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Abstract  

 

Numerical landscape evolution models were initially developed to examine natural 

catchment hydrology and geomorphology and have become a common tool to examine 

geomorphic behaviour over a range of time and space scales. These models all use a digital 

elevation model (DEM) as a representation of the landscape surface and a significant issue is 

the quality and resolution of this surface. Here we focus on how subtle perturbations or 

roughness on the DEM surface can produce alternative model results. This study is carried out 

by randomly varying the elevations of the DEM surface and examining the effect on sediment 

transport rates and geomorphology for a proposed rehabilitation design for a post-mining 

landscape using multiple landscape realisations with increasing magnitudes of random 

changes. We show that an increasing magnitude of random surface variability does not appear 

to have any significant effect on sediment transport over millennial time scales. However, the 

random surface variability greatly changes the temporal pattern or delivery of sediment 

output. A significant finding is that all simulations at the end of the 10000 year modelled 

period are geomorphologically similar and present a geomorphological equifinality. However, 

the individual patterns of erosion and deposition were different for repeat simulations with a 

different sequence of random perturbations. The alternative positions of random perturbations 

strongly influence local patterns of hillslope erosion and evolution together with the pattern 

and behaviour of deposition. The findings demonstrate the complex feedbacks that occur even 

within a simple modelled system.  

 

 Keywords: sediment transport, equifinality, soil erosion modelling, SIBERIA, statistical 

uncertainty, mine rehabilitation 
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1 Introduction 

How landscapes evolve in response to the range of natural forcings is a basic scientific 

question that has long been examined by both qualitative and quantitative methods. Initially 

developed to examine natural catchment hydrology and geomorphology, numerical 

Landscape Evolution Models (LEMs) have become a common tool with which to examine 

geomorphic behaviour as well as geology, climate and the resultant soil and vegetation 

feedbacks. They can operate over time scales ranging from years to millennia and spatial 

scales from sub-hectare to entire regions (Dietrich et al., 2003; Tucker and Hancock, 2010).  

A significant issue for both the short and long-term modelling of landscapes are model 

inputs, such as the initial landscape that is usually represented by a digital elevation model 

(DEM) (Perron and Fagherazzi, 2011). With the initial DEM there are two main causes for 

uncertainty. Firstly, a scenario uncertainty of what surface to represent: For example, if 

modelling a landscape several million years old how do you reconstruct this past surface? 

Secondly, a numerical uncertainty in how differences, errors or misrepresentations within the 

DEM surface can propagate during simulations to give alternative model results. For example, 

in landscape evolution there are a series of positive feedbacks that can lead to small surface 

perturbations generating significant changes as simulations progress (Ijjasz-Vasquez et al., 

1992; Haff, 1996; Willgoose et al., 2003; Jerolmack and Paola, 2010).  

The focus of this paper is on this second numerical uncertainty. A simple but often 

impracticable solution to this sensitivity is to use a very high spatial resolution for the DEM to 

capture surface heterogeneity. However, gaining accurate surface elevation data at a high 

spatial resolution can be difficult especially if we are dealing with highly variable surfaces. 

Additionally, modelling at a high resolution increases the number of data points or pixels in a 

modelled domain, increasing computational load and thus often leading to long run times 

(Tucker and Hancock, 2010). Therefore, LEMs use a compromise DEM resolution that is of 
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sufficient detailed resolution to capture catchment and hillslope form, whilst retaining a low 

number of grid cells. For example, Hancock (2005) showed that a 10m DEM is a good 

compromise for most catchment scale assessment where the hillslope is the feature of interest. 

If other features such as creeks, contour banks, roads or constructed benches on mine sites are 

present then the DEM must be at sufficient resolution that these features are captured.  

 These issues have come to the fore with the increased use of LEMs to assess 

rehabilitation designs for post-mining landforms. These landforms can be simply defined as 

man-made hills usually burying mine sites, spoil tips and other industrial architecture blended 

into the surrounding landscape. They are often built from materials different to that of the 

surrounding landscape. In the example studied here, low grade uranium ore, tailings, brines 

and other mine wastes will be buried at depth in the areas of the former pits. 

Ideally, a rehabilitated landform is intended to  (i) minimise the area of disturbance; 

(ii) visually and geomorphologically blend in with the surrounding landscape; and (iii) be 

erosionally stable over the long-term. How these landscapes evolve is of the utmost 

importance for the surrounding environment as any erosion in excess of that of the 

surrounding environment may cause pollution and sedimentation of the surrounding 

waterways as well as the exposure and release of harmful contaminants. Mining companies 

design these landscapes with these concepts in mind but with surprisingly little assessment as 

to how changes in the landscape design or errors in construction influence landscape 

behaviour in either the short or long term. Similarly, relatively little consideration appears to 

be placed as to whether the erosion from the landscape is tolerable for the surrounding 

receiving environment.  

 These are important issues as post mining landscapes are required to be functional 

geomorphological and ecological entities that re-engage sites with the surrounding non-mined 
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landscape.  It is vital therefore that the short and long-term behaviour of these landscapes be 

assessed and qualitatively and quantitatively understood. 

 This study will examine the effect of initial surface roughness and resultant differing 

initial conditions on sediment transport rates and geomorphology on a proposed rehabilitated 

landform. This initial roughness is in keeping with the surface perturbations that could be 

expected when a new landform is constructed including features such as ‘rips’ (ploughed 

furrows added to reduce overland flow). We investigate how sensitive landscapes are to initial 

conditions by assessing the temporal patterns of sediment transport as well as geomorphic 

form at the end of a prescribed modelling period. These issues are significant from both a 

basic science perspective as well as for the long term management and stewardship of post-

mining environments.  

 

2 Site description 

The Energy Resources of Australia (ERA) Ranger mine is surrounded by the World 

Heritage-listed Kakadu National Park in the Northern Territory of Australia. The mine is 

immediately adjacent to Magela Creek (Figure 1) and erosion products from the mine could 

potentially impact three tributaries of Magela Creek, - Corridor, Georgetown and Coonjimba 

Creeks, and the large catchment of Gulungul Creek to the west of the mine. Magela Creek 

connects to the East Alligator River through wetlands listed as “Wetlands of International 

Importance” under the Ramsar Convention (http://www.ramsar.org, 2003). The mine operates 

within some of the world’s most stringent environmental requirements 

(http://www.environment.gov.au/science/supervising-scientist). 

 Mine tailings are currently stored in the above grade tailings dam and in a mined-out 

pit (Pit 1) and are required to be contained for 10000 years. Mining at the site ceased in 2012, 

with milling and processing of ore due to cease in 2021. Consequently attention is 
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increasingly focussing on the closure and the rehabilitation of the mine. The requirements for 

the closure and rehabilitation of the Ranger mine have been published as a series of 

Environmental Requirements. These state, with respect to erosion and landform stability, that 

the landform should possess “erosion characteristics which, as far as can reasonably be 

achieved, do not vary significantly from those of comparable landforms in surrounding 

undisturbed areas” (Supervising Scientist Division, 1999). This will require the landscape to 

be rehabilitated in a way that restores environmental functions supporting local ecosystem 

diversity (Ludwig and Tongway 1995; 1996). The first stage in this process is to design and 

construct a landform which is erosionally stable. 

 

2.1 Geology, climate and soils 

The regional geology of the Kakadu region is dominated by the mineralised 

metasediments and igneous rocks of the Pine Creek geosyncline (one of the richest uranium 

provinces in the world) and the younger sandstones of the Mamadawerre Formation (East, 

1996; Needham, 1988). Geomorphically, the Ranger lease is characterised as part of the 

deeply weathered Koolpinyah surface, which comprises plains, broad valleys and low 

gradient slopes, with isolated hills and ridges of resistant rock  (East, 1996).   

The Ranger lease lies in the wet-dry tropics of Northern Australia and receives high-

intensity storms and tropical monsoons between October and April with little rain falling for 

the remainder of the year. The annual average rainfall is 1584 mm (Bureau of Meteorology, 

2014). Vegetation on the lease consists of open Eucalypt forest dominated by E. tetradonta, 

E. miniata, E. bleeseri and E. porrecta. The understorey is characterised by Acacia spp., 

Livistona humilis and Gardenia megasperma with a variable grass cover of Sorghum spp., 

Themada triandra and Eriachne triseta (Chatres et al., 1991). 
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2.2 Measured erosion rates  

Understanding erosion rates of the natural surrounding area is needed to provide a 

baseline condition against which rates on the rehabilitated mine site can be compared and 

have been established using a variety of different methods. Regional denudation rates for the 

area (0.01 to 0.04 mm y-1) were determined using stream sediment data from a range of 

catchments of different sizes in the general region (Cull et al., 1992; Erskine and Saynor, 

2000). An assessment using the fallout environmental radioisotope caesium-137 (137Cs) as an 

indicator of soil erosion status for two transects in the Tin Camp Creek catchment in the 

Alligator River Region produced net soil redistribution rates between 2 and 13 t ha-1y-1 (0.013 

– 0.86 mm y-1) (Hancock et al., 2008). Erosion rates at Tin Camp Creek are significant 

because the surface properties of that catchment are analogous to proposed rehabilitated 

landforms for the Ranger mine (Uren, 1992).  

 

3 Landscape evolution models 

Landscape evolution models were initially developed to examine landscape evolution 

and dynamics at geological time scales but they have been employed in more applied settings 

(i.e. mine sites) at much shorter time scales (years, decades, and centuries). Landform 

evolution modelling the stability of post-mining rehabilitated landform designs was first 

conducted by Willgoose and Riley (1993) using the SIBERIA landform evolution model 

(Willgoose et al., 1989). Since 1993, the model has been used principally to investigate 

surface stability of post-mining rehabilitated landforms or small catchment areas (i.e. 

Willgoose and Riley 1998; Evans et al., 1998; Hancock et al., 2000, 2002; Moliere et al., 

2002). It has also been successfully employed at the nearby Nabarlek uranium mine following 

an assessment using the Revised Universal Soil Loss Equation (RUSLE) (Hancock et al., 

2006; 2008). In more recent years the CAESAR and subsequent CAESAR-Lisflood model 
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(Coulthard et al., 2013) have been used to assess rehabilitation designs on mine sites 

(Coulthard et al., 2012a, Lowry et al., 2009; 2011; Hancock et al., 2014).  

 

3.1 The SIBERIA landscape evolution model 

 SIBERIA is a mathematical model that simulates the geomorphic evolution of 

landforms subjected to fluvial and diffusive erosion and mass transport processes (Willgoose 

et al., 1991). The model links widely accepted hydrology and erosion models under the action 

of runoff and erosion over long time scales. The sediment transport equation of SIBERIA is 

    qs = qsf + qsd      (1) 

where qs (m
3
/s/m width) is the sediment transport rate per unit width, qsf is the fluvial 

sediment transport term and qsd is the diffusive transport term (both m
3
/s/m width). 

 The fluvial sediment transport term (qsf), based on the Einstein-Brown equation, 

models incision of the land surface and can be expressed as:    

where Q is the discharge per unit width (m
3
/s/m width), S (metre/metre) the slope in the 

steepest downslope direction and 1, m1 and n1 are calibrated parameters. 

 

 The diffusive erosion or creep term, qsd, is 

    qsd = DS      (3) 

 

where D (m
3
/s/m width) is diffusivity and S is slope. The diffusive term models smoothing of 

the land surface and combines the effects of creep and rain splash. 

 SIBERIA does not directly model runoff (Q, m
3
 - for the area draining through a 

point) but uses a sub-grid effective parameterisation based on empirical observations and 

justified by theoretical analysis which conceptually relates discharge to area (A) draining 

)2(                                                            SQβq 11 nm

1sf 
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through a point as  

    Q  3A
m3           (4) 

where 3 is the runoff rate constant and m3 is the exponent of area, both of which require 

calibration for the particular field site. SIBERIA uses the D8 routing algorithm. 

 For long-term elevation changes it is convenient to model the average effect of the 

above processes with time. Accordingly, individual events are not normally modelled but 

rather the average effect of many aggregated events over time. Consequently, SIBERIA 

describes how the catchment is expected to look, on average, at any given time. The 

sophistication of SIBERIA lies in its use of digital elevation models for the determination of 

drainage areas and geomorphology and also its ability to efficiently adjust the landform with 

time in response to the erosion that occurs on it.  

 The SIBERIA erosion model has been calibrated and applied for erosion assessment 

of proposed post-mining landforms (Evans and Willgoose 2000; Evans et al., 1999, 2000; 

Hancock et al., 2000, 2002; Lowry et al. 2006., Willgoose and Riley 1998).  

 

3.1.1 SIBERIA input parameters 

Before SIBERIA can be used to simulate soil erosion, the sediment transport and area-

discharge relationships require calibration. The model also requires a digital elevation model 

(DEM) of the landform of interest (described in Section 4). The fluvial sediment transport 

equation is parameterised using input from field sediment transport and hydrology data. For 

this study the SIBERIA model was calibrated using field data collected on the ERA Ranger 

mine (ERARM) site. 

To calibrate the erosion and hydrology models, complete data sets of sediment loss, 

rainfall and runoff for discrete rainfall events were collected allowing calibration from field 

plots (Table 1). The parameters were derived from plots on the batter slope of the waste rock 
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dump (Evans et al., 2000; Moliere et al., 2002). This plot (38 m long by 16 m wide (608 m
2
))  

rose approximately 12 m above the surrounding land surface and had an average slope of 

20.7%. The site was covered with an armour of coarse material and had negligible vegetation 

cover. Parameters for the vegetated surface condition were determined from a similar plot 

initially constructed of waste rock then covered in topsoil, ripped and vegetated with low 

shrubs and grasses which provided approximately 90% cover (Evans et al., 1998).  

  Using the above field data, parameter values were initially determined at unit scale 

value and would overestimate erosion if directly employed. These values were rescaled to be 

employed at the 10m DEM grid scale using the method described in Evans and Willgoose 

(2000) (Table 1), thus producing parameter sets for the different surfaces. The full derivation 

of these parameters are described elsewhere (Evans and Willgoose, 2000; Evans et al., 2000; 

Moliere et al., 2002).  

 

4 Catchment digital elevation models  

 The DEM used here is a potential design for the rehabilitated landscape for the 

Corridor Creek catchment at the ERARM and does not necessarily reflect the design of the 

final landform (Figure 2). The landscape has been described elsewhere (Hancock et al., 2014) 

but in summary it is designed to rehabilitate an area that contained haul roads, waste rock 

dumps and drainage control structures as well as a mined out pit. This landscape is required to 

be reshaped so that it blends in with the surrounding landscape as well as ensuring that it is 

erosionally stable. The DEM of this potential rehabilitated landform supplied by ERA had a 

horizontal resolution of 10 metres. The DEM is also configured so that all runoff and 

sediment is designed to exit from the lowest edge of the catchment.   

 The supplied DEM assumes that the catchment can be constructed to the dimensions 

provided, yet there will be differences in the landform surface, due to construction errors. 
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There have been few previous studies which have examined whether subtle perturbations 

(affecting the surface roughness) can influence the integrity of the structure. There is also the 

equally important issue as to how perturbations in the surface may influence erosion rates. 

Here, a maximum perturbation or random elevation increase of 0.25m is used as the 

traditional owners of the site, who have considerable influence on the final landform surface 

and function require a surface that can be easily traversed on foot. A roughness greater than 

0.25m is unlikely to comply with this request.  

 0.25m also represents the roughness typical of that when a surface is ripped (here at 

this site by a bulldozer pulling a large tyne that is inserted into the ground) to induce surface 

roughness once the landscape is reshaped and ready for vegetation seeding (Figure 3). The 

height of the disturbance or surface roughness produced by the ripping process was  measured 

from a ripped trial plot at the ERA Ranger site (Lowry et al. 2014; Coulthard et al. 2012a) 

(Figure 3). At this site the ripping process produced an average elevation change or roughness 

of 0.063m ( = 0.06m), median of 0.05m and range of 0 to 0.19m.  

 Three sets of DEMs based on the original supplied DEM are created with increasing 

amounts of roughness added to each grid cell (Figure 2, bottom). Individual sets of 100 

replicates of catchments each with a random error of up to +/- 0.05m (100 replicates), +/- 

0.1m (100 replicates) and +/- 0.25m (100 replicates) were created (300 simulations in total). 

These DEMs were individually used as landscape input for the SIBERIA model. 



5 Simulation setup 

 The simulations were run for 10000 years as this is the period for which the structure 

is designed (Commonwealth of Australia, 1997). Two scenarios were simulated, representing 

a surface covered with waste rock (WRD parameters); and a vegetated (vegetation 

parameters) surface that was initially waste rock. Additionally, a limited number (5 randomly 
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selected catchments with +/- 0.1m surface perturbations) of simulations were run for 100000 

years to assess longer time scale behaviour. 

 The WRD parameters were run continuously for the entire period. However, for the 

vegetation parameters, the WRD parameter simulation results at 10 years were used as the 

starting condition. This is in keeping with past studies (Hancock et al., 2014) which have 

assumed that vegetation would be fully established at approximately 10 years.  

 The modelling domain was the DEM displayed in Figure 2 (bottom) which had 

dimensions of 235 by 244 pixels. All discharge was directed through a series of 24 outlet 

nodes located along the lowest edge of the DEM.  

 

6 Results 

6.1 Qualitative assessment 

 Visually, there has been considerable erosion and deposition over the 10000 year 

modelled period (Figure 4). All levels of surface roughness produce similar erosion and 

deposition patterns, however, subtle differences exist such as location of the channels and 

pattern of deposition. Channels have evolved on the hillslopes and extend up to the catchment 

divide. As found in previous work (Hancock et al., 2014), the channels are largely focused in 

similar locations as a result of small undulations or swales in the original DEM placed by the 

landform designers to direct runoff.  

 Eroded material has been deposited in the main channel with all levels of roughness 

(of +/- 0.05m, +/-0.1m and +/-0.25m), but producing subtly different and unique erosion 

patterns. Reworking of this deposition can be observed with new channels developing in this 

material. This same level of surface roughness also produces subtle variation in the pattern of 

erosion and deposition for both the WRD and Vegetation parameter sets (Figures 5 and 6) but 

with much less erosion when the Vegetation parameters are employed.  
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 Visually, the catchments are very similar. The initial imposed catchment shape exerts a 

first order control with all catchments being qualitatively similar. However, the subtle 

changes in surface topography as a result of the random perturbations affect drainage pattern 

position.  

 

6.2 Quantitative assessment 

 Despite considerable channel and hillslope evolution, geomorphically, there are 

insignificant morphological differences when measures such as the area-slope relationship 

(Hack, 1957; Flint, 1974), hypsometric curve (Strahler, 1952; 1964) and cumulative area 

distribution (Rodriguez-Iturbe et al., 1992) are used. These measurements taken at 10000 

years are little different from the original surface. Observable differences only occur at time 

scales approaching 50 000 years with little variability observed until this landscape age 

(Figure 7). This demonstrates the insensitivity of these measures to our shorter time scale 

simulations.This occurred for all levels of surface roughness. 

 Average erosion and deposition show that the channels have eroded the surface to 

depths of approximately 6-8m (Figure 8). In other areas, over 4 m of deposition has occurred 

(Table 2). Of importance here is the maximum depth of erosion (approximately 8m), which 

occurs over the former pit which contains tailings (Figure 8). This demonstrates that an inert 

cover over this area needs to be considerably greater than 8m to ensure long-term 

encapsulation. We do not have erosion parameters for tailings and have not modelled such a 

possibility here. However if exposed, it is reasonable to assume that given their fine and non-

cohesive nature they would be highly mobile and rapidly move off-site.  

 For both the WRD and Vegetation parameters there is considerable variation in 

sediment output with results displayed as mean +/- one standard deviation (Figure 9). The 

results demonstrate that there are years when there is no sediment output together with years 

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ 



 14 

where there is considerable output. This variability is the result of differing patterns of erosion 

and deposition for each landscape realisation produced by the subtle changes in slope and 

drainage pattern from the random perturbations. The SIBERIA model determines erosion and 

deposition on a pixel by pixel basis and the variability in catchment sediment output reflects 

the net landscape change at each annual time step. 

 For the WRD parameters over the 10000 year simulation there is a steady decline in 

sediment output however there is considerable variation over the time period as found by 

others (Charru et al., 2014; Jerolmack and Paola, 2010; Zimmerman et al., 2010).  For the 

majority of the 10000 year period sediment output is above that expected from the catchment 

as determined from background or natural erosion rates (30-120 m
3
 y

-1
 is expected to exit the 

catchment annually based on the denudation rates described in Section 2.2). Of particular note 

is that for the first approximately 200 years sediment output is well above that expected if the 

catchment was undisturbed. After approximately 2000 years, mean sediment output settles to 

a range just above that of the maximum sediment output determined from the denudation rate. 

 The Vegetation parameter simulations produce much lower sediment outputs. 

However as for the WRD parameter simulations there is considerable variability. Interestingly 

the sediment output from the Vegetation simulations is largely within that of the background 

or natural erosion rates. Initially for the first approximately 100 years sediment output starts 

low and steadily increases. This is a result of the dynamic behaviour of the channel network 

reorganising in response to the change in erosion parameters from the initial 10 years of WRD 

parameters. At approximately 4000 years mean sediment output approximates the upper band 

of natural sediment output. 

 While temporally different, the simulations with +/- 0.05m, +/- 0.01m and +/-0.25m 

random roughness produced variability in sediment output similar to each other (Figure 10, 

top and middle). Cumulative sediment output was near identical for all three levels of 
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roughness (Figure 10, bottom). This suggests that while initial surface roughness produces 

considerable variability in annual sediment output, over the 10000 year modelled period 

initial surface roughness has little influence on cumulative sediment load.  

  

7 Discussion 

 This paper has focussed on the variability in landscape trajectory based on subtle 

surface differences. The findings highlight the diversity of the final landforms as well as the 

variability in sediment output at any point in time. Below we (1) discuss potential landscape 

outcomes, (2) the influence of parameter variability and sediment output and (3) propose a 

new way forward to assess the evolution of landscapes and engineered structures. 

  

7.1 Potential landscape outcomes 

A significant finding here is that erosion and deposition patterns are unique for each 

simulation.  However all landscapes at the end of the 10000 years are qualitatively and 

quantitatively very similar in terms of surface morphology. Others have shown that when 

examining simple initial surfaces such as a sloping linear surface, resultant landscapes can 

produce considerable geomorphic divergence (Ijjasz-Vasquez et al. 1992). Here, given the 

imposed catchment shape and network, any divergence over the 10000 year period is 

minimised (Willgoose et al., 1991; Howard, 1994; Howard et al., 1994; Tucker, 1996).  

While surface roughness changes the temporal pattern of sediment output, the overall 

cumulative sediment output is independent of initial roughness. We have not examined 

surface roughness above that employed here as it is considered that the error is within the 

range expected of modern construction equipment as well as the requirements of traditional 

owners. Introducing random roughness at levels greater than employed here (i.e. +/- 0.5m) is 

possible but not a realistic landscape management scenario.  
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The similarity in final landscape form at 10000 years is an interesting outcome and not 

detectable between simulations using conventional geomorphic metrics. While it is evident 

that considerable erosion and deposition has occurred, the area-slope relationship, 

hypsometric curve and cumulative area distribution are not sufficiently sensitive to detect this 

change or between simulations with different surface roughness. Therefore at 10000 years the 

landscapes are geomorphologically similar to the initial landscape and can be said to be 

persistent at multi-millennia time scales. This suggests that any constructed landscape will be 

present at millennial time scales with little geomorphological change in this environment. 

Therefore correct landscape design using the best geomorphological understandings is 

imperative for sustainable landforms and resultant ecosystems. 

To further evaluate long-term landscape trajectory the simulations were run out to 

100000 years (Figure 11) (only two simulations with different initial surface roughness are 

displayed for brevity). Again, while there are differences in the position of hillslope and 

channel, the landscapes are very similar. Interestingly, while there has been considerable 

deposition in the main channel, Figure 11 (top) displays a new channel that has developed in 

the depositional material while Figure 11 (bottom) displays much less erosion in this area. 

This demonstrates that subtle random perturbations across a landscape can affect not just 

hillslope evolution but also affect the pattern and behaviour of depositional systems both at 

the short and longer time scales. The ability of landscape evolution models to predict 

deposition and the erosion and reworking of the sediment has not been demonstrated in the 

past and is an area of future investigation. However, this demonstrates the complex feedbacks 

that occur in this simple modelled system.  

It should be recognised that we have only examined surface random perturbations. 

Given our findings, it is highly likely that other errors in a DEM such as steps in contours, 

incorrect drainage alignment and enforcement as well as excess or incorrect smoothing will 
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all affect erosion patterns and ultimate landform evolution. It is therefore important to 

consider that for landform modelling, how a DEM is generated can make a difference to the 

final landscape shape and this difference will be greater over time.  

 In summary, these findings demonstrate that the initial surface has a strong and long-

lasting control over landscape trajectory as a result of the initial imposition of a drainage 

network (Willgoose et al., 1991; Howard, 1994; Howard et al., 1994; Tucker, 1996). From a 

landscape rehabilitation perspective this is a good outcome as it 

1. Allows landscape trajectory to be predicted with some certainty and 

2. Subtle perturbations on an initial surface do not overrule catchment geomorphology. 

 

7.2 Parameter variability and sediment transport 

In Figure 9 the sediment discharge is displayed as the mean +/- one standard deviation 

and therefore the actual range of sediment output is much greater than that displayed here. An 

interesting result here is that even with all parameters constant (a constant hydrological 

forcing) with the only difference being the initial surface roughness, the SIBERIA model is 

generating a dynamic and highly variable sediment output. At any point in time sediment 

output at annual time scales can be predicted at best within an order of magnitude and only 

converge within a broad range (Nikora et al., 2002; Jerolmack and Paola, 2010; Zimmerman 

et al., 2010).  

However, it should be recognised that there is the distinct likelihood of even greater 

variability (Haff, 1996). The WRD parameters have been derived from materials at the site 

that represent the first few years of hillslope evolution. How these parameters change past this 

initial period is open to debate. Similar to the WRD parameters, the vegetation parameters are 

derived from a waste rock material surface on which vegetation communities have established 

and been maintained for a relatively short time. The transition from bare waste rock to 
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vegetation and how this vegetation cover evolves is also largely unknown for this surface (and 

in fact for all other post-mining surfaces) in response to weathering and pedogenesis. Further, 

the area is subject to fire with a return interval of every 2
nd

 to 3
rd

 year which complicates any 

long-term modelling assessment. Therefore the use of WRD and Vegetation parameters can 

be viewed as two possible end members of landform behaviour and outcome. 

 There is also the suggestion that waste materials at the site may evolve to that of soils 

at Tin Camp Creek (Uren, 1992). These soils have been shown to have high erosion rates and 

subject to gullying (Hancock et al., 2013). The process and rate of this evolution and 

likelihood of gullies is speculative at this stage. However, these are all possible pedogenic and 

landscape trajectories.  

 A further consideration is that of climate variability and how this  

(1) Affects weathering, pedogenesis and overall landscape evolution and  

(2) The impact of any extreme events 

For northern Australia, climate models predict an increase in both intensity and frequency of 

extreme rainfall events (CSIRO, 2007). The model results here suggest that any contaminated 

material buried at depths greater than 8m will not be exposed under the imposed boundary 

conditions employed here. However, it is uncertain whether this will be the case if the 

catchment is subject to more intense and more frequent rainfall events. The development of a 

climate risk approach is needed.  

 Here we have used two parameter sets and recognised their limitations. When using 

such parameter sets it is assumed that the data set used to derive the parameters is 

representative and averages out the inherent natural variability. However a further question is, 

how reliable are the denudation rates derived for this area given recognised variability in 

sediment output (e.g. as per Van de Wiel and Coulthard, 2010; Jerolmack and Paola, 2010)? 

We have employed well recognised values (0.01 – 0.04 mm y
-1

) as a guide to determine 
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whether the landscapes are delivering excess sediment to the natural environment. The results 

here show that there are many years when sediment output is in excess of that of expected 

from a natural system, particularly in the first 10 to 20 years.  Long-term reliable field data is 

needed to better validate model findings such as that discussed above. 

  

7.3 A new way forward – LEM predictive uncertainty and sensitivity assessment 

 The modelling here demonstrates a quite interesting result. We find that despite 

imposed initial differences between simulations there is a statistical equifinality in both 

landscape form and sediment transport. This leads to a paradox as when there is a 

convergence or equifinality you expect that all landscapes behave similarly through time. 

However the journey to that final point may be very different. For example, at any point in 

time a landscape may be exporting little or no sediment while another may be exporting 

sediment at an order of magnitude greater than background levels. Similarly, at any point in 

the landscape there may be very different erosion and depositions patterns. 

 While we have shown that well defined catchment and hillslope shape largely controls 

broad scale landscape trajectory, specific differences in position of hillslope, channel and 

deposition do occur. Given the demonstrated variability, a way forward is to use composite 

landscapes where landscapes are the average of a number of simulations (i.e. the 100 

simulations used here) (Figure 12). Landscapes will always be a product of multiple and often 

competing influences in terms of climate, vegetation, weathering pedogenesis and the 

synergies between all these. Such a probabilistic approach has been previously used in 

landscape modelling to look at the impacts of climate change on catchment sediment yield 

over shorter (30 year) time scales (Coulthard et al., 2012b). While this approach will mask 

individual features, gross landscape scale trends can be observed. 

 From an engineering point of view, plots of maximum depth of erosion (Figure 12) as 
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well as erosion and deposition patterns can be developed (Figure 8). This is of particular 

relevance for encapsulated materials within the engineered landscape.  

  

8 Conclusion and future issues 

Humans have the power to dramatically alter the earth’s surface both by the removal 

of material and also by its re-emplacement. It is both in the economic and environmental 

interests of the community to ensure that any re-emplacement, reconstruction and re-enabling 

of the disturbed system be performed using the best knowledge possible.  Any reconstructed 

landscape will have millennial scale influences on its surrounds and behave in ways that may 

not be predictable given uncertainties regarding climate, soil and vegetation interactions. 

 The results of the modelled scenarios suggest that while the landscapes at 10000 years 

are similar, the initial roughness makes it impossible to predict exact topography or sediment 

discharge. However, there is an element of equifinality in the simulations largely because of 

the initial boundary conditions and imposed drainage network and fixed outlet location exert a 

strong control on landscape form and behaviour.  

 The results demonstrate that the landform will maintain its geomorphic properties for 

millennia. However, the conceptual landform design and resultant DEM is one of a range of 

possibilities for the ERA Ranger site. Other different landscape designs are possible as there 

is conjecture at present over the final life of the mine and different competing rehabilitation 

options. Therefore this study provides an assessment method for future landscape 

possibilities.  

The focus here is on a 10000 year period that is a rehabilitation requirement for the 

mine site. The next step in this process is to fully evaluate landform trajectory using a Monte-

Carlo type analysis where model parameter inputs are sampled from a possible range of 

values. However, while possible at present, this parameter range is derived from values 
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defined largely from the here and now – not how the surface and consequent parameters 

transition from fresh unweathered material through to a fully integrated surface that is 

geomorphologically and ecologically linked to its undisturbed surrounds. How, and the rate at 

which this transition occurs is largely speculative. This evolutionary process requires 

qualitative and quantitative assessment so that reliable LEM input parameters can be 

developed.  

This work presents a robust method for generating a range of possible landscapes for 

input to a LEM using field data (using calibrated parameters from short term field plots) as a 

guide over a 10000 year modelled period. The results show that a range of outcomes can be 

expected even with a small amount of error incorporated into the original DEM. From an 

engineering perspective this provides a method for evaluating risk and the type and depth of 

cover needed to cover high risk materials such as tailings.  

In this study we have used the SIBERIA LEM as it has been extensively tested and 

used at this site and surrounding area. However, it is recognised that the results described here 

are from a single model with its unique numeric and computational procedures. Other LEMs 

may provide alternative and geomorphologically plausible alternative landforms. 
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Figure 12. Composite landform from an average of 100 simulations (top) and composite 

landform of maximum depths at 10000 years using Waste Rock Dump parameters (bottom).   
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Figure 1. Location of the ERA Range mine.  
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Figure 2. Planned rehabilitation (top) and proposed rehabilitation design (bottom). All 

dimensions are metres.  
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Figure 3. Surface roughness at the ERA Ranger trial landform (top) and DEM of the surface 

(0.2m by 0.2m grid) (bottom). All dimensions are metres. 
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Figure 4. Corridor Creek landform after 10000 years (using Waste Rock Dump parameters) 

with +/-0.05m (top), +/-0.1m (middle) and +/-0.25m (bottom) initial surface roughness. While 

generally similar they all have different erosion patterns with gullies in particular having 

different location and morphology.  

 

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ 



 33 

 

 

 
Figure 5. Three examples of the Corridor Creek landform (at 10000 years using Waste Rock 

Dump parameters) with three different random elevation patterns (+/-0.1 m) added to the 

initial surface. While generally similar they all have different erosion patterns with gullies in 

particular having different location and morphology.  
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Figure 6. Three examples of the Corridor Creek landform (at 10000 years using Vegetation 

parameters) with three different random elevation patterns (+/-0.1 m) added to the initial 

surface. While generally similar they all have different erosion patterns with gullies in 

particular having different location and morphology.  
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Figure 7. The area-slope relationship (top), hypsometric curve (middle) and cumulative area 

distribution (bottom) for the Corridor Ck catchment at year 0, 1000, 10000 and 100000 using 

roughness of +/-0.1 m for a single simulation. 
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Figure 8. Average erosion and deposition depth for the Corridor Creek landform after 10000 

years with +/-0.01m initial surface roughness. Results are an average of 100 simulations. 

Positive values represent erosion while negative values represent deposition. All dimensions 

are metres. 
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Figure 9. Sediment discharge from the Corridor Creek catchment using Waste Rock Dump 

(top) and Vegetation (bottom) parameters. The dotted lines indicate the range of sediment 

discharge expected from a natural or undisturbed system. 
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Figure 10. Sediment discharge from the Corridor Creek catchment using Waste Rock Dump 

parameters and +/-0.05m (top) and +/-0.25m (middle) initial surface roughness. The data from 

the simulation using +/-0.1m is displayed in Figure 9 (top). Cumulative sediment discharge 

for +/-0.05m, +/-0.1 and +/-0.25m initial roughness simulations (average of the 100 

simulations) (bottom).  
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Figure 11. Two examples of the Corridor Creek landform at 100000 years with different sets 

of random initial roughness (+/- 0.1m) added to the surface (WRD parameters). These 

correspond to the top and middle landforms in Figure 5 which represent these same landforms 

at 10000 years. 
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Figure 12. Composite landform from an average of 100 simulations (top) and composite 

landform of maximum depths at 10000 years using Waste Rock Dump parameters (bottom).   
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Table 1.  The SIBERIA parameter values for each region of the ERA Ranger mine 

Surface 
type 

Comparable 
site 

SIBERIA parameter 

m1 n1 3  m3 1 

Mine pit and 
waste rock 
dump 

Ranger waste 
rock dump 

(Moliere et al 
2002) 

2.52 0.69 0.00016 0.81 27743 

 

Vegetation 

Vegetated, 
ripped surface 
(Evans et al 

1998) 

1.59 0.69 0.000006 0.90 2088 
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Table 2. Results from the SIBERIA simulations after 10000 years with +/- 0.05m, +/- 0.1m 

and +/- 0.25m on initial surface roughness.  

 average 
eros. 
(m3/y) 

st. 
dev. 

(m3/y) 

min. 
eros. 
(m3/y) 

max. 
eros. 
(m3/y) 

av. 
depth 

(m) 

st. 
dev 
(m) 

min. 
eros. 
(m) 

max. 
eros. 
(m) 

0.05 m 171.62 45.48 98.76 812.62 0.561 1.72 -4.76 12.29 
0.10 m 170.44 41.71 80.84 479.97 0.562 1.69 -4.83 12.38 
0.25 m 171.85 41.92 92.96 438.54 0.561 1.73 -4.78 12.29 

 

 

 

 

 

 

 

 

 

 

 

The effect of different initial DEM surface roughness was examined using a numerical 

landscape evolution model  

Different surface roughness in the DEM produced considerable variability in sediment output 

However all simulated landscapes were very similar suggesting a geomorphic equifinality 

The initial catchment shape exerts a first-order control over evolutionary landscape form 
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