Plasma-photocatalytic conversion of CO₂ at low temperatures: Understanding the synergistic effect of plasma-catalysis

Danhua Mei^a, Xinbo Zhu^a, Chunfei Wu^{b,c}, Bryony Ashford^a, Paul T. Williams^b, Xin Tu^{*a}

a. Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool,
L69 3GJ, UK.

b. Energy & Resource Research Institute, The University of Leeds, Leeds, LS2 9JT, UK.

c. School of Engineering, University of Hull, Hull, HU6 7RX, UK.

Corresponding Author

*Dr. Xin Tu

Department of Electrical Engineering and Electronics,

University of Liverpool,

Liverpool, L69 3GJ,

UK

Tel: +44-1517944513

E-mail: xin.tu@liverpool.ac.uk

1. Thermodynamic equilibrium calculation

The thermodynamic equilibrium calculation of CO_2 conversion was carried out using the method based on the minimization of Gibbs free energy in a closed system. The main gas products are CO and O_2 . No O_3 was detected in the present experiment. We can see that CO_2 begins to decompose into CO and O_2 near 2000 K and the conversion of CO_2 is very low (< 1%). Reasonable conversion of CO_2 (~60%) can be obtained at an extraordinarily high temperature (3000-3500K), which leads to the high energy cost for thermal conversion of CO_2 .

(a)

(b)

Fig. SI1 Thermodynamic equilibrium calculation of CO2 conversion as a function of

operating temperature at 1 atm (without plasma) (a) gas composition vs. temperature; (b)

CO₂ conversion vs. temperature.

2. Mean Electric field and electron energy

The average electric field of the discharge (breakdown voltage/electrode gap) and the mean electron energy for the three different experimental conditions are calculated through Lissajous figure and BOLSIG⁺ code based on electron energy distribution function (EEDF), respectively[1, 2] and the corresponding results are shown in Fig. SI2.

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Fig. SI2 Averarge electric field (a) and mean electron energy (b) of the CO₂ DBD with and without catalyst.

3. Catalyst characterization

XRD patterns of the catalyst samples are plotted in Figure SI3. BaTiO₃ has the tetragonal phase [3], which can be approved by the peaks at $2\theta = 22.14^{\circ}$, 31.61° , 39.00° , 45.37° , 51.00° , 56.32° , 65.94° (JCPDS 05-0626), while the fresh TiO₂ shows a crystal structure of anatase, as evidenced by X-ray reflections at $2\theta = 25.24^{\circ}$, 36.94° , 37.82° , 38.56° , 48.04° , 53.96° , 55.00° , 62.69° , 68.76° (JCPDS 84-1286)[4].

Fig. SI3 XRD patterns of the fresh catalysts.

Reference

- X. Tu, H. J. Gallon, M. V. Twigg, P. A. Gorry, J. C. Whitehead, Journal of Physics D: Applied Physics, 44 (2011) 274007.
- [2] X. B. Zhu, X. Gao, C. H. Zheng, Z. H. Wang, M. J. Ni, X. Tu, Rsc Advances, 4 (2014) 37796-37805.

- [3] Z. Lazarevica, N. Romcevica, M. Vijatovicb, N. Paunovica, M. Romcevica, Acta Physica Polonica A, 115 (2009) 808-810.
- [4] K. Thamaphat, P. Limsuwan, B. Ngotawornchai, Kasetsart Journal : Natural Science, 42 (2008) 357-361.