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Self-assembling ultrashort peptides from aliphatic amino acids were functionalized with platinum anti-cancer drugs by click chemistry. 

Oxaliplatin-derived hybrid peptide hydrogels with up to 40% drug loading were tested for localized breast cancer therapy. Stably 

injected gels showed significant tumor growth inhibition in mice and a better tolerance compared to the free platinum drug. 

Introduction 10 

Self-assembly, the spontaneous organization of molecules into 

ordered structures by non-covalent interactions is the most 

fundamental process for building supramolecular structures1, 2 

from DNA, proteins and other biomolecules in living systems.3 We 

have been able to harness the innate self-assembling capacity of 15 

rationally designed ultrashort peptides which contain only 

aliphatic amino acids.4-6 The self-assembly process of these 

ultrashort peptides has been addressed in detail and a hypothesis of 

the underlying mechanism has been discussed.4 In this study, we 

combine the use of these peptides as vehicles for sustained, local 20 

delivery of anti-cancer therapeutics and as scaffolds for replacing 

lost tissue and regenerating damaged tissue. 

Platinum-based anticancer therapeutics are amongst the most 

widely used drugs in the clinics today for the treatment of different 

types of cancers. So far, three platinum(II) compounds have been 25 

approved by the FDA, namely cisplatin, carboplatin and 

oxaliplatin.7-10 These drugs are used against a number of solid 

tumors including prostate, breast, colorectal, non-small-cell lung, 

and genitourinary cancers.8, 11, 12 The drugs are administered 

intravenously, whereby only a small amount of the given dosage 30 

reaches the target.13 The majority of the drug is excreted and causes 

severe side effects ranging from nausea and ototoxicity to nephro- 

and neurotoxicity.14 Reducing side effects and enhancing drug 

uptake and efficacy is currently one of the biggest challenges in 

medicinal chemistry, especially in the development of metal based 35 

anti-cancer therapeutics.15-25 Our aim is to address this challenge 

by using self-assembling ultrashort peptides as a platform for 

localized and sustained release of anti-cancer drugs. 

Localized treatment, using in situ gelling delivery systems injected 

directly into the tumor site, is a feasible strategy to overcome 40 

systemic effects and poorly directed uptake. In addition, direct 

localized injection of a drug can be seen as a non-invasive 

therapeutic strategy, reducing hospitalization time and cost, 

thereby providing more comfort to patients. In case surgical 

removal of the tumor is required, such systems could be implanted 45 

as biomimetic ECM supporting tissue regeneration, in combination 

with providing a localized therapeutic effect. For a number of 

malignancies localized treatment is already routine.26-28 Several 

polymer–based hydrogels are currently in development for 

localized drug delivery.28-32 A major drawback of many synthetic 50 

polymeric hydrogels is the requirement of a crosslinking step that 

necessitates the use of potentially harmful agents such as organic 

solvents or chemical initiators. The residual presence of such 

agents decreases the biocompatibility of the hydrogels. On the 

other hand, UV-crosslinked polymers are often incompatible with 55 

many anticancer drugs (e.g. doxorubicin, daunorubicin, 

cyclophosphamide). Although hydrogels containing cisplatin 

directly coordinated to an amino acid have been reported, such 

systems often use an amino acid which is co-polymerized, yielding 

a hybrid peptide polymer system, where the drug is loaded after 60 

the polymerisation step. This results in poor solubility and does not 

offer the possibility of in situ gelation after a local injection.33-37  

 
Fig. 1. Schematic drawing of a) peptide functionalization with a bioactive 

cue using click chemistry. The triangle represents the hydrophobic tail of 65 

the peptide showing decreasing lipophilicity from N- to C-terminus and the 

red dot represents the polar head group at the C-terminus; b) assembly of 

the parent peptide together with the functionalized ultrashort peptide, 

forming a hybrid system. 

Natural biomolecules such as peptides, which self-assemble into 70 
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injectable hydrogels, offer a promising platform to overcome the 

above limitations. We recently reported a unique class of ultrashort 

peptides, which are able to form hydrogels by facile self-assembly 

without additional physico-chemical support or UV-crosslinking.4, 

5 5 

The unique character of these ultrashort peptides and their 

biocompatibility afford them great potential as drug-delivery 

systems. Here, we report the synthesis and bioactivity of 

oxaliplatin-derived hybrid peptide hydrogels (Fig.1). The ability of 

these ultrashort peptides to self-assemble into hydrogels, likely via 10 

an antiparallel mechanism, allows functionalization of the termini 

of the peptides without interfering with the self-assembling 

residue. Therefore, the functionalized peptide would still be able 

to assemble by itself or when mixed with its parent peptide, 

forming hybrid hydrogels (Fig. 1). 15 

 

Results and discussion 

 

A series of propiolic acid functionalized peptides, namely 

LIVAGK-NH2, IVK-NH2, LIVAGD-OH and IVD-OH were 20 

synthesized by standard Fmoc solid phase peptide synthesis. The 

N-terminus functionalization was performed on the solid phase-

bound peptide, using HATU (O-(7-azabenzotriazolyl)-

tetramethyluroniumhexafluorophosphate) as the coupling reagent 

without the addition of a base. The beads were washed after the 25 

coupling with a solution of 10% DIPEA (N,N-

diisopropylethylamine) in DMF. The final coupling was repeated 

until a Kaiser test, (a ninhydrin based calorimetric assay which  

detects free amines of the resin-bound peptide),38 detected no free 

amines. The alkyne residue allows for a fast and efficient 30 

derivatization of the peptides with bioactive cues via click 

chemistry. We chose an oxaliplatin derived precursor as the 

bioactive test compound. Here, 2-(3-azidopropyl)-2-

methylmalonic acid was used as the biscarboxylato ligand yielding 

oxaliplatin analogues following standard synthetic protocols. The 35 

azide functionality on compound 1 allows the attachment to the 

alkyne functionalized peptide via a Cu(I) catalyzed 1,3-dipolar 

cycloaddition reaction, as shown in Scheme 1.The best yield was 

obtained when CuSO4·5H2O was reduced to Cu(I) in situ using 

sodium ascorbate, and H2O/tBuOH/DMF in a ratio of 10:10:1 as 40 

the solvent(refer to ESI for details of synthesis and chemical 

characterization). The addition of DMF helped in solubilizing the 

starting compounds. 
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Scheme 1. Synthesis of oxaliplatin peptide conjugates. 

The synthesized compounds were characterized in detail by 

multinuclear NMR (Fig. 2 and S2), FT-IR (Fig.S3 and S4), ESI-

MS (Fig. S5, S6, S7 and S8) and UV-Vis spectroscopy (Fig. S9). 

For compound 2 and 4, detailed structural analysis was carried out 50 

by multinuclear NMR experiments. The predicted structure of the 

compounds could be clearly verified by 2D correlation 

experiments proving the success of the ligation reaction (Fig. 2, 

Fig. S2 for numbering scheme and ESI for complete assignment). 

The successful click reaction could be verified by the characteristic 55 

13C signals of the newly formed triazole ring at 127 (CH) and 141 

(Cq) ppm respectively. Furthermore, the presence of the 1R,2R-

DACH ligand and its coordination to platinum can be proven by  

the characteristic  proton resonance of the amine group (~ 5.5 

ppm), which is shifted significantly to a lower field when 60 

coordinated to  platinum. These experimental findings are in 

agreement with results obtained by ESI-MS and FT-IR 

spectroscopy.  Additionally, the copper content in the final 

products (compound 2 and 4) was quantified by ICP-MS. An 

insignificant copper content of less than 0.25 ‰ was detected for 65 

compound 2 while for compound 4, the copper content was below 

the detection limit of 10 ppb. 

 
Fig. 2. 1H,13C-HMQC NMR of compound 4. 

To test the gelation ability of compounds 2-5, they were dissolved 70 

in water by vortexing and kept undisturbed overnight (Fig. 3). 

However, even at a concentration of 40 mg/mL, only clear 

solutions were obtained, and no hydrogel formation was observed. 

Interestingly, these peptide metal conjugates showed much higher 

water solubility than either oxaliplatin or cisplatin alone. In 75 

contrast, the alkyne-derived peptide P1 gelled in water at a 

concentration of 29 mg/mL, which is close to the minimal gelation 

concentration of its parent peptide Ac-LIVAGK-NH2 (Ac-LK6-

NH2). Peptides P2-P4 showed gelation behaviour similar to P1. 

We assume, that derivatization of the peptides with oxaliplatin and 80 

a bulky triazole group interferes with their self-assembly by 

changing the hydrophobic nature of the N-terminus of the peptide. 

However, stable hybrid gels could be formed with up to 40 wt% 

drug loading, when the parent peptide was used as a matrix. Since 

gelation time is critical for in vivo applications, the effect of 85 

peptide concentration on gelation time was investigated. In 

general, the gelation time can be easily adjusted by tuning the 

peptide concentration and type of solvent used. A faster gelation 

time is observed in PBS as compared to water for a given peptide 

concentration. Furthermore, the minimum concentration required 90 

for gelation is also lower in PBS buffer, which makes the system 

suitable for in vivo formulations. 
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Fig. 3. Pictures of: A) Ac-LIVAGK-NH2  at 25 mg/mL, B) peptide P1  at 

29 mg/mL C) solution of compound 2  at 40 mg/mL and D) co-gel 

containing 10 wt% of compound 2 and 90 wt% of  Ac-LIVAGK-NH2 5 

 

Morphological characterization of the peptide hydrogel scaffolds 

was done by Field Emission Scanning Electron Microscopy 

(FESEM) and representative images for Ac-LIVAGK-NH2, P1 

and 2 are shown in Fig.4. The three compounds showed similar 10 

morphologies that can be described as flat sheets and tapes with 

visible fibrous structures on the surface. 

 

 

Fig. 4. Morphology of peptide hydrogels as imaged by FESEM. A) Ac-15 

LIVAGK-NH2  at 2 mg/mL, B) peptide P1  at 29 mg/mL C) solution of 

compound 2  at 40 mg/mL 

Cytotoxicity of all synthesized compounds was evaluated in two 

human cancer cell lines, namely HeLa (cervical carcinoma) and 

SW480 (colon carcinoma) cells. In addition, 4T1 mouse breast 20 

cancer cells were used. IC50 values obtained by serial dilutions are 

listed in Table 1. 

Table 1. Cytotoxicity values of platinum peptide conjugates 2-5 compared 

to cisplatin and oxaliplatin in three cancer cell lines. 

    IC50 [μM]   

Compound HeLa SW480 4T1 

2 4.4 ± 2.3 1.5  ± 0.8 2.9 ± 0.8 

3 7.7 ± 1.4 1.5  ± 0.7 6.7 ± 0.9 

4 3.4 ± 1.5 1.6 ± 1.1 2.1  ± 1.0 

5 6.2 ± 1.3 2.3  ± 1.2 4.1  ± 1.0 

Cisplatin 1.0 ± 0.8 4.0 ± 2.5 1.5  ± 0.6 

Oxaliplatin 2.0 ± 0.8 0.47  ± 0.1 1.8  ± 0.5 

 25 

The control compounds cisplatin and oxaliplatin exhibited IC50 

values in the sub-micromolar to low micromolar range in all three 

tested cell lines. Oxaliplatin showed the highest activity in SW480 

cells whereas cisplatin was most active in HeLa cells. The same 

holds true for compound 2-5 with all compounds displaying the 30 

highest activity in SW480 cells (IC50 = 1.5-2.3 μM) and least active 

in HeLa cells (IC50 = 3.4-7.7μM). To verify that the conjugation of 

the compound 1 to the peptides does not significantly affect the 

cell cytotoxicity, its IC50 value was also determined in HeLa cells. 

The resulting IC50 value was within the expected range. 35 

 

To further characterize the in vitro efficacy of compounds 2-5, cell 

cycle analysis and caspase activity were evaluated. Specifically, 

we compared the response of SW480 and 4T1 cells to compounds 

2-5, and to the oxaliplatin control. All compounds induced an 40 

arrest in both cell lines in the G2/M phase, the checkpoint after 

DNA replication and preceding mitosis (see Fig. S12 and S13). 

Similar observations have been reported for the oxaliplatin 

control.39 Oxaliplatin coordinates to DNA, preventing the cell from 

crossing the G2/M DNA damage check point. Although G2/M 45 

phase arrest of compounds 2-5 indicates, that compounds 2-5 are 

able to interact with DNA similarly to oxaliplatin, it is not a direct 

proof of DNA platination. For the SW480 cells, no apoptosis was 

observed with the oxaliplatin control as well as compounds 2-5. 

However, relative to the untreated controls, the G1 phase was 50 

reduced and an increase in G2 (corresponding to a G2/M arrest) as 

well as in the S phase was seen for the test compounds. A 

significant increase in the G2 phase is observed for compounds 2-

5, majority of the cells were in the S phase. We attribute this to the 

ability of the compound to aggregate in solution, as well as 55 

specificity of the drug to a particular cell phenotype. 

To further prove that the novel platinum-peptide conjugates are 

able to bind DNA, DNA platination on HeLa cells using compound 

2 as the test compound and oxaliplatin as control were carried out 

(see ESI for experimental details). Isolated DNA was quantified 60 

and the platinum content of the samples were determined by ICP-

MS. DNA platination was observed for both compound 2 as well 

as oxaliplatin, in which a DNA platination of 1.2 ± 0.03 pg 

platinum per μg DNA was found for compound 2 and 3.7 ± 0.7 pg 

platinum per μg DNA for oxaliplatin, respectively. The 3-fold 65 

increase in platination for oxaliplatin over compound 2 explains 

the slightly higher efficacy in vitro and vivo for the oxaliplatin 

control, which is nevertheless countered by its detrimental effects 

such as poor tumor uptake and subsequently higher systemic 

toxicity (as indicated by in vivo results and biodistribution data).  70 

By measuring caspase 3/7 activity, we confirmed that compounds 

2-5 and the oxaliplatin control are able to induce apoptosis via the 

caspase 3/7 pathway. For all tested compounds, the highest caspase 

activity was detected at 10 μM after 72 h of incubation (see ESI for 

experimental details and Fig. S14 for time-dependent caspase 3/7 75 

activity). In addition, compound 2 was used to examine the effects 

of concentration on caspase 3/7 activity (Fig. S15). No significant 

difference in caspase 3/7 activity was detected between SW480 

and 4T1 cells. These results are in agreement with the cell cycle 

analysis, demonstrating the cytotoxicity of the oxaliplatin peptide 80 

conjugate.  

 

Based on the promising in vitro efficacy of all tested oxaliplatin-

derived compounds in 4T1 cells, we decided to evaluate the effect 

of a localised treatment in an in vivo mouse model.40 Although 85 

compounds 2 and 4 showed similar IC50 values, compound 2 was 

selected for in vivo evaluation due to the reduced acidity and lower 

gelation concentration of its parent peptide. 

 

Female BALB/c mice were divided into four groups for treatment 90 
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(PBS group and Ac-LIVAGK-NH2 hydrogel group as negative 

controls, oxaliplatin as positive control and test compound 2 as a 

hybrid hydrogel with Ac-LIVAGK-NH2). Each group comprised 9 

mice (see ESI for the experimental procedure). All compounds and 

controls were injected locally into the seven-day old tumor and 5 

reinjection was performed with half the dose on day 21. 

 

 
Fig. 5. Effects of oxaliplatin-derived peptide hybrid hydrogel in 4T1 tumor 

bearing mice. A) Tumor growth inhibition. BALB/c mice injected with 4T1 10 

breast cancer cells (day 0) were divided into four groups to receive different 

treatments at day 7. Tumor volume measured at day 7, 14, 21, and 28 post 

tumor inoculation are shown (Mean ± SE, n=9 per group). B) Reduced 

toxicity. Animals (n=9/group) were weighed at day 20 and 28 after tumor 

inoculation. For both measurements, one way ANOVA was performed (*: 15 

P<0.05, **: P<0.01). 

Results of the tumor size measurements on day 7, day 14, day 21 

and day 28 are shown in Fig. 5A. Statistical analysis was done 

using ANOVA to quantitatively discern significant differences 

among the groups for each time point based on tumor size (see ESI 20 

for the detailed statistical analysis). Significant tumor reduction 

was observed for the groups treated with oxaliplatin and compound 

2; seven and fourteen days post injection, in comparison with the 

PBS control group (Fig. 5A). Oxaliplatin displayed a greater effect 

on tumor size than compound 2. However, oxaliplatin appeared to 25 

have a significant deleterious effect on the mice at the administered 

dose when compared to compound 2. This was confirmed by a 

substantial weight difference between the oxaliplatin group and the 

group treated with compound 2 (Fig. 5B). Therefore, reinjection 

on day 21 involved only half the initial dose. On day 28, no 30 

statistically significant difference between the oxaliplatin group 

and the mice treated with 2 was found. However, the group treated 

with the hybrid hydrogel containing compound 2 showed a marked 

tumor growth inhibition when compared to the control group 

treated with the hydrogels alone (Fig. 5A). These results clearly 35 

demonstrate the advantages of using this new drug delivery system 

for localized cancer treatment. 

 
Fig. 6. Bio-distribution and drug release profiles (A) Bio-distribution 

profiles of the injected compounds in the liver, kidney and tumor of the 40 

treated animals. (B) In vitro drug release profile of the oxaliplatin-peptide 

conjugate and the free drug, in the presence of HeLa cells cultured in a 24-

well transwell plate. Platinum concentration was measured using ICP-MS. 

At least three triplicates were taken for each data point. 

In order to further evaluate the in vivo efficacy and advantage of 45 

localized treatment using the hybrid oxaliplatin-peptide conjugate 

system, the tumor and other organs of the mice were isolated from 

the sacrificed animals at the end point of the therapy. Inductively 

coupled plasma mass spectrometry (ICP-MS) was used to analyze 

platinum (Pt) concentration in each organ (see ESI for 50 

experimental details). The bio-distribution of compound 2, 

oxaliplatin, and the platinum-free controls (Ac-LIVAGK-NH2 and 

PBS) are shown in Fig.6A. Enhanced tumor accumulation of 

compound 2 (21.5 µg/g tissue) was observed in the tumors treated 

with compound 2, compared to the tumors that received oxaliplatin 55 

(8.8 µg/g tissue) alone (Fig. 6A). In the kidney and liver, which are 

the primary organs affected by oxaliplatin toxicity, compound 2 

showed lower Pt levels (0.5 and 0.3 µg/g tissue) compared to the 

free oxaliplatin drug (1.8 and 1.4 µg/g tissue). The lower Pt levels 

in the liver and kidney confirm our earlier observations of reduced 60 

systemic toxicity of the conjugated drug compared to free 

oxaliplatin. To further establish the suitability of the novel 

platinum-peptide conjugate for injectable therapy and to elucidate 

the basis for the difference in tumor platinum concentration, the 

drug release kinetics was studied in vitro. For this purpose, drug 65 

release was quantified in the presence of HeLa cells (Fig.6B) over 

4 days using a 24- well transwell plate setup (see ESI for 

experimental details). The drug release profile showed a 

significantly slower release for compound 2. This effect is even 

more pronounced, when the same experiment is carried out in the 70 

absence of HeLa cells (Fig. S10A), resulting in approximately 80% 
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release of compound 2 after 4 days. Almost no changes were 

detected for the control oxaliplatin. It has to be noted, that under 

the experimental condition, which are similar the conditions used 

for the cell cytotoxicity studies, the hydrogel does not disintegrate 

and has to be dissolved at the end of the study to determine the 5 

cumulative platinum release. To further elucidate the release 

mechanism, a drug release study was carried out with a similar 

method to that used for the platinum release study (see ESI for 

experimental procedure). After 24 h of incubation at 37 °C the 

supernatant was analysed by HPLC-MS. The main compound 10 

identified was the parent peptide Ac-LK6-NH2, which is the major 

component of the co-gel. Compound 2 was also identified, together 

with released platinum. The fact that both Ac-LK6-NH2 and 

compound 2 were found can be explained through the dynamics of 

the self-assembly process, where at the interface between gel and 15 

solution, an equilibrium exists between the solubilised and gelled 

compound. As mentioned above, we also could identify platinum 

compounds with lower molecular weight, which can most likely be 

attributed to a released oxaliplatin compound which further reacts 

with the PBS buffer. To confirm that the observed compounds are 20 

the result of a reaction between the free platinum compound and 

the PBS buffer, [PtI2(DACH)] was activated with AgNO3 and 

added to PBS buffer. After analysis, the same molecular weight as 

for the hydrogel sample was seen. The above observation supports 

our initial working hypothesis - i.e. the peptide moiety of the 25 

platinum-peptide conjugate functions as an anchor group within 

the hydrogel scaffold of the parent peptide; and thus enables a more 

controlled release.  

Conclusions 

In conclusion, we have successfully functionalized the self-30 

assembling ultrashort peptides with platinum anti-cancer drugs by 

click chemistry. The synthetic strategy is a general approach and 

can be used to attach a variety of bioactive molecules. Through 

extensive in vitro and in vivo evaluations, we show that the 

functionalized peptides can be used for localized cancer therapy 35 

using its parent peptide as the matrix. The peptide residue of 

compound 2-5, when mixed with its parent peptide, is stably 

integrated into the hydrogel. All peptide compounds showed 

promising in vitro and in vivo activity. More importantly, the 

oxaliplatin-peptide conjugates displayed significantly lower 40 

systemic toxicity and higher localization in the target tissue 

compared to the free drug. We are currently exploring the use of 

ultrashort peptides as carriers for controlled release of doxorubicin 

and other cytostatics, where the release is controlled through a pH 

or light-sensitive linker. In summary, the use of hybrid peptide 45 

hydrogels containing anti-cancer drugs offers promising 

alternatives for current anti-cancer therapies, by enabling more 

efficient localized treatment and providing additional support as a 

3D-scaffold for lost or damaged tissue. 

 50 
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