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1. Thermodynamic equilibrium calculation 

The thermodynamic equilibrium calculation of CO2 conversion was carried out using the 

method based on the minimization of Gibbs free energy in a closed system. The main gas 

products are CO and O2. No O3 was detected in the present experiment. We can see that 

CO2 begins to decompose into CO and O2 near 2000 K and the conversion of CO2 is very 

low (< 1%). Reasonable conversion of CO2 (~60%) can be obtained at an extraordinarily 

high temperature (3000-3500K), which leads to the high energy cost for thermal 

conversion of CO2.  
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Fig. SI1 Thermodynamic equilibrium calculation of CO2 conversion as a function of 
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operating temperature at 1 atm (without plasma) (a) gas composition vs. temperature; (b) 

CO2 conversion vs. temperature. 

 

2. Mean Electric field and electron energy 

The average electric field of the discharge (breakdown voltage/electrode gap) and the mean 

electron energy for the three different experimental conditions are calculated through 

Lissajous figure and BOLSIG+ code based on electron energy distribution function (EEDF), 

respectively[1, 2] and the corresponding results are shown in Fig. SI2. 
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Fig. SI2 Averarge electric field (a) and mean electron energy (b) of the CO2 DBD with and 

without catalyst. 

 

3. Catalyst characterization 

XRD patterns of the catalyst samples are plotted in Figure SI3. BaTiO3 has the 

tetragonal phase [3], which can be approved by the peaks at 2θ = 22.14o, 31.61o, 39.00o, 

45.37o, 51.00o, 56.32o, 65.94° (JCPDS 05-0626), while the fresh TiO2 shows a crystal 

structure of anatase, as evidenced by X-ray reflections at 2θ= 25.24o, 36.94o, 37.82o, 38.56o, 

48.04o, 53.96o, 55.00o, 62.69o, 68.76° (JCPDS 84-1286)[4].  

 

 

Fig. SI3 XRD patterns of the fresh catalysts. 
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