Plasma-photocatalytic conversion of CO$_2$ at low temperatures: Understanding the synergistic effect of plasma-catalysis

Danhua Meia, Xinbo Zhua, Chunfei Wub,c, Bryony Ashforda, Paul T. Williamsb, Xin Tu*a

a. Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK.
c. School of Engineering, University of Hull, Hull, HU6 7RX, UK.

Corresponding Author

Dr. Xin Tu

Department of Electrical Engineering and Electronics,
University of Liverpool,
Liverpool, L69 3GJ,
UK

Tel: +44-1517944513

E-mail: xin.tu@liverpool.ac.uk
1. Thermodynamic equilibrium calculation

The thermodynamic equilibrium calculation of CO₂ conversion was carried out using the method based on the minimization of Gibbs free energy in a closed system. The main gas products are CO and O₂. No O₃ was detected in the present experiment. We can see that CO₂ begins to decompose into CO and O₂ near 2000 K and the conversion of CO₂ is very low (< 1%). Reasonable conversion of CO₂ (~60%) can be obtained at an extraordinarily high temperature (3000-3500K), which leads to the high energy cost for thermal conversion of CO₂.

![Thermodynamic equilibrium calculation of CO₂ conversion as a function of temperature](image1)

(a)

![CO₂ conversion (%) vs. temperature](image2)

(b)

Fig. SI1 Thermodynamic equilibrium calculation of CO₂ conversion as a function of
operating temperature at 1 atm (without plasma) (a) gas composition vs. temperature; (b) CO$_2$ conversion vs. temperature.

2. **Mean Electric field and electron energy**

The average electric field of the discharge (breakdown voltage/electrode gap) and the mean electron energy for the three different experimental conditions are calculated through Lissajous figure and BOLSIG$^+$ code based on electron energy distribution function (EEDF), respectively[1, 2] and the corresponding results are shown in Fig. SI2.
Fig. SI2 Average electric field (a) and mean electron energy (b) of the CO$_2$ DBD with and without catalyst.

3. Catalyst characterization

XRD patterns of the catalyst samples are plotted in Figure SI3. BaTiO$_3$ has the tetragonal phase [3], which can be approved by the peaks at $2\theta = 22.14^\circ$, 31.61$^\circ$, 39.00$^\circ$, 45.37$^\circ$, 51.00$^\circ$, 56.32$^\circ$, 65.94$^\circ$ (JCPDS 05-0626), while the fresh TiO$_2$ shows a crystal structure of anatase, as evidenced by X-ray reflections at $2\theta = 25.24^\circ$, 36.94$^\circ$, 37.82$^\circ$, 38.56$^\circ$, 48.04$^\circ$, 53.96$^\circ$, 55.00$^\circ$, 62.69$^\circ$, 68.76$^\circ$ (JCPDS 84-1286)[4].

![Fig. SI3 XRD patterns of the fresh catalysts.](image)

Reference

