths. Zone 1 was formed by calcification of filamentous cyanobacterial shrubs
373	that coated an overhanging leaf or twig. This photosynthesizing biofilm formed a
374	substrate for subsequent growth that was necessarily focused away from the tufa
375	wall toward the direction of light. Such biologically enhanced growth resulted in
376	the asymmetrical, elongated form of the specimen. A network of 250 to 500 μm
377	diameter hollow calcite tubes was formed by chironomid insect larvae, perhaps in
378	the late Spring season as waters warmed up (Janssen et al., 1999; Brasier et al.,
379	2011). Filamentous microbes coated these tubes, separated by at least one and
380	possibly two or three pauses of unknown duration (perhaps weeks or months,
381	likely at most a few years). Zones 1 and 2 are at least part contemporaneous, with
382	Zone 2 sparry calcite shrubs containing thinner entombed carbonaceous filaments
383	dominantly forming on the side of the specimen that received less light. Their
384	presence on the more illuminated side of the specimen toward the end of Zone 1
385	deposition, including in small crevices, is consistent with the onset of shaded,
386	lower light intensity conditions that supported the growth of microbial species
387	associated with spar formation.

The Zone 1 microfossils must have been syngenetic with the calcite deposition, asthe calcite initially developed as tubes nucleated on the filaments (Figs. 4, 5, 6a

391	and 7). It is possible that the Zone 2 microfossils (Fig. 8) represent endoliths that
392	bored into the tufa post-deposition, as they are oriented parallel to crystal growth
393	planes and cut across the micron-scale growth lines within the sparry calcite
394	crystal fans, features previously used as indicative of an endolithic habit (Knoll et
395	al., 2013). However the filaments in the Caerwys samples protrude across laminae
396	that likely formed on diurnal timescales, well within the lifetime of entombed
397	individual microorganisms. Further, endolithic organisms would also be expected
398	to target earlier formed tufa micrite as well as the crystal fans. The occurrence of
399	the Zone 2 filaments close to the center of the specimen and not in the outer parts
400	makes it unlikely that the cyanobacterial filaments preserved in Zone 2 were
401	endoliths. More likely, and as Pedley (1987) inferred, the filaments were
402	fossilized by syn-depositional calcite entombment.
403	
404	Evidence for microbial influence on the growth of Zones 1 and 2, consistent with
405	the microfossil biogenicity criteria of Wacey (2009), includes:
406	1) Two different populations of carbonaceous filaments, each community
407	associated with its own characteristic carbonate rock microfacies and not
408	randomly distributed.

409 2) Entombed clusters of hollow brown-colored carbonaceous filaments that410 are syngenetic with the carbonate rock. These microfossils include

411	sheathed trichomes and are comparable in size and morphology with
412	extant cyanobacteria.

413	3) Calcitic molds of colonies of microbial filaments preserved in the
414	carbonate rock, with calcification specifically on and around the filaments,
415	consistent with microbial influence on crystal nucleation.

416Zone 3 (Fig. 9) lacks the microfossils of Zones 1 and 2 (Figs. 6, 7 and 8). The

417 thicker layering on the undersides of overhangs (Fig. 4b, 5b) is consistent with a

dominantly abiotic growth process. However, as in Zone 1, the 100 to 240 μ m

419 diameter tubes (Fig. 10) are best interpreted as chironomid larval tubes (e.g.,

420 Brasier et al., 2011). Chironomid larvae are detrital feeders, which implies that

421 Zone 3 formed in detritus-rich flowing stream water. Tubes at the top of Zone 3

422 could be directly associated with the micrite of Zone 4. This inference is based on

423 the micritic peloids that could be of fecal origin, and additional tubes of likely

424 chironomid origin that occur in the Zone 4 micrite. This suggests that Zone 3 spar

425 and Zone 4 micrite are partly contemporaneous, and indeed Zone 4 micrite

426 merges laterally into sparry calcite.

427 Petrographic evidence that Zone 5 columnar spar is primary and not the result of

428 recrystallization includes the aggradational fabrics that surround the micrite

429 inclusion (Fig. 11). That the micrite inclusion sits flat on a thin micritic layer (Fig.

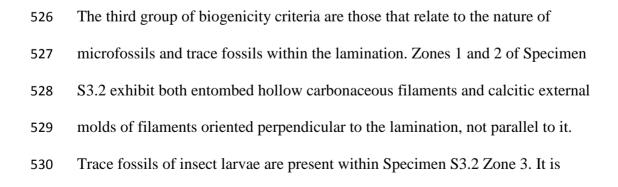
430 11a) is consistent with the latter representing a phase (perhaps a dry summer)

431	during which little calcite crystal growth occurred. New columnar crystals
432	nucleated on top of the micrite (Fig. 11b), presumably during a wetter phase. The
433	resulting topography caused deflection of the subsequent growth laminae.
434	Ultimately the spar that nucleated on top of the micrite inclusion was out
435	competed by the surrounding larger columnar crystals (Fig. 11b). Columnar spar
436	of Zone 5 likely formed within or in very close proximity to the active tufa-
437	depositing stream. These conditions could have been found behind the
438	downstream facing accretionary surface of an actively accumulating tufa barrage.
439	No obvious indicators of a biogenic cause for calcite deposition were identified in
440	Zone 5. This does not necessarily imply that nucleation of Zone 5 spar was
441	wholly abiotic: extracellular polymeric substances produced by microbes were
442	very likely present in the stream water, though there was no direct evidence that
443	they contributed to the formation of Zone 5 spar.
444	Similar to the crystals of the Zone 5 spar, the crystals of Zone 6 also lacked
445	carbonaceous microfossils (Fig. 12). The fabric of Zone 6 was reminiscent of the
446	open dendritic speleothem texture described by Frisia and Borsato (2010). Such
447	textures are known to form at cave entrances, in places subject to kinetic
448	processes such as prolonged degassing phenomena. Such a scenario is consistent
449	with Zone 6 developing as a late-stage cave speleothem-like meteoric growth
450	within the cavern. Unlike the within-stream conditions that supported the growth

451 of Zones 1-5, Zone 6 developed when the tufa stream system itself had become452 inactive.

453	In short, petrographic observations revealed that Zones 1 and 2 formed in the
454	presence of microbes that included cyanobacteria; Zone 3 calcite growth was
455	dominantly abiotic except for calcite tubes most likely constructed by chironomid
456	larvae; Zone 4 is attributed to chironomid larvae that consumed microbes; there
457	are no obvious preserved indicators of biological activity or control on calcite
458	precipitation in Zone 5 and Zone 6, and the latter formed in different
459	environmental circumstances compared to those that supported the growth of
460	Zones $1 - 5$. Abundant petrographic evidence for syn-depositional growth of
461	columnar calcite spar is found in places with entombed cyanobacterial filaments
462	(Zone 2), where crystal growth continued behind the aggrading outer surface layer
463	(Fig. 6); where there is evidence of micrite bands capping spar layers, and
464	competitive crystal growth of spar crystals (Fig. 9); where insect larval tubes are
465	found in sparry calcite layers (Fig. 10); and where detrital micrite stuck to the
466	specimen surface and interfered with growth of overlying spar crystals (Fig. 11).
467	There is no evidence for recrystallization that would have required dissolution.
468	Despite the presence of cyanobacteria in Zones 1 and 2, the most clearly
469	laminated (i.e. "stromatolitic") zones are 3 and 5 (Figs. 4 and 5). The latter are the
470	most cave speleothem-like and arguably abiotic sections. This lamination is
471	discussed further below.

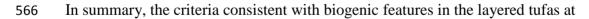
473 Biotic vs abiotic character of Specimen Caerwys 1


474	Specimen Caerwys 1 is similar to specimen S3.2 in that it was nucleated on a
475	downward hanging biological substrate, overgrown by successive layers of sparry
476	calcite that extend to the outside of the sample. Caerwys 1 is a thinner specimen
477	than S3.2. This may be partly due to absence of prograding cyanobacterial
478	filaments in the core of Caerwys 1. Rather, the initial biological substrate seems
479	to have been a stem or branch of a larger plant. The predominantly sparry calcite
480	walls of Caerwys 1 are similar to Zone 2 of S3.2 (compare Figs 6b and 8 with Fig.
481	14c-f). Clusters of potential microfossil filaments in Zone 2 of specimen S3.2
482	(Fig. 8) and in the sparry calcite fans of Caerwys 1 (Fig. 14c) also share similar
483	properties of size, coloring and orientation parallel to the direction of crystal
484	growth. However, the orientation of the dark-colored Caerwys 1 filaments was
485	directly related to the orientation of the crystal structure. A comparison of the
486	observations against the biogenicity criteria of Sugitani et al. (2007) and Wacey
487	(2009) indicate that the Caerwys 1 filaments are much less convincing as
488	microfossil candidates than those found in the S3.2 sample.

Biogenicity of the lamination?

491	The specimens described here are layered carbonate rocks that by some
492	definitions could be identified as "tufa stromatolites" (Riding, 1991) or simply
493	stromatolites (e.g., Semikhatov et al., 1979). Therefore, to evaluate whether the
494	Caerwys tufa layering would be identified as biogenic when commonly used
495	stromatolite biogenicity criteria are applied, we used the criteria of Buick et al.
496	(1981) and Hofmann (2000) as critiqued in McLoughlin et al. (2013).
497	The first group of biogenicity criteria pertain to the context of the lamination and
498	include, for example, requirements that the structures be found in sedimentary or
499	metasedimentary rocks and be syn-sedimentary with the deposit in which they are
500	found. This is undoubtedly the case for these Quaternary tufas. Similarly, there is
501	a criterion that brecciated mat chips should be found accumulated in depressions
502	between convexly laminated mounds. Eroded chips of layered carbonate are
503	found within the pool facies at Caerwys (Pedley, 1987). Such findings establish
504	that the layered carbonate rocks are a primary sedimentary feature, but these
505	contextual criteria do not differentiate biogenic from abiotic stromatolites.
506	

The second group of biogenicity criteria pertain to the morphology of the
lamination: a biogenic stromatolite should exhibit a preponderance of convexupward structures; contain laminae that thicken over the crests of flexures; consist
of laminations that are wavy, crinkled or have several orders of curvature; and


511	may be associated with thin, rolled-up fragments with coherent flexible laminae
512	that can reasonably be interpreted as microbial mats. However, none of these
513	criteria is itself diagnostic of a biogenic rock. Here we highlight, for example, that
514	several tufa stromatolites of cyanobacterial origin exhibit isopachous layering
515	(e.g., Janssen et al., 1999; Andrews and Brasier, 2005; Brasier et al., 2010; 2011).
516	Spar layers in Caeryws tufa specimen S3.2 Zone 3 that might otherwise be
517	interpreted as abiotic thicken over the crests of flexures, as do spar layers of Zone
518	5 (Fig. 11). Laminae of specimen Caerwys 1 seem thickest at the downward
519	pointing tip of the specimen (Fig. 13), which is consistent with the effects of
520	gravity and hence abiotic growth. Likewise, the thin micritic layers of Caerwys 1
521	are crinkled and curved (Fig. 13) yet the petrographic observations suggest that
522	these micrite bands are related to periods of exposure or non-deposition, as they
523	cap spar fans that are partially dissolved or eroded (Fig. 14e). Despite being
524	crinkled these micrite laminae are unlikely to be biogenic.

531	possible that these larvae were farming particular species of cyanobacteria above
532	their tubes, and that the cyanobacteria influenced crystal growth. Alternatively the
533	larvae might have produced their own growth-influencing organic substances
534	(Brasier et al., 2011). However there is no evidence for microbes directly causing
535	the lamination of Zone 3. Microfossils are notably absent in the most distinctly
536	laminated section, Zone 5.
537	Additional biogenicity criteria require that changes in the composition of
538	microfossil assemblages should be accompanied by morphological changes in
539	biogenic stromatolites. Where more than one microfossil assemblage is present in
540	the samples studied, changes in micromorphology were found in these specimens.
541	For example, the narrow filaments of Specimen S3.2 Zone 2 are associated with
542	sparry calcite fans (Fig. 8) whereas broader filaments in trichomes of Zone 1 are
543	found in sub-vertically hanging tubes of calcite (Figs. 4, 5, 6 and 7).
544	The entombed microorganisms of Specimen S3.2 are also organized and clustered
545	in a fashion consistent with colonial photoautotrophic growth. We infer that their
546	EPS did not simply bind sediment (e.g., Gerbersdorf and Wieprecht, 2014) but
547	that it actively assisted calcite crystal nucleation (Rogerson et al., 2008; Glunk et
548	al., 2011). This hypothesis is supported by the petrographic evidence for
549	preferential growth of the carbonate rock toward the most light-illuminated
550	direction. Insect larval tubes present in the Caerwys tufa (Fig. 10) would

551	potentially meet a criterion that biogenic stromatolitic fossils must be organized in
552	a manner that indicates trapping, binding or precipitation of sediment, though
553	whether the insect larvae actively trapped, bound or precipitated the sediment
554	themselves (e.g., Brasier et al., 2011) could not be discerned petrographically.

556	Though all of above criteria establish that the lamination is sedimentary in origin
557	(Fig.6a) and the cyanobacterial microfossils are consistent with evidence for
558	photoautotroph-induced specimen growth (see supplementary information S?), the
559	cause of most of the lamination in the Caeryws specimens is related to alternating
560	episodes of specimen growth, non-deposition and erosion (e.g., Figs. 9d, 11 and
561	14d). Physico-chemical parameters such as stream flow rates, pH, alkalinity,
562	saturation and temperature likely controlled the development of such lamination.
563	Though microbially produced EPS may have exerted some influence on the
564	laminae microstructure, direct evidence for microbial control on the lamination
565	was absent.

567 Caerwys are those that relate to fossils of the organisms themselves, and not

those of the lamination. Without the presence of microbial fossils, it would not be

569 possible to identify the biogenicity of the laminae. Layering alone is not

570 diagnostic of a biogenic structure in specimens like those characterized in this571 study.

572

573 Implications for astrobiology

574 Carbonate rocks that may be targets in the search for martian microfossils were identified by Niles et al. (2013). As with Earth's deep time stromatolites 575 (McLoughlin et al., 2013), discriminating purely abiotic chemical sedimentary 576 precipitates from biogenic rock structures of Mars will prove challenging. It is 577 encouraging that simple criteria devised for ancient stromatolites and microfossils 578 579 (Buick et al., 1981; Hofmann, 2000; Sugitani et al., 2007; Wacey, 2009) here enabled biogenic microfossils to be distinguished from abiogenic pseudofossils in 580 581 a complex terrestrial case. It is worth noting that recognition of microfossils requires detailed microscopic 582 examination: definitively identifying biogenic structures in the examined 583 584 Caerwys specimens would not have been possible at the outcrop or hand-585 specimen scales. Robotic exploration of Mars has already located potentially 586 habitable streams (Grotzinger et al., 2014), structures consistent macroscopically with microbially-induced sedimentary structures have been described (Noffke, 587 588 2015), and chemical signals consistent with martian life (Webster et al., 2015)

have been reported. Potential lessons from the Caeryws quarry, however, are that
the microbial structures visible under the microscope are not readily identifiable
as biogenic at the hand-specimen scale, and the nature of the laminations were
such that they could not be proven as biogenic at the hand-specimen or
petrographic microscope scales.

594

595 Conclusions

The microfossils found in specimen S3.2 display at the petrographic scale the 596 most convincing evidence for biogenicity: the layered stalactitic rock developed 597 598 as a result of the calcification of filamentous cyanobacteria and different 599 populations of carbonaceous filaments were each associated with their own characteristic carbonate rock microfacies.. The entombed clusters of hollow 600 601 filamentous carbonaceous microfossils that included sheathed cyanobacterial 602 trichomes demonstrated that the microfossil evidence is syngenetic with the carbonate rock. The influence of biology on the morphology of the deposit was 603 604 identified by the strong asymmetry of the sample fabric: preferential growth on 605 the most highly illuminated side of the barrage was associated with the presence 606 of photoautotrophic microbes preserved as colonies of calcitic filament molds. 607 Though some calcite spar fans in this sample formed in association with microbial filaments, the columnar spar that formed during a latter growth stage toward the 608

609	outside of specimen S3.2 does not include entombed microfossils. In contrast to
610	speciment S3.2, the filaments found in the specimen Caerwys 1 were associated
611	with the crystal structure of the deposit, which according to the criteria of Sugitani
612	et al. (2007) and Wacey (2009), indicate that these structures are less plausible
613	microfossil candidates than those found in S3.2.

614

615 Petrographic evidence indicates that columnar spar is a primary fabric, and not due to secondary crystal growth. This spar lacks obvious microfossils and formed 616 within the calcite-precipitating stream, but in poorly illuminated locations behind 617 the barrage front. Lamination is related to episodes of growth interrupted by 618 619 intervals of non-deposition and erosion. We interpret the petrographic evidence as 620 indicative of lamination formation controlled by physico-chemical parameters. Interestingly, we found that lamination in the samples studied was not an 621 indicator of stromatolite biogenicity. 622

623

624 Acknowledgements

Natural Resources Wales and Steven Griffiths are thanked for access to Caerwys 625

- quarry and permission to work on the site. Sebastiaan Edelman and Thomas 626
- Logeman assisted with fieldwork and provided some of the field photographs. 627

628	Bouke Lacet (Sedimentology laboratory, VU University Amsterdam) prepared the
629	thin-sections. Three anonymous reviewers helped to sharpen the manuscript, and
630	Sherry Cady provided valuable editorial advice and assistance. ATB was inspired
631	by Martin Brasier. He dedicates this manuscript to his father's memory.
627	

633 Author Disclosure Statement

634 No competing interests exist.

635

636 **References**

- 637 Andrews, J.E., Brasier, A.T., 2005. Seasonal records of climatic change in
- 638 annually laminated tufas: short review and future prospects. *Journal of*
- 639 *Quaternary Science* 20: 411-421.
- 640 Arp, G., Wedemeyer, N., Reitner, J., 2001. Fluvival tufa formation in a hard-
- 641 water creek (Deinschwanger Bach, Franconian Alb, Germany). *Facies* 44: 1-22.
- Brasier, A.T., 2011. Searching for travertines, calcretes and speleothems in deep
- time: Processes, appearances, predictions and the impact of plants. *Earth-Science*
- 644 *Reviews* 104: 213-239.

645	Brasier, A.T.	, 2007. I	Palaeoenvironmental	Reconstruction	ons from	Quaternary	/ Tuf	as
-----	---------------	-----------	---------------------	----------------	----------	------------	-------	----

- and Calcretes, central Greece. Unpublished Ph. D. thesis, University of East
- 647 Anglia, Norwich, UK. 294p.
- 648 Brasier, A.T., Andrews, J.E., Marca-Bell, A.D., Dennis, P.F. 2010. Depositional
- 649 continuity of seasonally laminated tufas: Implications for δ^{18} O based
- 650 palaeotemperatures. *Global and Planetary Change* 71: 160-167.
- Brasier, A.T., Andrews, J.E., Kendall, A.C., 2011. Diagenesis or dire genesis?
- 652 The origin of columnar spar in tufa stromatolites of central Greece and the role of
- 653 chironomid larvae. *Sedimentology* 58: 1283-1302.
- Buick, R., Dunlop, J., Groves, D., 1981. Stromatolite recognition in ancient rocks:
- an appraisal of irregularly laminated structures in an Early Archaean chert-barite
- unit from North Pole, Western Australia. *Alcheringa* 5: 161-181.
- 657 Cacchio, P., Contento, R., Ercole, C., Cappuccio, G., Martinez, M.P., Lepidi, A.,
- 658 2004. Involvement of microorganisms in the formation of carbonate speleothems
- 659 in the Cervo Cave (L'Aquila-Italy). *Geomicrobiology Journal* 21: 497-509.
- 660 Fairchild, I. J., Smith, C. L., Baker, A., Fuller, L., Spötl, C., Mattey, D., &
- 661 McDermott, F. (2006). Modification and preservation of environmental signals in
- 662 speleothems. *Earth-Science Reviews* 75: 105-153.

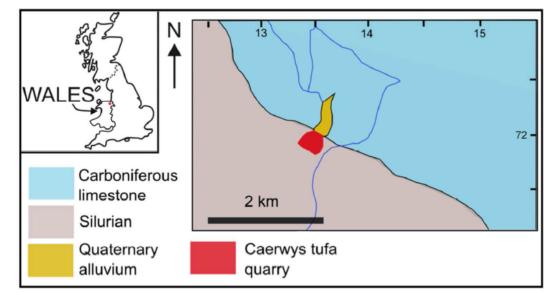
- 663 Freytet, P., Verrecchia, E.P., 1998. Freshwater organisms that build stromatolites:
- a synopsis of biocrystallization by prokaryotic and eukaryotic algae.
- 665 *Sedimentology* 45: 535-563.
- 666 Frisia, S., Borsato, A., 2010. Karst. In Carbonates in Continental Settings: Facies,
- 667 Environments, and Processes edited by Alonso-Zarza, A.M. and Tanner, L.H.,
- 668 Developments in Sedimentology 61. Elsevier, Amsterdam.
- 669 Garnett, E., Andrews, J., Preece, R., Dennis, P., 2006. Late-glacial and early
- 670 Holocene climate and environment from stable isotopes in Welsh tufa.
- 671 *Quaternaire* 17: 31 42.
- 672 Gerbersdorf, S.U., Wieprecht, S. 2014. Biostabilization of cohesive sediments:
- 673 revisiting the role of abiotic conditions, physiology and diversity of microbes,
- polymeric secretion, and biofilm architecture. *Geobiology* 13: 68-97.
- 675 Glunk, C., Dupraz, C., Braissant, O., Gallagher, K.L., Verrecchia, E.P., Visscher,
- 676 P.T., 2011. Microbially mediated carbonate precipitation in a hypersaline lake,
- Big Pond (Eleuthera, Bahamas). *Sedimentology* 58: 720-736.
- 678 Grotzinger, J.P., Sumner, D.Y., Kah, L.C., Stack, K., Gupta, S., Edgar, D. et al.,
- 679 2014. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater,
- 680 Mars. *Science* 343 (6169. doi: 10.1126/science.1242777

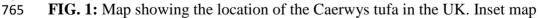
- Niles, P.B., Catling, D.C., Berger, G., Chassefiere, E., Ehlmann, B.L., Michalski,
- J.R., Morris, R., Ruff, S.W., Sutter, B. 2013. Geochemistry of carbonates on
- 683 Mars: Implications for climate history and nature of aqueous environments. *Space*
- 684 *Science Reviews* 174: 301-328.
- Hammer, Ø., Dysthe, D.K., Jamtveit, B., 2010. Travertine terracing: patterns and
- 686 mechanisms. *Geological Society, London, Special Publication* 336: 345-355.
- 687 Hofmann, H., 2000. Archean stromatolites as microbial archives. In Microbial
- 688 Sediments.edited by Awramik, S.A., and Riding, R. Springer Berlin Heidelberg,
- 689 pp. 315-327.
- Janssen, A., Swennen, R., Podoor, N., Keppens, E., 1999. Biological and
- 691 diagenetic influence in Recent and fossil tufa deposits from Belgium. *Sedimentary*
- 692 *Geology* 126: 75-95.
- Jones, B., 2010. Microbes in caves: agents of calcite corrosion and precipitation.
- 694 *Geological Society, London, Special Publication* 336: 7-30.
- Jones, B., Peng, X., 2012. Intrinsic versus extrinsic controls on the development
- 696 of calcite dendrite bushes, Shuzhishi Spring, Rehai geothermal area, Tengchong,
- 697 Yunnan Province, China. *Sedimentary Geology* 249: 45-62.
- 698 Kendall, A.C., Broughton, P.L., 1978. Origin of fabrics in speleothems composed
- 699 of columnar calcite crystals. *Journal of Sedimentary Petrology* 48: 519-538.

- 700 Knoll, A.H., Worndle, S, and Kah, L.C., 2013. Covariance of microfossil
- assemblages and microbialite textures across an upper Mesoproterozoic carbonate
- 702 platform. *Palaios* 28: 453-470.
- 703 Love, K.M., Chafetz, H.S., 1988. Diagenesis of laminated travertine crusts,
- Arbuckle Mountains, Oklahoma. *Journal of Sedimentary Research* 58: 441-445.
- 705 McLoughlin, N., Melezhik, V.A., Brasier, A.T., Medvedev, P.V. 2013.
- 706 Palaeoproterozoic stromatolites from the Lomagundi-Jatuli interval of the
- 707 Fennoscandian Shield. In: Melezhik, V.A. et al. (eds) Reading the Archive of
- 708 Earth's Oxygenation Volume 3: Global Events and the Fennoscandian Arctic
- 709 Russia Drilling Early Earth Project. *Frontiers in Earth Sciences* 3:1298-1351.
- 710 Springer-Verlag, Berlin. doi: 10.1007/978-3-642-29670-3_8
- 711 Noffke, N., 2009. The criteria for the biogeneicity of microbially induced
- sedimentary structures (MISS) in Archean and younger sandy deposits. Earth-
- 713 *Science Reviews* 96: 173-180.
- Noffke, N., 2015. Ancient sedimentary structures in the <3.7 Ga Gillespie Lake
- 715 Member, Mars, that resemble macroscopic morphology, spatial associations, and
- temporal succession in terrestrial microbialites. *Astrobiology* 15: 169-192.

- 717 Pedley, H., 1987. The Flandrian (Quaternary) Caerwys tufa, North Wales: an
- ancient barrage tufa deposit. *Proceedings of the Yorkshire Geological Society* 46:
- 719 141-152.
- 720 Pedley, H.M., 1990. Classification and environmental models of cool freshwater
- tufas. Sedimentary Geology 68: 143-154.
- 722 Pedley, M., 2014. The morphology and function of thrombolitic calcite
- 723 precipitating biofilms: A universal model derived from freshwater mesocosm
- reperiments. *Sedimentology* 61: 22-40.
- 725 Pedley, M., Rogerson, M., Middleton, R., 2009. Freshwater calcite precipitates
- from *in vitro* mesocosm flume experiments: a case for biomediation of tufas.
- 727 Sedimentology 56: 511-527.
- 728 Preece, R.C., 1978. The biostratigraphy of Flandrian tufas in southern Britain.
- 729 Unpublished PhD thesis, University of London.
- 730 Preece, R.C., Turner, C., Green, H., 1982. Field excursion to the tufas of the
- 731 Wheeler Valley and to Pontnewydd and Cefn caves. Quaternary Research
- 732 Association Field Guide, London.
- Preece, R., Turner, C., 1990. The tufas at Caerwys and Ddol. *North Wales Field Guide* 162-166.

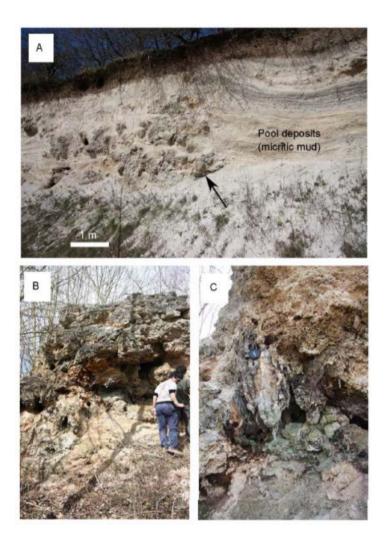
- Rasmussen, B., Blake, T.S., Fletcher, I.R., Kilburn, M.R., 2009. Evidence for
- microbial life in synsedimentary cavities from 2.75 Ga terrestrial environments.
- 737 *Geology* 37: 423-426.
- 738 Riding, R., 1991. Classification of microbial carbonates. In *Calcareous Algae and*
- 739 Stromatolites. Springer-Verlag, Berlin.
- 740 Rogerson, M., Pedley, H.M., Wadhawan, J.D., Middleton, R., 2008. New insights
- 741 into biological influence on the geochemistry of freshwater carbonate deposits.
- 742 *Geochimica et Cosmochimica Acta* 72: 4976-4987.
- 743 Rogerson, M., Pedley, H., Kelham, A., Wadhawan, J., 2014. Linking
- 744 mineralisation process and sedimentary product in terrestrial carbonates using a
- solution thermodynamic approach. *Earth Surface Dynamics* 2: 197-216.
- 746 Sugitani, K., Grey, K., Allwood, A., Nagaoka, T., Mimura, K., Minami, M.,
- 747 Marshall, C.P., Van Kranendonk, M.J., and Walter, M.R., 2007. Diverse
- 748 microstructures from Archaean chert from the Mount Goldsworthy–Mount Grant
- 749 area, Pilbara Craton, Western Australia: microfossils, dubiofossils, or
- pseudofossils? *Precambrian Research* 158: 228-262.
- 751 Wacey, D., 2009. Early Life on Earth: A Practical Guide. Springer.
- 752 Webster, C. R., Mahaffy, P.R. Atreya, S.K., Flesch, G.J., Mischna, M.A., et al.
- 753 Mars methane detection and variability at Gale crater. *Science* 347: 415-417.

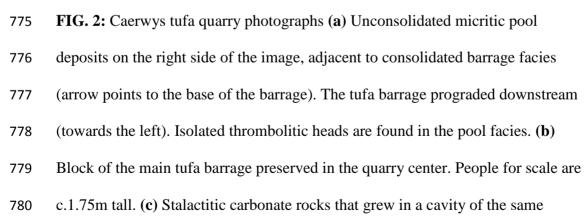

- 754 Wright, V.P., Barnett, A.J., 2015. An abiotic model for the development of
- textures in some South Atlantic early Cretaceous lacustrine carbonates. In
- 756 Bosence, D.W.J. et al. (eds) Microbial carbonates in space and time: Implications
- 757 for global exploration and production. Geological Society, London, Special
- 758 Publications 418, doi: 10.1144/SP418.3
- 759 Zhang, D.D., Zhang, Y., Zhu, A., Cheng, X., 2001. Physical Mechanisms of River
- 760 Waterfall Tufa (Travertine) Formation. Journal of Sedimentary Research 71: 205-


761 216.

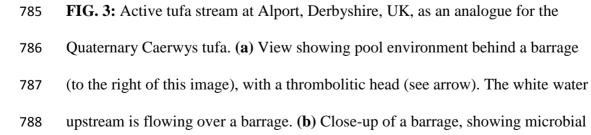
762

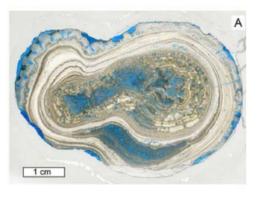
764


763 Figure captions



shows the UK, with Wales labelled and Caerwys as a red dot. The larger map


surrounding Quaternary alluvial sediments (orange) and underlying geology.
Carboniferous limestone (blue) supplies the calcium and bicarbonate ions to
groundwaters. These precipitate tufa calcite on emergence at springs associated
with the contact between the limestone and underlying Silurian siliciclastic rocks
grey). Scale bar is 2km.



- barrage block shown in (b). Specimen Caerwys 1 is from this location, and S3.2
- was found as a float specimen nearby. Lens cap for scale is 5.5 cm diameter.

- biofilm plus some green algae and bryophytes living subaqueously on the barrage
- front, hanging down into the fast flowing stream. A cavity is developing behind
- this calcifying structure sometimes referred to as a curtain. In larger barrages,
- meter-scale caverns form behind the curtain (e.g., fig. 2c).

- **FIG. 4:** Scans of thin-sections of specimen S3.2. (a) transverse cut, and (b)
- ⁷⁹⁵ longitudinal cut. Blue color is from resin injected to show porosity.

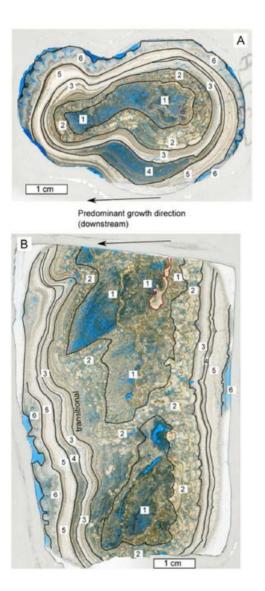
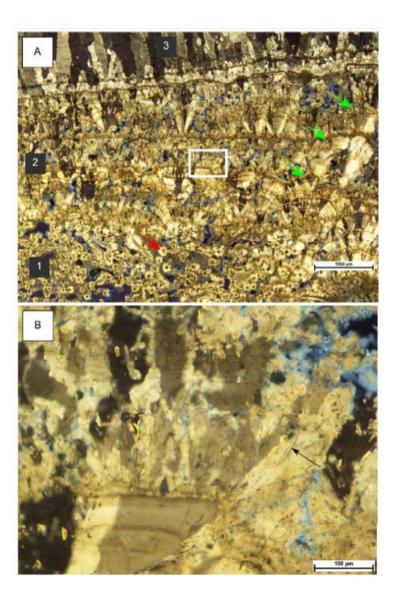



FIG. 5: Interpreted scans of thin-sections of specimen S3.2. (a) transverse cut and
(b) longitudinal cut. Interpreted boundaries between growth zones are shown as
black lines, and the position from which growth initiated is shown as a red line.

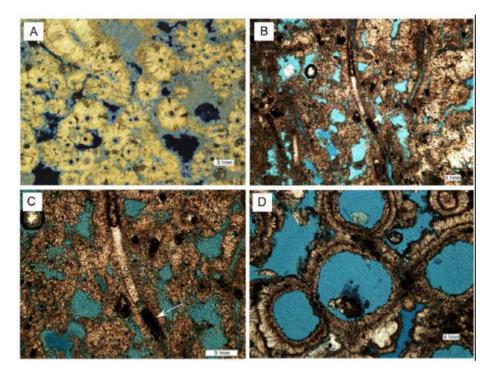
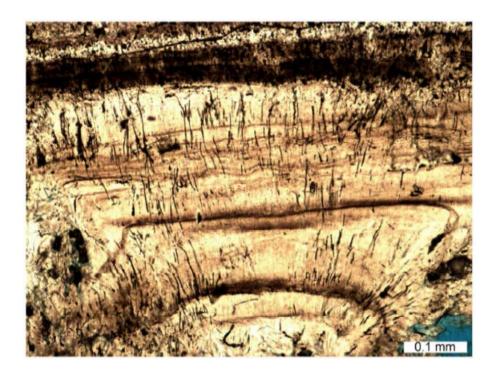
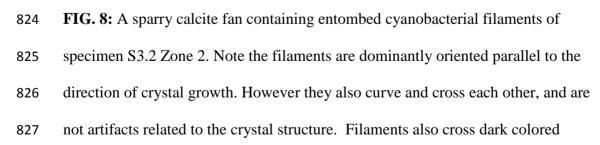

- 800 Zones 1-6 are described in the text. Unlike wholly abiotic stalactites, this
- specimen is strongly asymmetrical, caused by calcifying cyanobacteria favoring
- the illuminated side of the specimen. Images are shown at the same scale.

FIG. 6: Micrographs of Specimen S3.2 thin-section A (transverse cut). (a) shows

805 Zone 1 (base, hollow calcite tubes that formed around downward-hanging


806	cyanobacterial filaments; example arrowed), Zone 2 (center, sparry calcite fans
807	interlayered with micritic bands) and Zone 3 (top, columnar calcite crystals).
808	Numbered squares refer to these zones. Green arrows point to cessations in
809	growth, marked by dark micritic layers, from which new fans nucleated. White
810	box in Zone 2 shows location of (b), which is a sparry calcite fan that contains
811	entombed cyanobacterial filaments (arrowed).

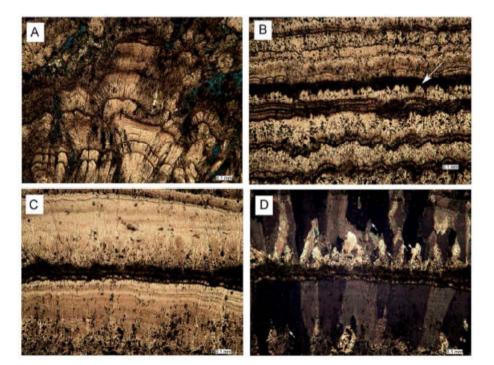


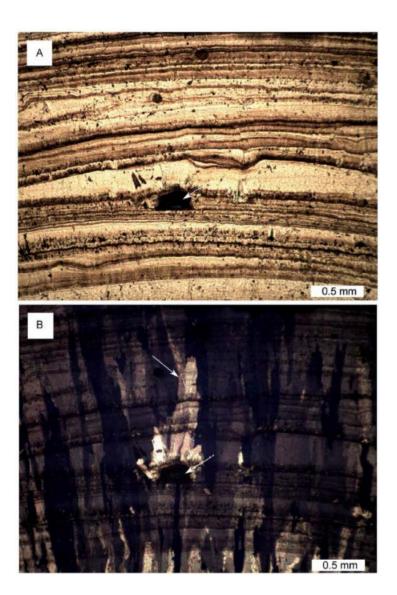
814 FIG. 7: Micrographs of Specimen S3.2 showing biological fabrics. (a) Cross-

- 815 polarized light image of Zone 1 calcite tubes formed around downward-hanging
- 816 cyanobacterial filaments (transverse cut). Blue is resin, and black is holes in the

thin-section. (b) Plane polarized light image of calcite tubes containing
microfossils of filamentous cyanobacteria (longitudinal cut). Trichome in a sheath
is arrowed. (c) Higher magnification plane polarized light image of the trichome
and sheath shown in (b). (d) Plane polarized light image of a network of larger
diameter calcite-cemented holes best interpreted as insect (interpreted as
chironomid?) larval tubes.

- growth banding (likely formed on ~diurnal timescales) in the crystal. Scale bar is
- 829 0.1 mm across.



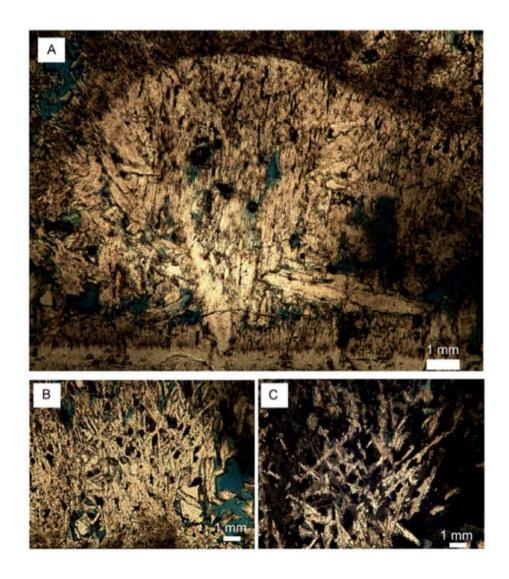

FIG. 9: Sparry calcite of Specimen 3.2 Zone 3. (a) shows the top of Zone 2, 831 832 transitioning into Zone 3. Note the shrub-like calcite crystal fans with entombed 833 cyanobacterial filaments of Zone 2. (b) shows alternating laminae of calcite spar and micrite of Zone 3. The arrow points to a partially broken pointed termination 834 835 of a spar crystal draped in dark micrite. (c) shows (apparently abiotic) sparry calcite laminae found further from the specimen center than (b), with dusty 836 lamination caused by inclusions. (d) is the same area as (c), with polars crossed. 837 838 Note competitive growth has favored some crystals over others, resulting in a

- 839 columnar fabric. Examples of crystals that were out-competed are arrowed. Note
- also that new crystals nucleated on the micrite layers (presumed hiatuses in
- growth), consistent with this columnar spar being a primary fabric.

FIG. 10: Insect (likely chironomid) larval tubes in Specimen S3.2 Zone 3 spar.
These are seen as evidence that the spar is primary and not recrystallized from
micrite. (a) plane polarized light image, showing hollow tube (filled with blue
resin) within the spar of Zone 3. (b) Same area as (a), with polars crossed. Note
the influence of the insect larvae on crystal orientations. (c) Close up of some of
the tubes in plane polarized light. (d) Same area as (c), with polars crossed. Some
crystal orientations seem consistent with the broader columnar fabric of Zone 3.

- 850 Crystals with different orientations might have been detrital grains assimilated by
- 851 the larvae for tube construction.

854	FIG. 11: Caerwys specimen 3.2 Zone 5 in thin-section. (a) Plane polarized light
855	image, showing sparry crystals (light) with dark micritic growth laminae. Arrow
856	points to a micritic grain that stuck to the specimen surface during growth, and
857	became enveloped in (primary) columnar spar. (b) Same area as (a) with polars
858	crossed. Note the influence of the detrital micrite clast (lower arrow) on columnar
859	spar growth. Crystals nucleated on the micrite were out-competed by the larger
860	columnar crystals (top arrow). This suggests the columnar spar was primary,
861	despite the fact that these large crystals cut through the dusty growth lamination.



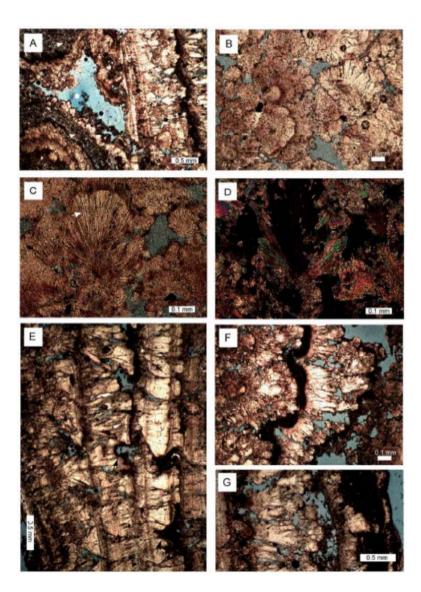

FIG. 12: Caerwys specimen 3.2 Zone 6 in thin-section. (a) Plane polarized light
image showing a mound of crystal laths nucleated on a flat surface (the top of a
Zone 5 columnar calcite crystal, at the base of the image). (b) Close up of
network of lath-shaped crystallites in plane polarized light. (c) Image with polars
crossed, showing the network of lath-shaped crystallites forms composite crystals
of Zone 6. All scale bars are 1 mm.

FIG. 13: Stalactitic specimen Caerwys 1 (longitudinally cut hand-specimen). The

- 873 central cavity formed around a downward-hanging twig. Alternating micritic
- 874 laminae (white) and sparry calcite fans (darker and thicker) grew on the outside.

- 875 Ruler for scale (larger divisions are centimeters, smaller divisions are
- 876 millimeters).

879	FIG. 14: Photomicrographs of Caerwys 1 thin-section. (a) The central cavity
880	region is highly porous, with several hollow, empty pockets (blue resin). The
881	empty pocket in (a) is lined with $20\mu m$ diameter microspar crystals. These grew
882	on peloidal micrite (arrowed). (b) A second empty pocket in the central zone, 3
883	mm across, that has been progressively filled by 300 μ m diameter sparry calcite
884	fans. (c) Inclusions within these fans (arrowed), oriented along crystallite
885	boundaries. Their alignment and form suggest they are not cyanobacterial and
886	possibly not even microbial filaments. (d) Same crystal fan as shown in (c), with
887	polars crossed. (e) Layers of columnar sparry calcite growing dominantly outward
888	as fans that form the bulk of the specimen. There is evidence that columnar sparry
889	calcite fans were partially dissolved prior to or during deposition of the micrite
890	layers. (f) Close-up of one of the micritic laminae (dark band) between sparry
891	calcite fans. (g) Sparry calcite fans on the left, capped by a thick micrite layer
892	(dark band on the right) close to the outside of the specimen. All images taken in
893	plane polarized light except (d). Scale bars in (a), (e), and (g) are 0.5mm; scale
894	bars in other images are 0.1 mm.