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Abstract

Using the dielectric continuum (DC) and three-dimensional phonon (3DP) models, energy relax-

ation of the hot electrons in the quasi-two-dimensional channel of lattice-matched InAlN/AlN/GaN

heterostructures is studied theoretically, taking into account non-equilibrium polar optical phonons,

electron degeneracy, and screening from the mobile electrons. The electron power dissipation and

energy relaxation time due to both half-space and interface phonons are calculated as functions of

the electron temperature Te using a variety of phonon lifetime values from experiment, and then

compared with those evaluated by the 3DP model. Thereby particular attention is paid to exami-

nation of the 3DP model to use for the hot-electron relaxation study. The 3DP model yields very

close results to the DC model: with no hot phonons or screening the power loss calculated from

the 3DP model is 5% smaller than the DC power dissipation, whereas slightly larger 3DP power

loss (by less than 4% with a phonon lifetime from 0.1 to 1 ps) is obtained throughout the electron

temperature range from room temperature to 2500 K after including both the hot-phonon effect

(HPE) and screening. Very close results are obtained also for energy relaxation time with the two

phonon models (within a 5% of deviation). However the 3DP model is found to underestimate the

HPE by 9%. The Mori-Ando sum rule is restored by which it is proved that the power dissipation

values obtained from the DC and 3DP models are in general different in the pure phonon emission

process, except when scattering with interface phonons is sufficiently weak, or when the degenerate

modes condition is imposed, which is also consistent with Register’s scattering rate sum rule. The

discrepancy between the DC and 3DP results is found to be caused by how much the high-energy

interface phonons contribute to the energy relaxation: their contribution is enhanced in the pure

emission process but is dramatically reduced after including the HPE. Our calculation with both

phonon models has obtained a great fall in energy relaxation time at low electron temperatures

(Te < 750 K) and slow decrease at the high temperatures with the use of decreasing phonon lifetime

with Te. The calculated temperature dependence of the relaxation time and the high-temperature

relaxation time ∼0.09 ps are in good agreement with experimental results.

PACS numbers: 73.40.Kp, 63.20.kd, 63.22.Np
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I. INTRODUCTION

Nitride compound semiconductors such as GaN and AlN which have a wide energy gap

withstand high breakdown electric fields and support excellent thermal stability [1]. The

heterostructure field-effect transistor (HFET) using a GaN-based heterostructure is very

promising for high-power radio frequency and high-mobility operations, owing to its high

electron density, high electron drift velocity as well as its high drain breakdown voltage. Par-

ticularly interesting are lattice-matched InAlN/AlN/GaN heterostructures [2–5], in which

a two-dimensional electron gas forms in the undoped GaN layer near the interface of the

GaN layer and the one nanometre thick AlN spacer, due to internal spontaneous polarization

alone, i.e., with no strain-induced polarization by the piezoelectric effect. As such an electron

gas arises in the absence of doping and lattice strain, high electron density ( 2 ×1013/cm2) as

well as high drift velocity (3 ×107 cm/s) can occur in the lattice-matched heterostructures.

The electrons in the quasi-two-dimensional (quasi-2D) GaN channel are heated up due to

high electric power, with the electron temperature Te elevated above the lattice tempera-

ture T0 (i.e. room temperature). Electron temperatures up to 2500 K have been measured

using a microwave noise technique for a lattice-matched InAlN/AlN/GaN heterostructure

with an areal electron density of 1.2× 1013/cm2 in the GaN channel [2]. Heat dissipation in

the GaN channel is a complicated process which includes energy relaxation of the hot elec-

trons mainly by emission of polar-optical phonons, decay of the polar-optical phonons into

acoustic phonons via anharmonic interactions and diffusion of the excess acoustic phonons

into the remote heat sink. The optical phonon lifetime has been measured for GaN-based

heterostructures, which in general falls in the range from 0.1 to 1.7 ps [2, 5, 6] - except for

the case of the electron density 8× 1011/cm2, and depends on both the electron density [6]

and electron temperature [2, 6]. As the optical phonon lifetime is much longer than the

Fröhlich scattering time (∼10 fs for GaN [7]), the emission of polar optical phonons is very

fast compared to their decay into acoustic phonons, and a large population of nonequilib-

rium (”hot”) phonons are accumulated leading to a slowdown in energy relaxation (termed

hot-phonon effect). Hot phonons also result in an increase of electrical resistance and impose

limitations on electron drift velocities [5, 8].

The average power dissipation Pd and energy relaxation time τE are two key parameters

for describing electron energy relaxation in semiconductors under an external electric field.

3



Apparently both quantities depend on the electron temperature, and knowing how they de-

pend on Te is fundamental to the optimization of the HFET devices [1]. In experimental

studies of hot-electron energy relaxation in GaN-based heterostructures [2, 9], the depen-

dence of the electron temperature Te on the supplied power, which is equal to the power

dissipated to the lattice by the hot electrons under steady-state conditions, was directly mea-

sured using the microwave noise technique, and then the electron energy relaxation time as

a function of the electron temperature was deduced by τE(Te) = kBdTe/dPs, where Ps is

the average power supplied to each electron. For the lattice-matched heterostructures the

relaxation time was found to fall sharply at the low electron temperatures and decrease very

slowly at the high electron temperatures (>1200 K) [2].

Microscopically, energy relaxation of the hot electrons is governed by scattering with

polar-optical phonons. In bulk GaN the polar modes are treated as the longitudinal optical

(LO) modes of a single frequency ωLO. In a simplification therefore the polar-optical phonons

of the heterostructures are usually taken to be the LO phonons of the bulk material such as

GaN. This is referred to as the three-dimensional phonon (3DP) model. According to the

dielectric continuum (DC) model, however the eigenmodes of the polar-optical vibrations in

the heterostructure include half-space LO modes and interface modes, and all these modes

interact with the electrons in the quasi-2D channel. Both phonon models have been used

to study energy relaxation and momentum relaxation for GaAs-based quantum wells [10,

11]. For GaN-based quasi-2D systems, the 3DP model was used for an early study on

the momentum relaxation and low-field electron transport in GaN quantum wells [12]. In

principle, the phonon eigenmodes of quasi-2D GaN heterostructures should be considered

for electron transport studies. Indeed, the DC model has been employed in recent years to

study electron-phonon scattering associated with the various phonon modes [13], as well as

the electron momentum relaxation [14] and energy relaxation [15] in GaN heterostructures.

Mori and Ando derived a sum rule [16] from the DC model which showed that the sum

of the form factors associated with half-space and interface modes was equal to the form

factor for bulk phonons. Later, using a microscopic model Register derived a similar sum

rule [17] to prove that the total electron-phonon scattering rate in the heterostructure was

independent of the phonon basis sets, as long as each set was orthonormal and complete.

These sum rules seem to imply that the DC and 3DP phonon models would yield equivalent

results for the energy relaxation in GaN heterostructures. However this claim is only partly
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true, and caution should be taken in applying the sum rules to the energy relaxation in GaN

heterostructures. First, in Register’s scattering rate sum rule polar scattering with electrons

is assumed to be made by phonons of a uniform frequency ωLO [17] (i.e., all the phonon

modes are degenerate). As is discussed in Appendix A, there is no scattering rate sum rule

as the normal modes of the heterostructure including the interface and half-space modes

are not degenerate. In fact the interface phonons differ significantly from the half-space

phonons in both phonon frequency and electron-phonon coupling strength. Second, as the

scalar potential of the interface modes decreases exponentially from the interface according

to e−q|z|, scattering with interface modes is weak in wide wells making the 3DP evaluation

accurate. Indeed, for quantum wells with widths greater than 100 Å the 3DP model suffices

for the evaluation of scattering rates [11, 18, 19], energy loss rates [20] and momentum

relaxation rates [14]. For narrow wells however scattering with interface phonons becomes

increasingly important, and as such, the two phonon models yield quite different rates for

GaAs quantum wells [19, 20] as well as GaN heterostructures [14]. For GaN heterostructures

with a 30 Å-wide channel the 3DP model underestimates momentum relaxation rates just

below the bulk LO phonon energy by 70%, and overestimates rates immediately above the

LO phonon energy by 40% compared to the DC model [14]. However as far as we know

there has been no comparison of energy relaxation rates for GaN heterostructures based on

the two phonon models. Third, in GaN heterostructures screening from the mobile quasi-2D

electrons is strong due to the high electron density. The scattering rate sum rule becomes

invalid causing quite different DC and 3DP rates when screening is accounted for. Fourth,

the scattering rate sum rule is valid with an equilibrium phonon distribution being taken

as an important prerequisite [21]. In the GaN HFET where the hot-phonon effect must

be taken into account, phonon modes are clearly in nonequilibrium, with the consequence

that different modes make different contributions to the energy relaxation process. In this

circumstance it is necessary to use the correct normal modes of the GaN heterostructure to

calculate the energy relaxation. Previous calculations for GaAs quantum wells have shown

that the energy relaxation rates in the hot-phonon regime depend on the phonon models

used [20, 22].

Recently, using the DC model the authors calculated hot-electron energy relaxation in

a typical lattice-matched InAlN/AlN/GaN heterostructure [15]. We found that the experi-

mentally observed dramatic fall at low Te [2] was caused chiefly by the fast decreased HPE
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and electron screening, while the very slow decrease at the high temperatures was due to the

fast optical-phonon decay. In this paper we study the energy relaxation of the hot electrons

in the heterostructure with both DC and 3DP models. As the 3DP approach is relatively

simple and thus convenient for practical calculation, one of course wants to know how energy

relaxation results estimated by this model differ from those calculated with the DC model,

and further what causes the discrepancies. We pay particular attention to a quantitative

comparison of the Te-dependencies of the power dissipation and relaxation time at high

temperatures calculated with the two models, as the high Te relaxation process is of great

interest in terms of HFET devices. This comparison can be made with regard to only the

total power loss and relaxation time. On the other hand, there is an advantage of the use

of the DC model, in that the contributions from the quasi-2D phonon modes to the energy

relaxation can be singled out. It is therefore of great interest to find and understand the

behaviours of the half-space modes and interface modes, in particular those of the interface

modes, in the energy relaxation process in such narrow channel GaN heterostructures. The

comparison with the 3DP calculations also provides a simple means to examine how the

interface phonons contribute. Equally important from the electron gas side is screening.

Clearly dynamic effects of screening from the electrons need to be included owing to the

high frequencies of the polar modes. For these purposes, a comprehensive study needs to

be carried out for the energy relaxation in the GaN heterostructures, in which an emphasis

is put on how energy relaxation results from the two phonon models differ when both hot

phonons and screening are taken into account. Therefore, using the two phonon models,

the power loss and energy relaxation time are calculated as functions of the electron tem-

perature, for a number of phonon scattering processes with electron screening included or

excluded. The energy relaxation results from scattering with the half-space and interface

phonons are compared and examined, and then the total power loss and relaxation time are

further compared with those obtained from the 3DP approximation. The sum rules for the

electron-phonon interactions are closely checked for the pure phonon emission process (i.e.,

with no HPE). For the net phonon emission process where the hot-phonon reabsorption is

accounted for, special attention is paid to the difference in the DC and 3DP calculations

to examine the 3DP model in the evaluation of the energy relaxation in particular at high

electron temperatures. We found that the two models yield very close power loss values

and relaxation times, the discrepancies being caused by how much the high energy interface
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phonons contribute to the energy relaxation. With no hot phonons or screening the power

loss calculated from the 3DP model is 5% smaller than the DC power dissipation, whereas

slightly larger 3DP power loss (by less than 4% with a phonon lifetime from 0.1 to 1 ps)

is obtained throughout the electron temperature range after including both the HPE and

screening.

This paper is organized as follows. In Section II, the DC and 3DP models for lattice-

matched InAlN/AlN/GaN heterostructures are described where the polar phonon modes and

associated electron-phonon interactions are given. Then in Section III a formulation of the

power dissipation and energy relaxation time in such heterostructures is presented, taking

into account non-equilibrium polar optical phonons, electron degeneracy, and screening from

the mobile electrons. Effective numerical techniques in calculating the generation rates and

power loss are also described, in terms of handling the integrals involved. In Section IV, first

we show results of the non-equilibrium phonon occupation numbers for both half-space and

interface modes in a typical lattice-matched InAlN/AlN/GaN heterostructure. These results

are used to analyze how hot phonons slow down the quasi-2D electron energy relaxation in

the high-temperature region. Then, by choosing two GaN heterostructures with different

channel widths we compare power dissipation results from the DC and 3DP models for the

simple case with no screening. This is to check the sum rules as well as investigate phonon

confinement effects and roles the half-space and interface modes play in the respective pure

and net phonon emission processes. In order to examine the usual 3DP approximation in the

evaluation of energy relaxation, we further compare the DC and 3DP results of power loss

and energy relaxation time in the lattice-matched heterostructure for a number of detailed

phonon scattering processes with or without electron screening. Comparisons with the

experimental data as well as the bulk GaN situation are also made, and the hot-phonon and

screening effects are discussed in great detail. Finally, Section V summarizes the main results

obtained. In Appendix A, starting with the detailed generation rate expressions for the half-

space, interface and bulk LO phonons, a restoration of the Mori-Ando sum rule is made.

Then the form factor sum rule is used to prove that the power dissipation values obtained

from the DC and 3DP models are in general different in the pure emission process, except

for the limiting case when scattering with interface phonons is sufficiently weak such as in

wide GaN channels, or when the degenerate modes approximation is imposed as in the study

by Register [17]. These are used to analyze and interpret our energy relaxation results. In
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Appendix B, we show the minimum electron kinetic energy for phonon absorption and Fermi-

Dirac integrals involved in our energy relaxation calculation, both being functions of the

phonon wavevector, which are used for analyzing the non-equilibrium phonon distribution.

II. ELECTRON-PHONON INTERACTIONS IN THE DC AND 3DP MODELS

There are two types of polar optical modes in a bulk semiconductor of the wurtzite

structure such as GaN and AlN owing to anisotropy. The anisotropy however is very small

[23], allowing the semiconductor to be treated as a cubic crystal with LO polar vibration

modes [8, 24]. The phonon modes of the considered heterostructure InxAl1−xN/AlN/GaN

is dealt with in a simpler way. As the Indium content in the outer barrier is small (x < 0.2)

the binary alloy InxAl1−xN is treated as AlN, the same material as the central barrier.

This in effect simplifies the lattice matched heterostructure InxAl1−xN/AlN/GaN as a single

heterostructure AlN/GaN [13, 15]. In the dielectric continuum model, the polar vibration

modes of a single heterostructure consist of half-space modes and interface modes [16].

The half-space modes have the frequencies of the bulk polar modes of the two constituent

materials, whose scalar potentials and electric fields occur in the respective constituent

regions. The interface modes have different frequencies from the bulk polar modes, and an

interface mode has lattice vibrations and electric fields in both constituent regions.

For the InxAl1−xN/AlN/GaN heterostructure, let the growth direction be z and the

interface between AlN and GaN be at z = 0, with the barriers in the space −L1 < z < 0

(where L1 = N1a, a being the lattice constant) and the electron-containing active region in

the space 0 < z < L2 (L2 = N2a). Let ρ = (x, y) be the position vector in the plane parallel

to the interface. When the electrons are completely confined in the GaN channel the half-

space modes only in the GaN region interact with the electrons. Now the half-space modes

in the GaN region can be indexed by (qz,q), all having the LO frequency ωLO of bulk GaN.

Here q is the in-plane phonon wave-vector, and qz is determined by the fixed end boundary

condition imposed on the potential function (∝ sin qzz), qz = lπ/L2 (l=1,2,...,N2-1). The

Hamiltonian of an electron interacting with these half-space modes in the active region can

be written as

Hh =
∑

q,qz

γLO√
2V2

(

1

q2 + q2z

)1/2

eiq·ρ 2 sin qzz
[

aqz(q) + a+qz(−q)
]

, (1)
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where aqz(q) and a
+
qz(q) are the annihilation and creation operators for the half-space mode

of (qz,q). V2 is the volume of the GaN half-space V2 = AL2, with A being the sample area,

γLO is a constant characterizing the electron-LO-phonon coupling strength, and given by

γ2LO = 2πe2~ωLO/ǫLO, where e is the electron charge, and 1
ǫLO

= ( 1
ǫ∞

− 1
ǫ0
), ǫ0 and ǫ∞ being

the static and high-frequency dielectric constants of bulk GaN. We use cgs units throughout

the paper.

The lattice dielectric function of the active GaN material is ǫ(ω) = ǫ∞(ω2 − ω2
LO)/(ω

2 −
ω2
TO), where ωTO is the transverse optical (TO) phonon frequency of bulk GaN. The lattice

dielectric function of the simplified barrier AlN is given by ǭ(ω) = ǭ∞(ω2− ω̄2
LO)/(ω

2− ω̄2
TO),

where ǭ∞, ω̄LO, ω̄TO are the high-frequency dielectric constant, the LO and TO phonon

frequencies of bulk AlN, respectively. Then the frequencies of the interface phonons are

determined by ǫ(ω) + ǭ(ω) = 0 [16], which yields two solutions ωn (n=1,2; let ω1 < ω2).

This shows that, similar to the half-space phonons the interface phonons have no dispersion;

that is, the phonon frequencies do not depend on the phonon wavevector. The interface

phonon modes can be simply indexed by (n,q) and the electron-interface-phonon interaction

Hamiltonian can be written as

Hi =
∑

n,q

γn√
2A

1√
q
eiq·ρ e−q|z| [

an(q) + a+n (−q)
]

. (2)

Here γn is the electron-interface-phonon coupling strength, γ2n = 2πe2~ωn/ǫn, where ǫn is

given by 1
ǫn

= 2/[β−1(ωn)+ β̄
−1(ωn)], with β(ω) and β̄(ω) being two dimensionless quantities

(thus ǫn is dimensionless), β(ω) = 1
ǫ∞

(ω2−ω2

TO)2

ω2(ω2

LO−ω2

TO)
, β̄(ω) = 1

ǭ∞

(ω2−ω̄2

TO)2

ω2(ω̄2

LO−ω̄2

TO)
. an(q) and a

+
n (q)

are the annihilation and creation operators for the interface mode (n,q).

In the three-dimensional phonon model, the phonon modes are simply bulk LO modes,

which are normalized to the sample volume of the entire heterostructure, V = AL, with

L = L1+L2 being the dimension of the heterostructure in the growth direction z. The bulk

LO modes are indexed by the three-dimensional phonon wavevector Q = (q, Qz), where the

wavevector Qz is given by the usual periodic boundary condition, Qz = n2π/L, n being an

integer, −(N1 +N2)/2 ≤ n < (N1 +N2)/2. The electron-LO-phonon interaction is given by

the Fröhlich interaction

HLO =
∑

Q

γLO√
V

1

Q
eiQ·r [a(Q) + a+(−Q)

]

, (3)
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where a(Q) and a+(Q) are the annihilation and creation operators of the bulk LO mode

Q. We note that in the growth direction the wavevector Qz differs from the qz of the

half-space modes. The two sets of discrete wavevector values result from the two different

types of boundary conditions on the respective mode potential functions [11]. The bulk

phonon modes are planewaves with electric potential ∝ eiQzz whereas the half-space modes

are standing waves with potential function ∝ sin qzz.

III. HOT-ELECTRON POWER DISSIPATION AND ENERGY RELAXATION

TIME

Confinement in the growth direction z quantizes the motion of an electron, and for

the GaN-based heterostructures, the narrow and shallow confinement allows us to consider

only the lowest subband [13] which is densely populated by the electrons. Let φ(z) be the

confinement envelope function corresponding to energy ǫg for the lowest electron subband.

Then the electron wave-function and energy can be written as ψk(r) = 1√
A
φ(z)eik·ρ, and

Ek = ǫg + εk, respectively, where k is the in-plane electron wavevector, and εk is the

electron kinetic energy, εk = ~
2k2/(2m∗), with m∗ being the electron effective mass.

The degenerate statistics of a high density of electrons is described by the Fermi-Dirac

distribution function, f(E) = 1/(1 + e(E−EF )/kBTe), where EF is the Fermi energy of the

quasi-2D electron gas, which is determined by the areal electron density nA and temperature

Te. The thermal equilibrium population of the phonons of frequency ω at temperature T is

given by the Bose-Einstein distribution function, N(ω, T ) = 1/(e~ω/kBT − 1). Knowing the

electron-phonon interaction Hamiltonians (Sec. II) the energy relaxation of the hot electrons

by scattering with interface and half-space phonons or bulk LO phonons can be calculated

by Fermi’s golden rule. For a given interface mode (n,q) the number of phonons which are

generated by the hot electrons per unit time can be written as

Wn(q) =
2π

~

∑

k

|Mn,q(k;k+q)|2 {(gn(q) + 1)f(Ek+q)[1− f(Ek)]− gn(q)f(Ek)[1− f(Ek+q)]}

× δ(Ek+q − Ek − ~ωn), (4)

where Mn,q(k;k + q) = 〈ψk|Hi|ψk+q〉 is the interaction matrix element associated with

electron states k and k+ q and phonon mode (n,q) due to the interface phonon scattering,
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and gn(q) is the non-equilibrium interface phonon occupation number. For clearness the

index for electron spin has been absorbed into the electron wavevectors.

When the two identities

f(E + ~ω)(1− f(E)) = [f(E)− f(E + ~ω)]N(ω, Te), (5)

f(E)[1− f(E + ~ω)] = [f(E)− f(E + ~ω)](N(ω, Te) + 1), (6)

are used, one finds that Eq. (4) can be transformed into a concise expression

Wn(q) = [N(ωn, Te)− gn(q)]/τn(q), (7)

where 1/τn(q) is referred to as the phonon generation rate [8] and given by

1

τn(q)
=

2π

~

∑

k

|Mn,q(k;k+ q)|2 [f(Ek)− f(Ek + ~ωn)] δ(Ek+q −Ek − ~ωn). (8)

Expression (7) has a clear physical meaning; that is, Wn(q) is simply the phonon generation

number ∆N = N(ωn, Te) − gn(q) divided by the phonon generation time τn(q) for any

particular interface phonon mode (n,q).

The polar optical modes decay via the lattice anharmonicity, and the number of interface

phonons that decay per unit time is

Dn(q) = [gn(q)−N(ωn, T0)]/τp, (9)

where τp is the phonon lifetime which is assumed to have the same value for all polar modes

[11, 22], and N(ωn, T0) is the thermodynamic equilibrium interface phonon number at the

lattice temperature T0. At steady state then one has Wn(q) = Dn(q) [15, 25], from which

one finds the nonequilibrium interface phonon occupation number

gn(q) =

1
τn(q)

N(ωn, Te) +
1
τp
N(ωn, T0)

1
τn(q)

+ 1
τp

. (10)

This shows that the hot phonon occupation number depends on the relative magnitude of

the phonon generation and decay rates 1/τn(q) and 1/τp, with gn(q) ≈ N(ωn, Te) when

1/τn(q) ≫ 1/τp, and gn(q) ≈ N(ωn, T0) when 1/τn(q) ≪ 1/τp, the latter case being equiv-

alent to neglecting the hot-phonon effect. As limq→0
1

τn(q)
= limq→∞

1
τn(q)

= 0 (refer to Ap-

pendix B), from Eq. (10) then one readily finds limq→0 gn(q) = limq→∞ gn(q) = N(ωn, T0).
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Similarly, the number of half-space phonons generated by the hot electron gas per unit

time can be expressed as

Wqz(q) = [N(ωLO, Te)− gqz(q)]/τqz(q), (11)

where the generation rate is

1

τqz(q)
=

2π

~

∑

k

|Mqz,q(k;k+ q)|2 [f(Ek)− f(Ek + ~ωLO)] δ(Ek+q −Ek − ~ωLO). (12)

Here Mqz ,q(k;k + q) = 〈ψk|Hh|ψk+q〉 is the interaction matrix element associated with

electron states k, k + q and phonon mode (qz,q) due to the half-space phonon scattering,

gqz(q) is the hot half-space phonon occupation number, which is given by Eq. (10) with

ωn being replaced with ωLO and 1/τn(q) replaced by the half-space phonon generation rate

1/τqz(q).

Therefore, in the DC model the average power dissipated per electron is given by

Pd =
1

nAA

∑

q

{

∑

n

~ωn[N(ωn, Te)− gn(q)]/τn(q) +
∑

qz>0

~ωLO[N(ωLO, Te)− gqz(q)]/τqz(q)

}

,

(13)

the right hand side being a sum of the contributions from both the interface and half-space

phonons.

In the 3DP model the average power dissipation per electron is simply given by

Pd =
~ωLO

nAA

∑

Q

[N(ωLO, Te)− g(Q)] /τ(Q), (14)

where the generation rate 1/τ(Q) has the same expression as 1/τqz(q) above [Eq. (12)]

except that the Fröhlich interaction matrix element should be used instead, and g(Q) is

the hot bulk LO phonon occupation number, whose expression is given by Eq. (10) after

substituting the rate 1/τ(Q) for 1/τn(q) and the phonon frequency ωLO for ωn.

Knowing the power dissipation Pd then a hot-electron energy relaxation time τE can be

defined in the hydrodynamic model [25] through

Pd(Te) = kB(Te − T0)/τE . (15)

In-plane isotropy is used to simplify the energy relaxation calculations. Then the in-

plane phonon wave-vector dependent quantities such as the phonon generation times τn(q),
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τqz(q), τ(Q) and phonon occupation numbers gn(q), gqz(q), g(Q) are reduced to functions

of only the magnitude q. Therefore the summation over wavevector q [Eqs. (13) and (14)] is

converted to a double integral (over q, θ) and then reduces to a single integral over only q.

We also note that, as neither the half-space, interface phonons nor bulk LO phonons have

dispersion (i.e., the phonon frequencies do not depend on wavevector q), the q-dependence

of the hot phonon occupation number is dictated by the variation of the generation rate

with q [refer to Eq. (10), for instance for the interface modes].

We now include screening. The electron-phonon interactions are screened by the mobile

electrons. The response of the electron plasma to a polar disturbance from the lattice is

encapsulated by the dielectric function of the electron gas. For a high temperature electron

gas as considered here, the Boltzmann distribution function is used to approach the energy

distribution of the hot electrons. Then the Lindhard dielectric function of the quasi-2D

electron gas reduces to the following form

ǫ(q, ω) = 1 + F (q)
κD
q

1

2a
[Z(y − 1

2
a)− Z(y +

1

2
a)], (16)

where Z(s) is the plasma dispersion function [26]

Z(s) =
1√
π

∫ ∞

−∞

e−x2

x− s
dx, (17)

with s being complex, and κD is the two-dimensional Debye screening wavenumber, κD =

2πnAe
2/(ǫ0kBTe). In the ǫ(q, ω) expression the real arguments of the plasma dispersion

function are determined by the two dimensionless quantities y and a,

y =

(

m∗

2kBTe

)
1

2 ω

q
, a =

(

~
2q2

2m∗kBTe

)1/2

. (18)

In Eq. (16) F (q) is a form factor which accounts for the confinement effect on the electron-

electron Coulomb interaction due to the finite effective channel width of the heterostructure

[11],

F (q) =

∫

dz

∫

dz′|φ(z)|2|φ(z′)|2e−q|z−z′|, (19)

where φ(z) is confinement envelope function of the the lowest subband. This form factor

is equal to the form factor which was introduced to describe the electron-bulk-LO-phonon

interaction [11, 16], namely FB(q) given by Eq. (A16).
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To simplify calculations the plasma dispersion function [integral expression (17)] is ap-

proached by a two-pole padé approximant [27],

Z(s) =
i
√
π + (π − 2)s

1− i
√
πs− (π − 2)s2

. (20)

Using the properties of the plasma dispersion function [26], it is found that in the static

limit ω → 0 the dielectric function Eq. (16) reduces to

ǫ(q, 0) = 1 + F (q)
κD
q
. (21)

This is the familiar Debye screening formula which is used to evaluate screening for high-

temperature non-degenerate electron gases [11]. In this study, screening from the mobile

electrons is handled by dividing the scattering potential, or equally the electron-phonon

interaction matrix elements by the dielectric function of the quasi-2D electron gas. The

polar disturbance is of course not static and occurs at the finite frequency of a particular

phonon mode, for instance, a half-space or interface mode. To account for the dynamic effect

of screening the frequency ω in the dielectric function is substituted for the corresponding

phonon frequency, and the dielectric function is treated as a function of wave-vector q for

each finite phonon frequency.

The phonon generation rates 1/τn(q), 1/τqz(q), 1/τ(Q) are key quantities in the calcula-

tion of the power loss and energy relaxation time. The delta function in the rate expressions

[Eq. (8), for instance] reflects energy conservation in the scattering of an electron with a

phonon of particular mode. The summation over electron wavevector k is converted to a

double integral, which is reduced to a form that is proportional to the difference of two

complete Fermi-Dirac integrals of order -1/2 [see Appendix A, Eq. (A1) for 1/τn(q)]. Ac-

curate evaluation of the integral F− 1

2

(x) [Eq. (A3)] is important in obtaining the correct

energy relaxation results. The calculation should also be efficient as the integration values

are input to calculating the generation rates for all interface and half-space or bulk modes

in a large phonon wavevector space. To calculate the Fermi-Dirac integral the integrand is

transformed to e−x eµ
√
x

(1+eµ−x)2
such that the Gauss-Laguerre quadrature technique is used to

achieve fast and excellent convergence (25 quadrature points are used). Then these genera-

tion rates are inserted into Eqs. (13) and (14) to calculate power dissipation Pd. Again the

summation over phonon wavevector q is transformed to a double integral that is reduced

to an integral over only q by in-plane isotropy. Numerical integration is then carried by
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using the Gauss-Legendre quadrature method, 105 quadrature points being used with the

cut-off of q taken to be 8k0 (k0 is the threshold electron wavevector for LO phonon emission,

k0 =
√

2m∗ωLO/~). To calculate energy relaxation one also needs the Fermi energy EF ,

which is determined by the equation nAA =
∑

k f(Ek). Therefore one finds that the Fermi

energy is given by EF = ǫg + kBTe ln(e
nA/nTe − 1), where nTe has the dimension of areal

density, nTe = m∗kBTe/(π~
2).

We model the electron envelope function φ(z) for the triangular potential well by the

Fang-Howard wave-function [28, 29],

φ(z) =

√

b3

2
ze−bz/2, (22)

where b is a variational parameter which is determined by minimizing the total energy of

the quasi-2D electron gas. b is related to the areal electron density nA in the GaN channel

via

b =

(

33πe2m∗nA

2ǫ0~2

)1/3

. (23)

In this wavefunction model an effective channel width d is defined as twice the average

penetration depth of the charge in the active GaN region [30, 31]; d is related to the Fang-

Howard b parameter via d = 6/b.

In this study, the material parameters are taken from Refs. [32–34]. The LO and TO

phonon frequencies used for GaN are ωLO=91.13 meV, ωTO=66.08 meV, and for AlN we

use ωLO=110.7 meV, ωTO=76.1 meV. The high-frequency dielectric constants are taken to

be 5.29 and 4.68 for bulk GaN and AlN respectively. The electron effective mass for GaN

is m∗ = 0.22m0 (m0 is the free electron mass), and the lattice temperature is fixed at room

temperature 300 K. The optical phonon life-time is a key parameter in the electron energy

relaxation study. Thus a range of optical phonon life-time values from 0.1 to 2 ps are taken

to examine the hot-phonon effect.

IV. RESULTS AND DISCUSSIONS

A. Non-equilibrium phonon occupation number

The optical phonons contributing to hot-electron energy relaxation are the GaN half-space

modes (~ωLO=91.13 meV), and the lower- and higher-energy interface modes (~ω1=69.70
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and ~ω2=102.09 meV, respectively). We first look at the hot-phonon occupancy in phonon

wavevector space, as a large number of non-equilibrium phonons of these modes are generated

during energy relaxation when their decay is much slower than their emission by the hot

electrons. To do this we choose an electron temperature of 1000 K for the electron gas of the

areal density of 1.2×1013/cm2 in a typical lattice-matched InAlN/AlN/GaN heterostructure.

The high-Te experimental value of optical-phonon lifetime 0.1 ps is used for all half-space

and interface modes [2]. We calculated the hot-phonon occupation numbers as functions

of the in-plane phonon wavevector q for the half-space modes, qz = lπ/L2, with mode

indices 1 ≤ l ≤ 100, as most of these phonons participate in significant electron-phonon

scattering. We found that for a given wavevector q the half-space phonon occupation number

increases with the mode index l and then decreases after it reaches the maximum value

of a certain la mode. This is illustrated in Fig. 1(a) where the wavevector q-dependent

hot-phonon population are shown for a number of different orders of half-space modes as

labelled by the mode indices l. This result can be explained as follows. The hot electrons

are confined in a very narrow channel with an effective width of only 44 Å, whereas the

half-space phonons interacting with the electrons are present in the entire GaN region (0 <

z < L2). Thus the electron-half-space-phonon overlap integral ΓH(qz) [Eq. (A7)] as well

as the squared interaction matrix element [∝ Γ2
H(qz)/(q

2 + q2z)] strongly depends on qz or

equally the mode index l, as displayed in Fig. 1(b). According to Eq. (A6), therefore the

qz-dependence of the squared interaction matrix element dictates the phonon generation

rate 1/τqz(q) and the variation of the half-space phonon population with qz. This is quite

different from what happens in the usual square quantum wells such as GaAs/AlGaAs

quantum wells, where the hot-phonon population decrease as the confined-mode index in

the growth direction z increases [20]. This is because both the electrons and phonons are

confined in the same well region [11], resulting in stronger electron-phonon interaction with

a larger overlap integral for the lower-order phonon mode than the higher-order mode.

We also see from Fig. 1(a) that the half-space phonons of different orders l have peak

occupation numbers occurring at different phonon wavevectors q. In the two limits q → 0

and q → +∞, however the occupation numbers of all order half-space modes approach

the common thermal equilibrium value at room temperature, N(ωLO, T0) = 1/(e~ωLO/kBT0 −
1) = 0.03. The interface phonon occupation numbers are shown in Fig. 2(a) for both

the lower-frequency (ω1) and higher-frequency (ω2) interface modes. The lower-frequency
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phonons IF1 have a smaller population, whilst the higher-frequency modes IF2 have a higher

peak and are densely populated in a broader q-region where the IF2 phonon generation

rate 1/τ2(q) ≫ 1/τp because they have much greater electron-phonon coupling strength

than the IF1 modes (the Fröhlichlike coupling constants for the interface modes, αn =

e2

~
( m∗

2~ωn
)1/2/ǫn [16], are α1=0.02 and α2=0.5; that is, the higher frequency IF2 phonons have

more than one order of magnitude larger coupling strength than the lower frequency IF1

phonons). According to Eq. (10), the occupation number g(q) of the frequency ω modes is

restricted to the range N(ω, T0) ≤ g(q) ≤ N(ω, Te). Therefore the peak occupation number

of the ωn interface phonons is smaller than N(ωn, Te), namely the Bose-Einstein distribution

function at electron temperature Te. Further, with ω1 < ωLO < ω2, the minimum occupation

number of the half-space modes is larger than that of the higher-frequency IF2 modes but

smaller than the minimum occupation number of the lower-frequency IF1 modes [comparing

Fig. 1(a) and Fig. 2(a)]. For both half-space and interface phonons, the occupation number

curves [Figs. 1(a) and 2(a)] have a steep edge on the small-wavevector side and a slow slope

on the large-q side. We found that this originates from the wavevector q-dependence of the

energy ∆q [that is, the minimum electron kinetic energy for phonon absorption, Eq. (A9)], as

is shown in Fig. 9(a) and discussed in Appendix B. Further, we found that the q-dependent

non-equilibrium phonon occupation number as shown above is governed by the Fermi-Dirac

integral F− 1

2

(ξq) [with ξq being given by Eq. (A8)] as a function of the phonon wavevector q

[Fig. 9(b)], which is discussed in Appendix B.

The influence of screening from electrons on hot-phonon population is shown in Fig. 2(b)

for the interface modes. Compared to the non-screening calculation [Fig. 2(a)], static Debye

screening has significantly reduced the phonon population, and in particular the population

of the IF1 phonons are reduced substantially as these low-frequency phonons are restricted

to only a small-q region (q ≪ k0) of wavevector space where screening from the electrons is

very strong with large F (q)/q and hence large values of dielectric function ǫ(q, 0) [Eq. (21)].

Recall that F (q) is the form factor associated with the Coulomb interaction [Eq. (19)],

which increases as the wavevector q decreases. When dynamic screening is used [Fig. 2(b),

dashed and dotted lines], we see that the interface phonon population becomes narrower in

wavevector q-space, with the occupation numbers at small q wavevectors being increased

rather than decreased, compared to the case of excluding screening in Fig. 2(a). This anti-

screening arises due to the dispersion of the quasi-2D electron plasma oscillation frequency,
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namely ωpl(q) =
√

2πe2nqF (q)/(ǫ0m∗), which is smaller than the phonon frequency at long

wavelengths [11]. In this circumstance the electron plasma cannot move sufficiently fast to

cause screening to the polar disturbance from the lattice [35]. These hot phonon population

results will be used to analyze the power dissipation calculation below.

B. Hot electron power dissipation and energy relaxation time

The three-dimensional phonon (3DP) model has been widely used to evaluate electron

energy and momentum relaxation rates for quasi-2D semiconductor systems [11, 36–38].

Here we compare hot electron power dissipation in GaN based heterostructures calculated

with the DC and 3DP models. First we examine the sum rules as applied for the energy

relaxation in GaN heterostructures. We include only the hot phonon effect and do not

consider screening. To do this, we consider two heterostructures with different effective

channel widths, namely a strained Al0.05Ga0.95N/GaN heterostructure [39] with a wide well

of 110 Å (corresponding to an areal electron density of 7 ×1011/cm2) and a lattice matched

In0.18Al0.82N/AlN/GaN heterostructure [2] with a narrow well of 44 Å (corresponding to

electron density 1.2×1013/cm2). Then the average power dissipated per electron is calculated

as functions of the electron temperature with hot phonons being excluded or included, for

the latter case two phonon life-time values being used, τp=0.5 and 2 ps, to investigate the

HPE. Figs. 3(a) and 3(b) show the results with the electron temperatures ranging from

room temperature up to 2500 K. For the strained heterostructure with a wide channel, as

shown in Fig. 3(a) the two phonon models yield literally the same power dissipation. In

this case, the interface phonon scattering with potential decreasing exponentially according

to e−q|z| [Eq. (2)] is very weak, as the average value of the position for electrons z̄ which

is half the effective channel width [16] is z̄=55 Å, whereas the characteristic wavevector k0

for the interface phonons is around 0.07 1/Å, making k0z̄ ≈ 4. The form factor for the

interface phonons [Eq. (A17)] FI(q) can be neglected, and as is proved in Appendix A, then

power dissipation values given by the two phonon models are equal, which is consistent with

both sum rules [16, 17]. For the heterostructure with a narrow 44Å channel, in contrast, the

interface phonon scattering is significantly enhanced, and in this case the two phonon models

yield different power loss values (see proof in Appendix A). Therefore a clear difference is

seen between the power dissipation curves calculated with the two phonon models [Fig. 3(b)].
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In the pure emission case the DC model yields higher power dissipation than the 3DP

approximation. Taking the HPE into account, however the 3DP power loss becomes larger.

To find the cause we need to separate and check contributions to the power dissipation from

the half-space modes, the lower and higher frequency interface modes respectively [Fig. 4(a)].

We see that the half-space phonons dominate the energy relaxation process (due to the large

density of states of the half-space modes) and contribute larger power dissipation than the

interface phonons, whilst the lower-frequency IF1 phonons make only a small contribution

due to their low energy, small coupling strength and narrow population distribution in q-

space (refer to Fig. 2 and the preceding subsection). Without HPE the power dissipation

due to the high-energy IF2 phonons increases rapidly with Te in particular above 1000 K

compared to the half-space phonons. For instance, the IF2 power dissipation at Te=2500 K

has risen to 46% the power dissipation due to the half-space phonons. This causes a larger

total power dissipation with the DC model than the 3DP model [Fig. 3(b)]. When the hot

phonons are taken into account, however we see from Fig. 4(a) that the power dissipation due

to the IF2 phonons drops dramatically by about 85%, because the IF2 phonon generation

number per unit time W2(q) [Eq. (7)] is substantially reduced [compare the two curves

in Fig. 4(b)], as the nonequilibrium IF2 phonons with a broad population distribution in

wavevector space (as illustrated in Fig. 2) are re-absorbed. As a result the total DC power

dissipation becomes smaller than that evaluated with the 3DP model [Fig. 3(b)]. Therefore

the difference between the DC and 3DP results is due to the IF2 phonons - their contribution

to the power loss is enhanced at the high electron temperatures in pure emission but is

dramatically reduced after including the HPE. In recent studies on GaN heterostructures,

we found that interface phonon absorption causes negative momentum relaxation rates [14],

and also an increased interaction with the IF2 modes leads to a reduction of phonon lifetime

[13].

In both heterostructures the calculations with both phonon models [Figs. 3(a) and 3(b)]

show that the electron power dissipated increases rapidly with Te at low temperatures but

the increase becomes slower at high temperatures, similar to that which occurs in Si-doped

bulk GaN [7]. In the simpler case with no screening or hot phonons, the phonon generation

number is ∆N(Te) = N(ωLO, Te) − N(ωLO, T0) for bulk LO modes, and the temperature

dependence of the power loss Pd, according to Eq. (14), is determined entirely by the product

of the generation number ∆N(Te) and the total generation rate of all bulk modes
∑

Q
1

τ(Q)
.
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The low-temperature power loss is dictated by the exponential increase of ∆N(Te) with

Te, ∆N(Te) ≈ e−~ωLO/(kBTe) − e−~ωLO/(kBT0). At high temperatures (>1200 K), whilst the

generation number ∆N(Te) increases with Te the total generation rate is reduced, resulting in

the slow rise of power dissipation. Physically the generation rate decreases as the difference

in electron occupation numbers within the phonon energy ~ωLO becomes smaller at a higher

electron temperature.

We now include screening to make a comprehensive study of the electron power dissipa-

tion calculated with the DC and 3DP models. When both screening and hot phonons are

included, strictly speaking the scattering rate sum rule is not applicable, and then one needs

to find how much discrepancy the 3DP evaluation yields with respect to the DC calculation.

Thus calculations were performed using each phonon model for a number of cases, namely,

(i) excluding hot phonons and screening, (ii) including only the HPE, (iii) including only

static (Debye) screening, (iv) including only dynamic screening, (v) including both HPE

and static screening, and (vi) including both the HPE and dynamic screening. The results

are show in Fig. 5 for the lattice-matched In0.18Al0.82N/AlN/GaN heterostructure (with a

44-Å-wide channel), where a polar optical phonon lifetime of 1 ps is used for all the cases of

including the HPE. Several points can be made by comparing the power dissipation values

in the various cases. First, the power dissipation is substantially reduced by static screening

[compare cases (i) and (iii)], whereas the reduction using dynamic screening is much smaller,

which is only ∼ 30% the reduction caused by Debye screening [compare cases (i), (iii) and

(iv)]. When both screening and hot phonons are included, the power loss values obtained

with the static and dynamic screening models get closer as Te increases; at Te=2500 K the

power loss is 14% smaller from Debye screening than from the dynamic screening model.

Second, at the low temperatures interestingly both phonon models yield enhanced rather

than slowed power dissipation when dynamic screening is included. That is, anti-screening

occurs when the electron temperature Te is lower than 840 K for the DC model or Te<770

K for the 3DP model. This is explained as follows. Expressions (13) and (14) show that

mathematically the power dissipation is a sum of the contributions that are connected with

the various in-plane phonon wavevectors q. When dynamic screening is taken into account,

the bare electron-phonon interaction is screened or anti-screened depending on wavevector

[35]. The large-q components in the summation contribute screening while the small-q com-

ponents which are connected to the slow motion of the electron gas contribute anti-screening
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[11], due to the dispersion of the quasi-2D electron plasma frequency. At the low electron

temperatures, the small-q components dominate as the degenerate distribution of the dense

electrons favours the electron-phonon scattering with small transfer wave-vectors q. At the

high temperatures, on the other hand, the electrons are distributed over a large k-space,

and they cause screening when the large q-components dominate. We note that antiscreen-

ing for the quasi-2D electron energy relaxation was observed early in GaAs quantum wells

and occurred also at low electron temperatures [40]. Third, for the three cases with no

hot phonons, namely (i), (iii), (iv), the DC model yields higher power dissipation than the

3DP model. However taking into account hot phonons, namely in the corresponding cases

(ii), (v), (vi) the 3DP power loss becomes larger. What causes this has become clear after

our discussion above for Fig. 3(b); that is, it is due to the higher-energy interface phonons.

Fourth, throughout the temperature range the 3DP power loss is 5% smaller than the DC

power dissipation in the simplest case (i), but becomes larger (by less than 4%) after in-

cluding both HPE and screening as in cases (v), (vi). A similar deviation is obtained when

reducing the phonon lifetime to 0.1 ps except for the static screening case where only a tiny

0.2% deviation occurs. The 3DP model yields such a close result to the DC calculation,

because including screening does not alter the order of the DC and 3DP power loss values

in terms of their relative magnitude [that is, the DC power dissipation is higher. Refer to

cases (i), (iii), (iv)], while accounting for the HPE does alter the order [compare cases (i),

(ii)].

Experimentally, using the microwave noise technique the electron temperature Te as a

function of the supplied power Ps was directly measured for Si-doped bulk GaN [41], strained

AlGaN/GaN [9] and lattice-matched In0.18Al0.82N/AlN/GaN [2] heterostructures. The total

number of electrons was estimated from the measured low-field Hall mobility and channel

resistance using Ohm’s law. Under steady-state conditions, the supplied power is equal to

the total power dissipated to the lattice by the hot electrons. Then one can obtain the

experimental data of the average power dissipation per electron versus electron temperature

(see Fig. 4 of Ref.[2] for the lattice-matched In0.18Al0.82N/AlN/GaN heterostructure). The

power loss was shown to increase with the electron temperature (from 2 nW/electron at

Te=500 K, for instance, to 150 nW/electron at Te=2500 K) but the dependence is compli-

cated by electron screening and the variation of the polar optical phonon lifetime with Te,

as was discussed in our previous study [15]. In the simple approximation where neither hot
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phonons nor screening is included, the calculated power dissipation is four times as large

as the experimental values. Accounting for screening and HPE brings the calculation much

closer to the experimental data. However the theoretical values remain over 2.5 times higher

in the low temperature region even with static screening which is generally believed to over-

estimate the screening effect, and the use of large phonon lifetimes there such as 20 ps will

produce a fit with experiment.

To quantify the screening effect and/or HPE a reduction factor β is introduced, β =

P 0
d /Pd, where P

0
d is the power dissipation without screening or hot phonons, and Pd is the

corresponding power loss when screening and/or the hot phonons are included. Fig. 6 shows

the temperature-dependences of the reduction factors associated with only the HPE, only

screening (Debye screening or dynamic screening), and both HPE and screening calculated

with the DC and 3DP phonon models as labeled (using a polar optical phonon lifetime of

1 ps) for the lattice-matched In0.18Al0.82N/AlN/GaN heterostructure. When only screening

is included almost the same reduction factors are obtained from the two phonon models,

with the two curves coinciding for either static or dynamic screening case. We see anti-

screening again in the dynamic screening alone case for electron temperatures lower than

about 800 K (below the dotted horizontal line β=1 in Fig. 6) with reduction factor β <1, as

antiscreening causes faster power dissipation Pd than P
0
d , Pd > P 0

d . In all the other cases, as

β > 1 the electron energy relaxation has slowed down after including screening and/or hot

phonons. We see a stronger HPE at low electron temperatures, with the reduction factors

decreasing with increasing the electron temperature. The 3DP model underestimates the

HPE as expected, and as a result the reduction factors from the 3DP calculation are smaller

than the DC result even when screening is included. The reduction factor is ∼9% smaller

by the 3DP approach than by the DC model in the high-Te region. Using either of the

two screening models the reduction factor associated with both hot phonons and screening

decreases as Te increases, in both the DC and 3DP calculations, but the high-Te reduction

factor tends to be flat and the β values from the static and dynamic screening models are

quite close, with β varying only from 2.5 to 3.2. That is to say, with a phonon lifetime of 1

ps the high-temperature electron power loss is reduced approximately by a factor of 3 due

to screening and the HPE.

We now turn to the energy relaxation time τE . Fig. 7 shows the dependences of the

electron energy relaxation times on the electron temperature for the lattice-matched het-
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erostructure, calculated with the DC and 3DP models for three cases, namely, (i) excluding

hot phonons and screening, (ii) including both the HPE and static (Debye) screening, and

(iii) including both HPE and dynamic screening. With no hot phonons or screening, both

phonon models yield relaxation times around 0.05 ps but at low electron temperatures Te <

500 K there is a drop in relaxation time τ 0E (τ 0E is the energy relaxation time with no screen-

ing or HPE, τ 0E = kB(Te−T0)

P 0

d

), which is caused by the exponential rise of the generation

number ∆N(Te) with Te. When screening and hot phonons are taken into account, the

energy relaxation time can be conveniently expressed as τE = kB(Te−T0)
P 0

d

P 0

d

Pd
= τ 0Eβ, where β

is the reduction factor caused by screening and HPE. There is a very small difference in

the relaxation times calculated from the two phonon models (upper two pair of curves with

τp=1 ps in Fig. 7), with the 3DP relaxation times being 4% smaller than the DC ones at

high electron temperatures (Fig. 8) and the deviation staying within 5% when reducing the

phonon lifetime to 0.1 ps. As the combined hot phonon and screening effect, parametrized

by the reduction factor, decreases as Te is elevated (refer to Fig. 6 above), a great fall of

energy relaxation time appears at temperatures Te < 750 K (Fig. 7). In particular the fall

is sharp when Debye screening is used as the screening wavenumber κD (κD ≈ 5.8k0T0/Te)

decreases fast with Te (at Te=1000 K, for instance, κD reduces to 1.7k0).

At high temperatures (above 1200 K), on the other hand, the relaxation time, τE , stays

almost flat with a very small and slow rise when a single phonon lifetime 1 ps is used

throughout the temperature range. The relaxation time is 0.15 ps when static screening

is used, which is slightly larger than the ∼0.12 ps value obtained with dynamic screening.

This saturation in energy relaxation means that the increases in the average electron kinetic

energy and power dissipation with Te are somewhat balanced. Experimentally, saturation

in energy relaxation was observed in Si-doped bulk GaN [41] and a strained AlGaN/GaN

heterostructure [9] . Experimental results [2, 6] indicate that the high temperature side has

phonon life-times τp one order of magnitude shorter than 1 ps. Using τp=0.1 ps reduces the

relaxation time τE to ∼0.12 ps for the static screening case (thick dashed line in Fig. 7)

and to ∼0.09 ps when dynamic screening is accounted for (thick dotted line in Fig. 7),

as the hot phonon occupation numbers are reduced in the phonon re-absorption processes

compared to the case of the longer lifetime of 1 ps. This rapid relaxation means no bottleneck

for the power dissipation. Our calculated value ∼0.09 ps is nearly equal to the measured

high-temperature relaxation time of 0.09 ps [2]. We note that in this case, despite it being
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weakened, the hot-phonon reabsorption should be included to obtain the relaxation time

∼0.09 ps, as we found that without HPE the relaxation would be faster with τE ≈0.06 ps.

At high electron temperatures the measured relaxation time for the investigated lattice-

matched heterostructure was found to decrease slowly with the electron temperature [2].

Our calculation shows that the one order of magnitude shorter phonon lifetime has reduced

the relaxation time τE by only 0.3 ps when static or dynamic screening is accounted for, and

therefore the high temperature relaxation time decreases slowly with Te, in good agreement

with experiment. These results also support the experimental finding [6] that the polar

optical phonons have a shorter lifetime at a higher electron temperature, otherwise saturation

in energy relaxation would occur, similar to that in bulk GaN [7, 41].

We make a comparison of the energy relaxation in bulk GaN [7, 41] and the heterostruc-

ture. When hot phonons are ignored, the electron power loss is much greater in bulk GaN,

which is approximately three times the power dissipation in the heterostructure when static

screening is included. This is largely because the electron density of states is much higher in

bulk than in the heterostructure. However we found that the hot phonons play an important

role in determining the high-temperature energy relaxation. For Si-doped bulk GaN with a

volume electron density 1018 cm−3, the high-Te relaxation time is around 0.2 ps [Fig. 7(a) of

Ref.[7]] with phonon lifetime 10 ps, which is longer than the relaxation time of ∼0.1 ps in

the lattice-matched heterostructure. With a higher electron density, 1019 cm−3, for instance,

in bulk GaN the electron energy relaxation is found to be much slower due to the combined

screening and hot-phonon effect [7]. Therefore, the rapid energy relaxation with τE around

0.1 ps in the heterostructure means an efficient heat transfer from the hot electron gas to

the lattice, which provides the heterostructure with an advantage to use in HFET devices.

V. CONCLUSIONS

In conclusion, we have studied energy relaxation for hot electrons in the quasi-2D channel

of lattice-matched InAlN/AlN/GaN heterostructures using the DC and 3DP models. The

temperature of the quasi-2D electron gas in the narrow 44-Å channel can reach above 2500

K due to high electric power, much higher than the lattice temperature (room temperature).

In this study therefore non-equilibrium polar optical phonons as well as electron degeneracy

and screening from the mobile electrons are taken into account. Particular attention is
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paid to the effects of the two phonon models on the hot-electron relaxation process in the

GaN heterostructures. We calculated the electron temperature dependences of the electron

power dissipation and energy relaxation time using a variety of phonon lifetime values and

examined the 3DP model by comparing the results calculated with the two phonon models.

We found that the 3DP model yields very close results to the DC model: with no hot phonons

or screening the power loss calculated from the 3DP model is 5% smaller than the DC power

dissipation, whereas slightly larger 3DP power loss (by less than 4% with a phonon lifetime

from 0.1 to 1 ps) is obtained throughout the electron temperature range after including both

the HPE and screening. Very close results are obtained also for the energy relaxation time

with the two phonon models (with a percent deviation smaller than 5%). As the investigated

heterostructure has a channel narrower than the usual GaN-based heterostructures, therefore

the 3DP phonon model is generally a good approximation to use for the study of the energy

relaxation in GaN-based heterostructures. We found that our results in the pure phonon

emission case are consistent with the sum rules given by Mori and Ando [16] and by Register

[17]. The discrepancy between the DC and 3DP results is caused by how much the high

energy interface phonons contribute to the energy relaxation: their contribution is enhanced

in the pure emission process but is dramatically reduced after including the HPE. Debye

screening overestimates the high-Te energy relaxation time by ∼0.03 ps compared to the

dynamic screening model whereas with dynamic screening included anti-screening occurs at

low electron temperatures (below ∼800 K) due to the dispersion of the quasi-2D electron

plasma frequency. Our calculation with both phonon models has obtained a great fall in

energy relaxation time τE at low electron temperatures (Te < 750 K) and slow decrease at

the high temperatures with the use of decreasing phonon lifetime with Te. The calculated

temperature dependence of the relaxation time and the high-temperature relaxation time

∼0.09 ps are in good agreement with experimental results. We also compared the quasi-2D

hot-electron relaxation with the electron relaxation in bulk GaN and found that the hot

phonons play a key role in slowing down the high-Te electron relaxation for bulk (τE ∼
0.2 ps). For the heterostructures, in contrast, the rapid energy relaxation (τE ∼ 0.09 ps)

and sub-picosecond phonon decay provide an advantage which benefits electron transport

in the HFET devices by efficiently cooling down the extremely hot electrons to increase the

electron mobility.
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Appendix A: Electron power dissipation based on the DC and 3DP models and the

sum rules for electron-phonon scattering

As can be seen from Sec. III, 1/τn(q) and 1/τqz(q) are key quantities in the calculation

of the power dissipation. First we look at how to treat 1/τn(q) due to interface phonon

scattering [Eq. (8)]. Express the matrix element Mn,q(k;k+q) in terms of the electron and

phonon envelope functions, and substitute it into Eq. (8). Then replace
∑

k by A
(2π)2

∫

kdkdθ

to convert the summation over electron wavevector to a double integral. The integration

over angle θ can be performed analytically, reducing the double integral to an integral over

k only. After some algebraic manipulation by changing the variable of integration, we find

that the final 1/τn(q) can be expressed in a simple form as

1

τn(q)
=

m∗

2π~3
γ2n

1

q
|ΓI(q)|2

√
π

(

kBTe
εq

)1/2
[

F− 1

2

(ξnq)− F− 1

2

(ζnq)
]

, (A1)

where εq = ~
2q2/(2m∗), ΓI(q) is the electron-interface-phonon overlap integral

ΓI(q) =

∫ ∞

0

φ∗(z)e−qzφ(z)dz, (A2)

and F− 1

2

(y) is the complete Fermi-Dirac integral of order −1/2,

F− 1

2

(y) =
1√
π

∫ ∞

0

x−1/2

1 + ex−y
dx. (A3)

ξnq and ζnq are two dimensionless quantities, given by

ξnq = (EF −∆nq)/(kBTe), ζnq = ξnq − ~ωn/(kBTe), (A4)

where ∆nq has the dimension of energy,

∆nq = (εq − ~ωn)
2/(4εq). (A5)
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Similarly, one can obtain from Eq. (12) the 1/τqz(q) expression for half-space phonon

scattering,

1

τqz(q)
=

m∗

2π~3
γ2LO

1

L2

1

q2 + q2z
|ΓH(qz)|2

√
π

(

kBTe
εq

)1/2
[

F− 1

2

(ξq)− F− 1

2

(ζq)
]

, (A6)

where ΓH(qz) is the electron-half-space-phonon overlap integral

ΓH(qz) =

∫ ∞

0

φ∗(z)2 sin(qzz)φ(z)dz, (A7)

and ξq and ζq are given by

ξq = (EF −∆q)/(kBTe), ζq = ξq − ~ωLO/(kBTe), (A8)

with the energy ∆q being defined by

∆q = (εq − ~ωLO)
2/(4εq). (A9)

For bulk LO phonon scattering, the generation rate 1/τ(Q) is given by

1

τ(Q)
=

m∗

π~3
γ2LO

1

L1 + L2

1

q2 + q2z
|ΓB(qz)|2

√
π

(

kBTe
εq

)1/2
[

F− 1

2

(ξq)− F− 1

2

(ζq)
]

, (A10)

where ΓB(qz) is the electron-LO-phonon overlap integral

ΓB(qz) =

∫ ∞

0

φ∗(z)e−iqzzφ(z)dz. (A11)

In what follows we confine ourselves to a discusion of the sum rules so we ignore screening

and hot phonons. We recall that the calculation of the electron power dissipation involves

summation over qz for both half-space and bulk phonon modes [Eq. (13) and (14)]. Inserting

the ΓH(qz) expression Eq. (A7) in Eq. (A6) and then performing summation over qz for the

qz-dependent factor, we obtain

∑

qz>0

1

L2

1

q2 + q2z
|ΓH(qz)|2 =

1

q
FH(q), (A12)

where FH(q) is the form factor for half-space phonons as defined by Mori and Ando [16],

FH(q) =

∫ ∞

0

dz

∫ ∞

0

dz′φ∗(z)φ(z)
(

e−q|z−z′| − e−q|z+z′|
)

φ∗(z′)φ(z′). (A13)

Note that in obtaining Eq. (A12) we have used the integration formula

∫ ∞

0

cos ax

β2 + x2
dx =

π

2β
e−β|a| (β > 0) . (A14)
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For the 3D bulk modes [Eqs. (A10) and (A11)], similarly one finds

∑

qz

1

L1 + L2

1

q2 + q2z
|ΓB(qz)|2 =

1

2q
FB(q), (A15)

with the form factor given by

FB(q) =

∫ ∞

0

dz

∫ ∞

0

dz′φ∗(z)φ(z)e−q|z−z′|φ∗(z′)φ(z′). (A16)

For the interface modes [Eqs. (A1) and (A2)], it is readily found that the form factor

FI(q) [16] is simply the square of the overlap integral ΓI(q)

FI(q) =

[
∫ ∞

0

dzφ∗(z)e−qzφ(z)

]2

. (A17)

Using Eqs. (A13), (A16) and (A17) then we restore the form factor sum rule given by

Mori and Ando [16]

FB(q) = FH(q) + FI(q). (A18)

We now proceed to applying this sum rule to the power dissipation as obtained from the

DC and 3DP models. We first consider a special case, that is, when the quasi-2D channel

in GaN is sufficiently wide that the form factor for the interface phonons FI(q) can be

neglected. This leads to the removal of the contribution to the power dissipation from all

the interface modes. Inserting the 1/τqz(q) and 1/τ(Q) expressions (A6) and (A10) into the

power dissipation equations (13) and (14) respectively, and then using the obtained identities

Eqs. (A12) and (A15), we find that the two resulting power dissipation expressions given by

the DC and 3DP models are identical. In the general case, of course one has FI(q) 6= 0, the

two phonon models do not yield the same power dissipation, and the difference is caused

entirely by how much the true interface modes (eigenmodes) contribute compared to that

when they are treated simply as bulk LO modes in terms of the phonon frequency and

electron-phonon coupling strength. This can be made more clear by the following proof.

If we ignore the difference in the material parameters, such as the phonon frequencies and

dielectric constants, of the two constituents of the heterostructure, and use only the GaN

parameters, the interface mode frequency that is given by the solution of ǫ(ω) + ǭ(ω) = 0

simply reduces to the LO phonon frequency ωLO of GaN, and 1
ǫn

for the interface modes

reduces to 1
ǫLO

for the bulk LO modes, thus making the coupling constant αn for the interface

modes, αn = e2

~
( m∗

2~ωn
)1/2/ǫn [16], reduce to the Fröhlich coupling constant αLO for the bulk
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LO modes, αLO = e2

~
( m∗

2~ωLO
)1/2/ǫLO. This is exactly the scenario that results from the

degenerate modes approximation [16, 17]. It then follows that the use of the Mori-Ando

sum rule [Eq. (A18)] results in the same DC and 3DP power dissipation. Furthermore, the

same electron-phonon scattering rate is also obtained with the two phonon models, which

is consistent with the sum rule for the electron-phonon interaction given by Register [17].

Of course the two constituent materials are different, and the true interface modes are not

bulk GaN LO modes, and therefore in general the DC power dissipation is different from

that evaluated with the 3DP model, even in the non-HPE case, as our numerical results in

Sec. IV have shown.

Appendix B: Phonon wavevector dependences of energy ∆q and the Fermi-Dirac

integral F− 1

2

(ξq)

The following illustration is made for the half-space modes but it can be equally applied

to the interface and bulk LO modes as well. The energy expression appearing in the delta

function of Eq. (12) indicates energy conservation when an electron at state k makes a

transition up to state k + q after a half-space phonon with wavevector q is absorbed. If

θ is the angle between k and q, one finds cos θ = ~ωLO−εq
~2kq/m∗

. As |cos θ| ≤ 1, one obtains

Ek ≥ ∆q [∆q is given by Eq. (A9)]. Therefore, the energy ∆q, which arises from energy

conservation plus momentum conservation, has a clear physical meaning; that is, given

a phonon wavevector, ∆q is the minimum kinetic energy of the electron for the phonon

absorption to occur. Fig. 9(a) shows the energy ∆q as a function of the wavevector q, where

for simplicity ∆q and q are made dimensionless with respect to the LO phonon energy ~ωLO

and electron wavevector for threshold LO phonon emission k0, respectively. We see that

the energy ∆q decreases steeply to the minimum value of 0 at q = k0, and then slowly

increases as wavevector q becomes larger. Eq. (A6) shows that the generation rate 1/τqz(q)

is proportional to the difference of the Fermi-Dirac integrals at the two arguments differing

by only ~ωLO/(kBTe) [also refer to Eq. (A8)], owing to scattering by half-space phonons

of energy ~ωLO. Further, the Fermi-Dirac integral F− 1

2

(y) [Eq. (A3)] is a monotonically

increasing function, and this ensures that F− 1

2

(ξq) − F− 1

2

(ζq) and consequently the rate

1/τqz(q) is always positive as required physically. Therefore, knowing the dependence of

F− 1

2

(ξq) (or F− 1

2

(ζq) equally) on the wavevector q is fundamental to understanding the q-
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dependence of the non-equilibrium phonon occupation number in Sec. IV. As shown in

Fig. 9(b) (solid line), F− 1

2

(ξq) increases rapidly from 0 to the maximum value at q = k0, and

then decreases with further increasing q. In both limits of q → 0 and q → ∞ the Fermi-

Dirac integral is zero leading to null phonon generation. In the non-degenerate Boltzmann

approximation, one has F− 1

2

(y) = ey, making F− 1

2

(ξq) = eξq simply proportional to e−∆q/kBTe.

Then one finds that F− 1

2

(ξq) depends on q according to e−α(
k0
q
)2/4 for q → 0, and according

to e
−α( q

k0
)2/4

for q → ∞ where α = ~ωLO/(kBTe). For an electron density of 7 × 1011/cm2

at the electron temperature Te = 2~ωLO/kB=2110 K, for instance, the non-degeneracy

approximation eξq and the Fermi-Dirac integral F− 1

2

(ξq) are very close, making the lower

two curves in Fig. 9(b) coincide. In typical GaN based heterostructures the electron density

is quite high. For electron density 1.2× 1013/cm2, the non-degeneracy approximation (dot-

dashed line) is quite large with a peak value of 60% larger than the maximum value of

F− 1

2

(ξq) (solid line). Nevertheless the dependence of F− 1

2

(ξq) on the phonon wavevector q

governs the q-dependence of the non-equilibrium phonon occupation number, as shown in

Sec. IV.
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FIG. 1: (Color online) (a) Non-equilibrium phonon occupation numbers vs in-plane phonon

wavevector of the half-space phonons for a number of qz indices as labeled (qz = lπ/L2, l ≥ 1, L2

being the dimension of the GaN half-space), generated from energy relaxation of the hot electrons

at temperature 1000 K in a typical lattice-matched heterostructure In0.18Al0.82N/AlN/GaN with

an areal electron density of 1.2 × 1013/cm2 (corresponding to an effective channel width of 44 Å),

calculated with a polar optical phonon life-time τp=0.1 ps. The horizontal dotted line shows the

thermal equilibrium occupation number at room temperature, N(ωLO, T0) = 0.03. (b) Phonon-

wavevector-dependent factor, Γ2
H(qz)k

2
0/(q

2+q2z), of the squared electron-phonon interaction matrix

elements of half-space modes, as functions of qz for three in-plane wavevectors q=0.5, 1, 2k0, where

k0 is the characteristic electron wave-vector for threshold LO phonon emission, k0 =
√

2m∗ωLO/~.

FIG. 2: (Color online) Non-equilibrium phonon occupation numbers of the lower-energy (IF1) and

higher-energy (IF2) interface phonons from energy relaxation of the hot electrons at temperature

1000 K in the lattice-matched In0.18Al0.82N/AlN/GaN heterostructure, calculated with a phonon

life-time τp=0.1 ps for (a) excluding and (b) including screening with the static (Debye) and

dynamic screening models.

FIG. 3: (Color online) Average power dissipated per electron vs electron temperature for

(a) a strained Al0.05Ga0.95N/GaN heterostructure with an effective GaN-channel width of 110

Å (corresponding to an areal electron density of 7 × 1011/cm2) and (b) the lattice-matched

In0.18Al0.82N/AlN/GaN heterostructure with an effective GaN-channel width of 44 Å (correspond-

ing to the areal electron density of 1.2× 1013/cm2), calculated with the dielectric continuum (DC)

and three-dimensional phonon (3DP) models for excluding or including the hot-phonon effect

(HPE) with two phonon life-time values τp=0.5 and 2 ps as labeled.
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FIG. 4: (Color online) (a) Average power dissipated per electron vs electron temperature in

the lattice-matched In0.18Al0.82N/AlN/GaN heterostructure, due to scattering with the half-space

(HS), lower-energy (IF1) and higher-energy (IF2) interface phonons, respectively, and (b) higher-

energy interface phonon (IF2) generation number per unit time W2(q) [Eq. (7)] vs in-plane phonon

wave-vector at the electron temperature 2500 K, when the hot-phonon effect (HPE) is excluded

or included with a phonon life-time of τp=0.5 ps. In (b) the phonon generation W2(q) values of

including the hot phonons have been enlarged by ten times.

FIG. 5: (Color online) Average power dissipated per electron vs electron temperature in the lattice-

matched In0.18Al0.82N/AlN/GaN heterostructure, calculated with the dielectric continuum (DC)

and three-dimensional phonon (3DP) models for the six cases as labeled, namely, (i) without hot-

phonon effect (HPE) or screening (scr), (ii) including only the HPE, (iii) including only static

(Debye) screening, (iv) including only dynamic screening, (v) including both the HPE and static

screening, and (vi) including both the HPE and dynamic screening. The polar optical phonon

life-time of 1 ps is used when the hot phonons are included for the three cases (ii), (v), (vi).

FIG. 6: (Color online) Reduction factors versus electron temperature associated with only the

hot-phonon effect (HPE), only screening (Debye screening or dynamic screening), and both HPE

and screening calculated with the dielectric continuum (DC) and three-dimensional phonon (3DP)

models as labeled, where a polar optical phonon lifetime of 1 ps is used for hot phonons in the

lattice-matched In0.18Al0.82N/AlN/GaN heterostructure. Also drawn is a dotted horizontal line

β=1, the part of curves below which indicates antiscreening.
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FIG. 7: (Color online) Energy relaxation times vs electron temperature of the hot electrons in the

lattice-matched In0.18Al0.82N/AlN/GaN heterostructure, calculated with the dielectric continuum

(DC) and three-dimensional phonon (3DP) models for several cases as labeled: with no hot-phonon

effect (HPE) or screening (scr), including both HPE and static (Debye) screening, and including

both the HPE and dynamic screening with a phonon lifetime of τp=1 ps. The DC results at high

electron temperatures using both screening models calculated with the phonon lifetime 0.1 ps are

also shown.

FIG. 8: (Color online) Percent deviations of the energy relaxation times evaluated with the three-

dimensional phonon (3DP) approximation with respect to the dielectric continuum (DC) calcu-

lation as functions of the electron temperature in the In0.18Al0.82N/AlN/GaN heterostructure for

several cases as indicated: with no hot-phonon effect (HPE) or screening (scr), including both

the HPE and static (Debye) screening, and including both the HPE and dynamic screening with

a phonon lifetime of τp=1 ps. The relative deviations at high electron temperatures using both

screening models calculated with the phonon lifetime 0.1 ps are also shown.

FIG. 9: (Color online) (a) The energy ∆q, namely, the minimum electron kinetic energy for phonon

absorption, given by
∆q

~ωLO
=

[( q
k0

)2−1]2

4( q
k0

)2
, as a function of the phonon wavevector q; (b) the Fermi-

Dirac integral F− 1

2

(ξq), where ξq = (EF − ∆q)/(kBTe), as functions of the phonon wavevector q

for the two electron densities 1.2 × 1013 (solid) and 7 × 1011 cm−2 (dotted) at the same electron

temperature Te = 2~ωLO/kB=2110 K. Also shown is the non-degenerate Boltzmann approximation,

eξq , for the Fermi-Dirac integral F− 1

2

(ξq) for the two electron densities respectively (dot-dashed and

dashed). Note that k0 is the characteristic electron wave-vector for threshold LO phonon emission,

k0 =
√

2m∗ωLO/~.
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