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Loess Plateau storage of Northeastern Tibetan
Plateau-derived Yellow River sediment
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Shanpin Liu1, Alberto Resentini5, Giovanni Vezzoli5, Wenbin Peng1, Andrew Carter9, Shunchuan Ji1 & Baotian Pan1

Marine accumulations of terrigenous sediment are widely assumed to accurately record

climatic- and tectonic-controlled mountain denudation and play an important role in

understanding late Cenozoic mountain uplift and global cooling. Underpinning this is the

assumption that the majority of sediment eroded from hinterland orogenic belts is

transported to and ultimately stored in marine basins with little lag between erosion and

deposition. Here we use a detailed and multi-technique sedimentary provenance dataset

from the Yellow River to show that substantial amounts of sediment eroded from Northeast

Tibet and carried by the river’s upper reach are stored in the Chinese Loess Plateau and the

western Mu Us desert. This finding revises our understanding of the origin of the Chinese

Loess Plateau and provides a potential solution for mismatches between late

Cenozoic terrestrial sedimentation and marine geochemistry records, as well as between

global CO2 and erosion records.
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T
he Yellow River (Fig. 1) currently has the world’s highest
sediment load1, with an annual sediment discharge of
1,080� 106 ton per year to the ocean. It is therefore a critical

link between eroding uplands and terrigenous sediment records of
the marine sedimentary basins used extensively to reconstruct
orogenic denudation histories2–4. The river’s sediment sources,
transport and dispersal patterns, as well as its formation history5–8,
are key for understanding the controversial timing, cause, extent
and impact of uplift and denudation of the Northeast (NE) Tibetan
Plateau and tectonic–climate linkages3,9,10. However, the origin
and drainage history of the river are highly controversial, with
estimates of establishment of the current drainage patterns ranging
from the Eocene to late Pleistocene6,8,11. Furthermore, the globally
important climate and dust archive, the Chinese Loess Plateau
loess deposits that lie within the square bend of the Yellow River
(Fig. 1), are widely considered to be derived solely from aeolian
transport of dust directly from source regions in NE Tibet, western
China or northern China and Mongolia12–20. The Yellow River is
considered to be a net remover of sediment from the Loess
Plateau21–23. However, a recent study24 suggests that the Yellow
River has provided sediment to the Loess Plateau during the last
glacial period, casting doubt on the origins of this climate and
atmospheric dust archive. Key to unravelling these questions is
constraining the river’s past and present sediment sources and
dispersal patterns.

Here we constrain these sources and dispersal patterns using
the first extensive modern and paleo-river sediment provenance
data set based on combined detrital zircon U–Pb dating, heavy
mineral and framework petrography. The results show that the
Loess Plateau is a major terrestrial sink for Yellow River sediment
eroded from the NE Tibetan Plateau.

Results
Modern Yellow River provenance data. Sediment samples from
bars in the upper (Fig. 1; samples 1–11; refer to Supplementary
Table 1 for sample information) and lower reaches (samples
18–22) of the modern Yellow River show similar provenance
signals (zircon U–Pb data (Supplementary Data sets 1, 2 and 3),
heavy mineral (Supplementary Table 2) and bulk petrography
(Supplementary Table 3)) and are also similar to the modern
western Mu Us desert (sample 25) and the Quaternary Chinese
Loess Plateau samples (Fig. 2; Supplementary Figs 1, 2 and 3). In
contrast, modern bar sediment samples from the Yellow River
middle reach (Fig. 1; samples 12–17) show different signals,
similar to the Cretaceous sandstones overlying the North China
Craton24,25 and similar to the modern sands of the eastern Mu Us
desert (samples 26 and 27; Fig. 2; Supplementary Figs 1 and 2).
The zircon U–Pb ages of the upper and lower reaches samples,
and the western Mu Us desert and the Chinese Loess Plateau
samples, show two prominent peaks at B450 and B250 Myr ago,
matching NE Tibetan source rock signatures15,24. In contrast,
only one prominent peak at B250 Myr ago is expressed in the
middle reach, Cretaceous sandstones and the eastern Mu Us
desert. In addition, the ages falling between 2,750 and 1,500 Myr
ago account for o30% of ages for the upper and lower reaches,
the western Mu Us desert and the Chinese Loess Plateau, but
comprise 460% of ages from the middle reach, Cretaceous
sandstones and eastern Mu Us desert. The heavy mineral
assemblages of the upper and lower reaches, western Mu Us
desert and Chinese Loess Plateau are dominated by unstable
mineral amphibole followed by epidote, while by contrast the
middle reach, Cretaceous sandstones and eastern Mu Us desert
samples are dominated by stable mineral garnet, with amphibole
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Figure 1 | Map showing the Yellow River and the sampling sites. The upper (U), middle (M) and lower (L) reaches of the Yellow River are divided

by white lines. The U reach is further subdivided into the plateau/canyon portion and the alluvial platform portion by the Qingtong Gorge (the yellow

hexagon with black boundary). Numbers represent locations of provenance samples. Numbers 1–22 represent the main stream sites of the Yellow River.

Samples 14 and 140 are very close, so 140 is not shown. Location of the Jishi conglomerates is shown with a yellow pin labelled as Linxia. The Wuquan

conglomerates and Lanzhou terrace sites in Fig. 2 are near site 8. The M reach paleo-river sites in Fig. 2 are shown with yellow stars. The Yellow River’s

drainage area is highlighted by thick black dashed contour. The graben sediment filling system8 is bounded by black line with ticks filled with dots.

Sample description is in Supplementary Table 1.
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as the second most abundant mineral type (Fig. 2). In terms of the
bulk petrography data, the middle reach has higher quartz
content but less lithic fragments than the upper and lower reaches
(Fig. 2), indicating higher sediment maturity for the middle reach
sediment. This is consistent with their greater garnet content as
well as the similarity between heavy mineral and zircon U–Pb
signatures of middle reach sediment and the highly weathered
Cretaceous sandstones overlying the North China Craton.

Paleo Yellow River provenance data. Comparison of zircon
U–Pb data from paleo-river terrace sediment in the upper reach
(near site 8: Lanzhou) with the middle reach (near sites 15
and 16) demonstrates that the situation of the upper and the
middle reaches having different provenance persists from at least
B1.7 Myr ago (Fig. 3; Supplementary Fig. 4). The occurrence
of B3.6 Myr ago terrace conglomerates in Linxia (Jishi
conglomerates; yellow pin in Fig. 1) and Lanzhou (Wuquan
conglomerates; site 8) that also show similar zircon U–Pb
provenance signatures to the current and Pleistocene upper reach
provenance signal (Fig. 3; Supplementary Fig. 4) confirm that the

current location and pattern of Yellow River upper reach drainage
was broadly formed at least by then.

Discussion
To understand the significance of these data, we interpret them in
the context of the Yellow River drainage. The Yellow River has
traditionally been divided into the upper, the middle and the
lower reaches, based on geographical position, elevation and
erosional/depositional patterns26–28. The upper reach and the
middle reach each consist of an erosional section and a
depositional section (Supplementary Fig. 5), while the lower
reach is characterized by sediment deposition alone26–28. The
upper reach of the Yellow River is subdivided into an erosional
plateau/canyon portion and a depositional alluvial plain
portion27,28, separated by the Qingtong Gorge (the yellow
hexagon in Fig. 1). Due to the high topographic gradient
(Supplementary Fig. 5), the Yellow River flows rapidly and incises
in the plateau/canyon portion on the NE Tibetan Plateau, with
limited sediment deposition27,28. When the river passes the
Qingtong Gorge, leaves the NE Tibetan Platau and enters the
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Yinchuan-Hetao Graben system, its velocity decreases resulting
in deposition and formation of the Yinchuan-Hetao alluvial
platform8,27 (Fig. 1; Supplementary Fig. 5). Both Quaternary
Chinese Loess Plateau sediment and modern western Mu Us
sands show similar provenance signatures to this upper reach
sediment (Fig. 2) and are located directly downwind of the
Yinchuan-Hetao Graben system under East Asian winter
monsoon dust transportation circulation (Fig. 1). Thus, we
propose that these extensive river sediment deposits serve as a
major source for the western Mu Us desert and the Loess
Plateau. By contrast, the middle reach of the Yellow River
is dominantly characterized by erosion8,27, as the river enters
the Jinshan Canyon (from the upper/middle reach boundary to
site 15; Supplementary Fig. 5). A small depositional zone27 occurs
at the very end of the middle reach between Xiaolangdi
(the yellow star near site 31 in Fig. 1) and Taohuayu
(the boundary between the middle and the lower reaches in
Fig. 1). The erosional portion of the middle reach has formed
deeply incised canyons into Cretaceous sandstone bedrock
and underlying North China Craton8,25,29, which, as shown in
the provenance data (Fig. 2), is the dominant river sediment
source in the middle reach, rather than the overlying loess30.
We propose a conceptual model for Yellow River sediment
dynamics and Chinese Loess Plateau formation in which both the
western Mu Us desert and the Loess Plateau materials are sourced
from Yellow River alluvium that is eroded and transported
from the NE Tibetan Plateau, deposited in Yinchuan-Hetao
alluvial platform, and is then locally redistributed by winter
monsoon winds (Fig. 4).

While some past research emphasizes aeolian transport from
the Chinese northern deserts in formation of the Chinese Loess
Plateau31–36, the evidence for this is also compatible with our
conceptual model (Figs 1 and 4). Loess grain size has a southward
decreasing trend34, which is consistent both with a northern
Chinese deserts or Yellow River source for the loess. However,
our data show that sands of the western Mu Us are also derived
from the Yellow River. Furthermore, recent desert drilling37,38

has demonstrated a late Pleistocene formation age (B1 Myr ago)
for the Tengger and the Badan Jaran desert (Fig. 1). This is
significantly younger than the formation age of the Chinese loess
and suggests that direct dust transport from these two deserts is
only a minor factor in Chinese Loess Plateau formation. In
contrast, loess39 immediately south of the Mu Us desert (Jingbian;
south of site 26 at the current boundary of the Loess Plateau)
has a basal age of 3.5 Myr ago, synchronous with increased
sedimentation rate across the central Loess Plateau generally40,41

(Fig. 5) and with the earliest terrace deposits from the river.
Furthermore, available satellite imagery42 from a storm event
(14–17 April 1998) clearly shows that modern dust storms
travelling over the Loess Plateau originate in areas north to
northwest of this region, including the Yinchuan-Hetao
floodplain. The Yinchuan-Hetao floodplain is, along with the
Mu Us, the last major possible sediment source for these storms
before they reach the Loess Plateau, providing modern
observations consistent with our conceptual model.

The coarse grain size of the Mu Us desert sands makes the
possibility of direct aeolian transport from NE Tibetan source
regions unlikely, therefore, requiring fluvial transport followed by
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only more localized aeolian transport. Furthermore, the abrupt
shift in provenance away from loess signatures in the middle
reach (Fig. 2) occurs precisely when eroding loess on the Loess
Plateau would be expected to overwhelm the sediment budget of
the river (Figs 1 and 2). We discount dilution as an explanation
for this shift in provenance signals (Fig. 2) away from loess in the
middle reach as this would require orders of magnitude increases
in sediment load to explain the change from the double peak
dominance (B450 and B250 Myr ago) in the loess and upper
reach zircon U–Pb data, to the B250 Myr ago single peak
dominance at Baode (sample 12) (Fig. 2; Supplementary Figs 1
and 6). Sediment load only increases B24% from the end of the
upper reach to Baode21. Thus, we argue that the Loess Plateau
and adjacent western Mu Us desert, where provenance signatures
match the upper reaches’ and demonstrate a NE Tibet origin24

(Fig. 2), are acting as sinks for NE Tibetan Plateau-derived
sediment carried in the upper reach of the Yellow River.

As an approximate check on the feasibility of our model, we
calculate the first-order length of time required for Yellow River
sediment to fill the Quaternary portion of the approximate volume
of the Loess Plateau, using the modern sediment load measured at
the Xunhua observation station (B20 km east of site 6). The
amount of time (B1.65 Myr ago) is of the same order as the
basal age of the Quaternary, suggesting Yellow River sediment flux
is sufficient to explain the Loess Plateau volume, consistent with
our model (Methods). There are considerable uncertainties
on this estimate, especially over land use changes and changes
in river sediment load through time, as well as possible erosion
or deflation on the Loess Plateau. Prior research43 suggests that
moderate land use by humans may increase sediment yield by a
factor of 2–3. As such, even if we suggest a 2–5 factor decrease in
sediment load of the Yellow River when there was no significant

human activity, the calculated time required to fill in the
Quaternary portion of the Loess Plateau (3.3–8.3 Myr ago) is
still on the same order as the bottom age of the Quaternary.
However, given these unavoidable uncertainties, we stress that we
only use this calculation to determine whether our hypothesis is
generally plausible (that is, that the required time is of the order of
millions of years rather than 10–100 s of millions of years). Thus,
it seems feasible that the large increases in loess sediment
accumulation rate and area observed during the Pliocene and
Pleistocene40 (Fig. 5d) at least partially result from increased river
incision and downstream transport of material from NE Tibet via
the Yellow River, rather than due solely to intensified aridity as
previously suggested44.

It is interesting to note that the provenance of the lower reach
Yellow River is similar to that of the upper reach after the
confluence with the Yiluo River (Fig. 1). The provenance shift
appears to indicate the effects of the Yiluo River (Fig. 1), which
brings in sediment derived from the Qinling Mountains
characterized by abundant Phanerozoic zircon U–Pb ages with
a double peak45–47 at 450 and 250 Myr ago, resulting in a similar
signal between the lower and upper reaches, despite different
source admixtures (Figs 1 and 4). Again, this provenance shift is
consistent with modern observation that the middle reach eroded
sediment is deposited between Xiaolangdi and Taohuayu27,28,
providing further evidence for terrestrial storage of denudation
materials for large rivers. For the modern Yellow River, it is well
recorded that only 24% of the sediments flowing past the Sanmen
Gorge enter the ocean and the rest are deposited on alluvial plain
and the delta regions1,30, consistent with our model.
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These findings that the NE Tibet-derived sediments of the
upper reach are stored on the Loess Plateau and the western Mu
Us desert after 3.6 Myr ago requires a fundamental change in our
understanding of the origins of Chinese loess dust and the impact
of the Yellow River on the Chinese Loess Plateau. Furthermore,
it means that orogenic hinterland erosional signals can be masked
in marine sedimentary records by sediment storage in terrestrial
basins. If the Tibetan Plateau experienced a phase of north-
eastward growth and accelerated denudation during the late
Pliocene, as suggested by climate and tectonic research11,33,48,49,
a significant proportion of the denuded sediment would have
been stored on land instead of in the adjacent marine basin.
Indeed, this accelerated denudation is reflected in increases in
loess sediment accumulation rate observed during the Pliocene
and Pleistocene40 (Fig. 5d). Our findings mean that it is unlikely
that marine records will properly detect this event. Unfortunately,
there are no Plio-Pleistocene provenance data from the Bohai Sea,
where the Yellow River drains, to test this and there are a range
of possible responses of the marine sediment record to the
terrestrial storage demonstrated here. Heavy mineral data from
modern Bohai Sea surface sediment50 show that Yellow River
marine input is characterized by an assemblage similar to our
lower reaches data (for example, dominated by amphibole),
consistent with our model. However, there is a clear need for
systematic provenance analysis of Plio-Pleistocene Bohai Sea
sediment to determine the marine response to NE Tibetan
denudation in light of the terrestrial sediment storage that our
data demonstrate.

The Yellow River may not be unique in storing most of its
upstream-eroded materials on land. Sediment budget research
widely demonstrates that although large rivers drain orogenic
belts, the majority of the eroded sediments are stored in terrestrial
basins and trailing edge margins51–53. Instead, small mountain
rivers, which are often close to steep active continental margins,
play a key role in transporting materials to the ocean52. Thus, our
model can help explain the recent evidence for mismatches
between the terrestrial sedimentation rate record and the
marine Beryllium isotope proxy record of denudation, as well
as between late Cenozoic global CO2 and marine sediment
volume records3.

The increased NE Tibetan denudation and apparent onset of
enhanced Yellow River drainage at B3.6 Myr ago are coincident
with an increase in C4 plant proportion54, degree of chemical
weathering33 and pedogenic magnetic mineral concentration55

(Fig. 5), suggesting that an enhanced monsoon climatic threshold
was also reached at the same time. However, our data do not allow
us to determine whether this monsoon increase and concurrent
increased climate fluctuation amplitude9 or rather tectonic
uplift33,48 caused this increased denudation in NE Tibet. While
these enhanced summer monsoon conditions could have
promoted increased drainage and erosion, coincident with
increased loess accumulation rate on land, the relationship
between climate change, Tibetan uplift, and denudation has
always been difficult to determine56–58. Despite this, one potential
inference from this result is that the increased NE Tibetan Plateau
Pliocene denudation recorded in the loess deposits may be an
important driver for Pliocene climate cooling. Increased
denudation is known to increase terrestrial chemical weathering
and organic carbon burial10,59 and may have also increased the
flux of dust to the Pacific ocean, stimulating marine phytoplankton
production60,61. All of these factors promote Pliocene atmospheric
CO2 drawdown (Fig. 5e) and climatic cooling.

In summary, our research provides the first comprehensive
provenance data set demonstrating that the majority of NE Tibet
denuded material was deposited on the Loess Plateau and the
western Mu Us desert, instead of being effectively delivered to the

lower reach and the marine basins since at least the middle
Pleistocene. This not only casts new light on the origins of Chinese
loess but it undermines the principle of using marine sediment to
infer terrestrial denudation and to understand the complex
relationship between denudation and climate change. Furthermore,
our data suggest that increased NE Tibet denudation recorded in
Yellow River-derived sediment on the Loess Plateau is a potentially
important driver in Pliocene climate cooling.

Methods
Framework petrography. Samples were collected from active fluvial bars of the
Yellow River (Huang He) and some of its major tributaries. They were impregnated
with Araldite, cut into standard thin sections, stained with alizarine red to
distinguish dolomite and calcite and analysed by counting 400 points under the
microscope (Gazzi-Dickinson method62). Sands were classified according to their
main components (Q¼ quartz; F¼ feldspars; L¼ lithic fragments), considered
only where exceeding 10% QFL and listed in order of abundance (for example, in a
litho-feldspatho-quartzose sand Q4F4L410% QFL). Full quantitative
information was collected on coarse-grained rock fragments, and metamorphic
types were classified according to protolith composition and metamorphic rank.
Very-low- to low-rank metamorphic lithics, for which protoliths can still be
inferred, are subdivided into metasedimentary (Lms) and metavolcanic (Lmv)
categories. Medium- to high-rank metamorphic lithics are subdivided into felsic
(metapelite, metapsammite and metafelsite; Lmf) and mafic (metabasite; Lmb)
categories. Median grain size was determined in thin section by ranking and visual
comparison with sieved standards.

Heavy minerals. Heavy minerals were separated by centrifuging in sodium
polytungstate (density B2.90 g cm� 3), and recovered by partial freezing with
liquid nitrogen. The obtained fraction was weighted and mounted for counting on
glass slides with Canada balsam. On grain mounts, between 200 and 250 trans-
parent heavy mineral grains were point-counted at suitable regular spacing under a
petrographic microscope to obtain real volume percentages63.

Zircon U–Pb dating. Detrital zircon grains were separated by standard heavy
liquid techniques, selected randomly and analysed by laser ablation inductively
coupled plasma mass spectrometry in the Department of Geological Sciences at the
University of Texas at Austin (seven Lanzhou terrace samples, one Wuquan
conglomerate sample and three upper reach modern river samples: 8, 10 and 11),
University of Arizona (Linxia gravel sample) and University College London
(the rest of the modern Yellow River samples), following the standard procedure
of each laboratory16,64,24. We apply a 15–10% discordance filter to the generated
data. For ages younger than 1,000 Myr ago, the discordance is defined as
(207Pb/235U–206Pb/238U)/ 207Pb/235U*100; for ages older than 1,000 Myr ago, the
discordance is defined as (207Pb/206Pb–206Pb/238U)/ 207Pb/206Pb*100. 206Pb/238U
ages were adopted for the ages younger than 1,000 Myr ago, while 207Pb/206Pb ages
were adopted for the ages older than 1,000 Myr ago, although we slightly shift the
cutoff age so as to not break cluster ages for different samples.

Mass balance calculation. We calculate the approximate, first-order amount
of time required for Yellow River sediment to fill the Quaternary portion of the
Loess Plateau using the modern sediment load data in Xunhua station (B20 km
east of site 6). The approximate timing (1.65 Myr ago) is of the same order as the
basal age of the Quaternary, fully consistent with our model. The Loess Plateau
area31 (A) is set to 4.4� 1011 m2. Loess thickness (T) is set to 100 m (ranging from
200 to 0 m from west to east, respectively, during the Quaternary). Dry density65

of loess (D) is set to 1,500 kg m� 3. Annual sand transport amount (AA) in the
Xunhua station66 (year 1946–1985; before the dam construction) is 4� 107 ton
per year.

Timing ¼ A�T�D�AA� 1 ¼ 1:65 Myr ð1Þ
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