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Abstract: 

Objectives: The extent to which gastrocnemius muscle and Achilles tendon properties 

contribute to the impaired walking endurance of claudicants is not known. Methods: 

Ultrasound images quantified muscle architecture of the lateral and medial gastrocnemius 

(GL and GM) and were combined with dynamometry during plantarflexor contractions to 

calculate tendon stress, strain, stiffness, the Young modulus, and hysteresis. Key parameters 

were entered into multiple regression models to explain walking endurance. Results: Worse 

disease severity was significantly associated with longer fascicle: tendon length ratios (GL R 

= -0.789 and GM R = -0.828) and increased tendon hysteresis (R = -0.740). Walking 

endurance could be explained by GL and GM pennation angle, maximum tendon force, 

tendon hysteresis, and disease severity (R
2 

= ~0.6). Conclusions: Peripheral arterial disease

was associated with functionally important changes in muscle and tendon properties, 

including the utilization of stored elastic energy. Interventions known to target these 

characteristics should be adopted as a means to improve walking endurance. 

Keywords: Efficiency; hysteresis; endurance; intermittent claudication; gastrocnemius 
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Introduction 

Peripheral arterial disease with intermittent claudication (PAD-IC) primarily affects older 

adults, and prevalence increases with advancing age
1
. The disease can be physically limiting 

by impacting adversely on individual quality of life, walking endurance, functional ability, 

and independence
2-4

. The calf muscle is frequently reported as a site of claudication pain,
5
 

and there is evidence of plantarflexor dysfunction during level walking
6,7

. However, the 

contribution of musculoskeletal factors, either individually or in combination with one 

another, to the functional and quality of life limitations associated with PAD-IC are unclear. 

 

The functional properties of muscle depend on overall size and fascicle arrangement
8
. 

Muscles required to generate large forces develop highly pennate architecture (the angle 

between fascicles and the muscle’s line of action) with short fascicles, while those that 

require large excursions/high velocity develop long fascicles
9
. Long fascicles relative to 

tendon length also have the advantage of reduced relative fascicle velocity for any given 

movement
9
 and decreased energy cost for the same mechanical work

10
. Architectural 

characteristics adapt to chronic loading, unloading, and aging
11

. Those with PAD-IC are 

typically older individuals
1
 who are less physically active than their healthy counterparts

12
 

and have the added burden of reduced blood supply to working muscles. Consequently, it is 

expected that the architecture of claudicant muscles may differ from healthy controls, 

impacting on muscle function and energy requirements. 

 

Muscle work is transmitted to the skeleton by the tendon, which deforms, stretching and 

recoiling, during movement. Consequently, tendon properties can modulate the outcome of 
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muscle contraction by impacting muscle length, maximum muscle force production, and the 

rate of force development
13

. Tendons store elastic energy when stretched, some of which is 

lost as heat (defined as hysteresis), but the remainder is recovered during recoil to contribute 

to the next shortening task. This reduces the metabolic energy required from the muscle 

during shortening (e.g., propulsion in walking), which improves movement efficiency
14

. 

 

Tendon properties have been shown to deteriorate with increasing age,
15

 and these adverse 

changes may be linked to reduced blood supply
16

. Given the increasing prevalence of PAD-

IC with advancing age
1
 combined with disease-induced reductions in blood supply, it is 

possible that the tendons of claudicants undergo significant deterioration compared to healthy 

counterparts. The reduced levels of physical activity associated with PAD-IC
3
 mean that 

claudicant tendons may experience further deterioration with disuse
17

. In combination, it 

seems likely that the tendons of claudicants would be smaller, weaker, and have greater 

hysteresis (lost elastic energy) than those of healthy individuals. 

 

The purpose of this study was to determine: (1) whether PAD-IC causes in vivo alterations in 

gastrocnemius muscle architecture and the material and mechanical properties of the Achilles 

tendon and (2) whether these parameters influence walking endurance. This was achieved by: 

(1) exploring relationships between muscle-tendon characteristics and disease severity [ankle 

brachial pressure index (ABPI)] and drawing comparisons to a healthy control group of older 

adults, and (2) multiple regression modelling of muscle-tendon characteristics to explain 

initial and absolute claudication walking distances. It was hypothesised that PAD-IC would 

induce changes comparable to disuse and aging: shorter relative fascicle lengths 

(fascicle:tendon length ratio), reduced pennation angles, tendon stiffness and the Young 
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modulus, and greater hysteresis and peak strain. Our second hypothesis was that these 

muscle-tendon parameters would be able to explain a large portion of walking endurance 

with the aforementioned changes having detrimental effects. 

 

Methods 

Participants 

Ethical approval was granted by the NHS Research Ethics Committee (REC reference: 

11/YH/0335). A total of 22 participants were recruited, consisting of 12 claudicants (7 

unilateral and 5 bilateral) and 10 healthy controls (Table 1). Men and women aged 55-80 

years and diagnosed with Rutherford Grade 1 chronic limb ischemia
18

 with a narrowing of 

the superficial femoral artery and not currently under any form of treatment nor previously 

enrolled in an exercise intervention for PAD-IC were recruited via consultant referral from a 

local outpatient vascular clinic. Healthy older adults were recruited from the local community 

as a control group. Participants were excluded if they had a severe or acute cardiovascular, 

musculoskeletal, neurological, or pulmonary illness; a history of stroke, myocardial infarction 

or life-limiting diseases, such as cancer; a previous hip or knee replacement or observable 

gait abnormalities. 

 

Experimental protocol 

Disease severity was determined according to the ABPI. Systolic blood pressure was 

measured in the posterior tibial and dorsalis pedis arteries of each leg and the brachial 

pressure of both arms, separately, using a sphygmomanometer cuff and a hand held Doppler 

instrument (Parks Medical Electronics Inc, Oregon, USA). ABPI measures for both lower 
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limbs were taken pre- and post- a standardized exercise protocol performed on a motorized  

treadmill (5 minutes, 2.5 km/h, 10% incline). Post-exercise ABPI was used to categorize  

participant limbs and assess disease severity. In accordance with standard protocol, the ABPI  

for both legs was then calculated as the higher of the 2 leg artery pressures normalized to the  

higher brachial pressure of the 2 arms
5
. Symptomatic limbs (ABPI <0.9) for all claudicants  

were then categorized into those with low disease severity (high ABPI, N=7, providing 8  

limbs for analysis) and high disease severity (low ABPI, N=7, providing 8 limbs for analysis)  

groups, by splitting them at the median ABPI (0.59). For the sake of brevity, these groups  

will be referred to as ‘low ABPI’ and ‘high ABPI’ throughout. This threshold does not  

necessarily reflect a clinically important marker of vascular function but allows an  

exploration of whether disease severity-induced changes in muscle and tendon properties  

were detectable between participants within the ABPI range of our sample. The non- 

claudicating limb of the unilateral patients was subsequently identified to represent the  

‘asymptomatic-limb’ group (N=7, providing 7 limbs for analysis). Control participants also  

undertook the exercise protocol to determine ABPI values and confirm the absence of disease  

(N=10, providing 10 limbs for analysis).  

  

Walking endurance  

A modified 6-minute walk test on level ground was performed and was combined with the  

ACSM claudication pain rating scale
19

 to allow those who were able to walk longer than 6- 

minutes to do so
20

. Patients walked continuously along a 10m walkway at a self-selected pace  

and reported the level and position of any pain every 20m. Initial claudication distance (ICD)  

was classed as level 1 on the pain scale and signified the onset of pain. Absolute claudication  

distance (ACD) was classed as level 4 on the pain scale and signified maximal pain.  
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Muscle architecture measures  

Participants lay prone on a plinth with their ankle plantarflexed and supported on the bed  

with the musculature relaxed. B-mode ultrasound imaging (50-mm probe length, MyLab50 x- 

vision, Esaote Biomedica, Genoa, Italy) was used to visualize resting muscle architecture of  

the GL and GM in the sagittal plane at 50% of muscle length. Fascicle length, pennation  

angle, and muscle thickness were measured from 3 separately exported images using ImageJ  

(version 1.44, NIH, USA), with the average taken forward for further analysis. For each  

image, the length of 1 fascicle with its insertion angle onto the deep aponeurosis and 1  

instance of muscle thickness were measured. In cases where the fascicle length exceeded the  

ultrasound viewing window, the aponeurosis was extrapolated to allow for fascicle length  

measurements to be estimated
21

.   

  

Ultrasound imaging was also used to identify the proximal and distal ends of the muscle, and  

the calcaneal insertion of the Achilles tendon. A tape measure was then used to measure  

muscle-tendon unit (MTU) and muscle lengths. Data were analyzed in absolute terms and  

after scaling to individual anthropometric dimensions.  

  

Measures and calculations for tendon properties  

Calculating Achilles tendon force  

The gastrocnemius contribution to Achilles tendon force during isometric plantarflexion  

maximal voluntary contractions (MVCs) was calculated using equations (1) and (2):  
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1) ��	�����	 =

�	�����

��
  

where AT force is Achilles tendon force, GS moment is the gastrocnemius contribution to  

joint moment, calculated through equation (2), and MA is Achilles tendon moment arm  

length.  

2) ��	������	 = 	�����	������	 + 	����������	������	– 	���� �	������  

where each component is detailed below.  

  

Joint moment was recorded while participants performed 3 ramped plantarflexion MVCs  

lasting approximately 5 seconds and then returned to rest across the same time period on an  

isokinetic dynamometer (Biodex System 3, Biodex Medical Systems Inc, New York, USA).  

Participants were seated in a standardized upright position: hip flexed (85°), knee extended  

(0°), and ankle dorsiflexed (maximum dorsiflexion within individual range of motion).  

Practice trials were performed prior to testing, and visual feedback was provided to ensure a  

consistent rate of rise in plantarflexor moment during each test. Adequate rest was provided  

between trials (~1 min), and the trial with the highest MVC was selected for further analysis.   

  

Antagonist co-activation during the plantarflexion MVC was assessed using surface EMG of  

the tibialis anterior (Telemyo 2400T, Noraxon, Arizona, USA). The dorsiflexion EMG- 

moment relationship was constructed from 4 dorsiflexion contractions of increasing intensity.  

The tibialis anterior EMG at each stage of the ramped plantarflexion trials was then  

substituted into this relationship to predict antagonist dorsiflexor moment
22

. The soleus  

contribution to plantarflexor moment was quantified during additional plantarflexion  
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contractions lasting approximately 3 seconds with the knee flexed to 90°, where the  

gastrocnemius muscles were slack and did not contribute to the joint moment
23

. The soleus  

EMG-moment relationship across the 2 joint configurations [knee extended (0°) and knee  

flexed (90°)] was used to correct activation differences (equation 3):  

3) ���� �	������	!���	0° =
�$�%&	�����	'���	()°∗	�$�%&	+�
	'���	)°

�$�%&	+�
	'���	()°
  

  

Achilles tendon moment arm (MA) was calculated using the tendon excursion method
23,24

  

and ultrasound imaging to quantify linear myotendinous junction displacement.  

  

Achilles tendon dimensions and elongation  

For the purposes of calculating tendon properties, Achilles tendon resting length was  

measured from the proximal origin at the myotendinous junction of medial gastrocnemius to  

the distal insertion at the calcaneus while the ankle was in maximum dorsiflexion prior to  

plantarflexion contractions (participant positioning described above). These locations were  

identified using ultrasound imaging, and the length was measured using a tape. Free tendon  

cross-sectional area (CSA) was measured at 1, 2, and 3 cm proximal to the insertion onto the  

calcaneus using axial-plane ultrasound imaging
23

 and was analyzed using ImageJ. The  

average of all 3 sites was used for further calculations.  

  

The ultrasound probe was aligned with the distal myotendinous junction of the medial  

gastrocnemius and the Achilles tendon in the sagittal plane and was securely fixed to the skin  

with an echo-absorptive marker within the viewing window to allow for correction of any  
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artifacts caused by probe movement
25

. Ultrasound videos were synchronized with 

plantarflexor moments during MVCs lasting approximately 5 seconds (described above) to 

track myotendinous junction displacement. Images were digitized to measure tendon 

elongation at each 10% of peak tendon force using ImageJ.  

 

Tendon stiffness, the Young modulus, and tendon hysteresis 

Force-elongation curves were constructed for the loading (increasing contraction) and 

unloading (relaxation) phases for all participants, and each was fitted with a second order 

polynomial equation between 10-100% of tendon force (for all R
2
<.95). The following 

parameters were calculated for each participant at their individual MVC: tendon stiffness, 

strain, stress, and the Young modulus. Stiffness was calculated as the gradient of the force-

elongation curve by differentiating the equation at each individual’s MVC. Tendon strain was 

calculated by normalizing elongation to resting length. Tendon stress was calculated by 

normalizing tendon force to CSA. The tendon Young modulus was calculated as tendon 

stiffness multiplied by the ratio of tendon length to CSA
13,23,26

. Energy stored in the tendon 

was calculated as the area beneath the whole of the loading curve, and energy released was 

calculated as the area beneath the unloading curve by integrating a second second order 

polynomial equation describing the respective force-elongation curves between 0-100% of 

tendon force. Hysteresis was calculated as the difference between the energy stored and 

energy released and normalized as a percentage of the energy stored. 

 

Statistical analysis 
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A Pearson partial product-moment correlation was performed to assess relationships between 

disease severity (as assessed by ABPI and controlled for the influence of age), walking 

endurance (as assessed by ICD and ACD), and gastrocnemius architecture parameters and all 

Achilles tendon parameters in the symptomatic limbs only. Data were examined for normal 

distribution and outliers by visual inspection of histogram and box-plots. A one-way 

ANOVA was performed to compare differences in muscle-tendon parameters between the 

healthy controls, asymptomatic-limb group, and high and low ABPI groups. Sidak post-hoc 

tests were applied when appropriate. Where non-parametric variables were identified, 

independent samples Kruskal-Wallis tests were performed with subsequent Mann-Whitney U 

tests applied where appropriate. 

 

To assess which architectural parameters and Achilles tendon properties were most important 

to explain variations in walking endurance (as measured by ICD and ACD), a backwards 

step-wise regression was performed on the symptomatic limbs (N=16) to avoid the 

suppressor effect typically associated with forwards step-wise regression models
27

. Key 

variables included in the analysis were GL and GM fascicle:tendon lengths, pennation angle 

and muscle thickness; tendon force, strain, stiffness, and mechanical hysteresis; and ABPI. 

 

For all statistical tests, significance was accepted at P≤.05, and trends were accepted at 

P<.10. Where appropriate, effect size (ES) and study power is also stated. For correlation and 

regression analyses, a moderate relationship was accepted as R=.40 – .59, a strong 

relationship as R=.60 – .79, and a very strong relationship as R=.80 – 1.0
28

. Since low ABPI 

values indicate high disease severity, a positive relationship signifies a decrease in the 

respective parameter with increasing disease severity. 
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Results 

No significant differences were found between any groups for age (P=0.414), height 

(P=0.345), mass (P=0.543), or BMI (P=0.796) (Table 1). No significant differences existed 

between low ABPI, high ABPI, or unilateral (asymptomatic-limb) groups in ICD (P=0.197) 

or ACD (p=.321). Between-group differences in ABPI were consistent with disease 

presentation. 

 

Correlation analysis 

Increasing disease severity was significantly correlated with longer GL and GM fascicle: 

tendon lengths, shorter tendons, greater tendon strain, and greater tendon hysteresis (Figure 

1). Poorer walking endurance, as measured by ICD, was associated with longer GL and GM 

fascicle: tendon lengths, greater GM pennation angle, and trends towards higher tendon strain 

and hysteresis. Poorer maximum walking endurance, as measured by ACD, was associated 

with increased GL and GM pennation angle. Individual R- and P-values are listed in Tables 2 

and 3 for all correlations. Disease severity was not associated with ICD (R = 0.215, P = 

0.441) or ACD (R = 0.161, P = 0.566). 

 

Between-group comparisons 

Several differences were detected between groups in absolute and relative muscle-tendon 

dimensions (Table 4). In the GL, relative fascicle: tendon length was smaller in the high 

ABPI group compared to the control group (P = 0.027, ES = 0.37, power = 0.40). In the GM, 
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the low ABPI (high disease severity) group had longer fascicle lengths compared to controls 

(P = 0.014, ES = 0.55, power = 0.78) and longer fascicle: tendon lengths compared to the 

high ABPI group (P = 0.050, ES = 0.56, power = 0.29).  

 

At individual maximum tendon force, both claudicant groups and the asymptomatic-limb 

group demonstrated reduced Young modulus compared to the control group (P = 0.029 - 

0.100, ES = 0.41 - 0.47, power = 0.50 - 0.65; Table 4). Compared to controls, tendon stiffness 

was lower in the asymptomatic-limb group (P = 0.053, ES = 0.57, power = 0.85; Table 5). 

The low ABPI (high disease severity) had significantly greater mechanical hysteresis 

compared to the high ABPI group (P = 0.004, ES = 0.62, power = 0.88) and showed a trend 

towards increased hysteresis compared to the control group (42%, P = 0.065, ES = 0.49, 

power = 0.65) (Table 5).  

 

No significant differences existed between all groups for MVC (P = 0.631), GS moment (P = 

0.738), moment arm (P = 0.414), or peak tendon force (P = 0.825) (Table 5).  

 

Regression analysis 

Walking distances were not explained by ABPI alone (see correlations above). The inclusion 

of muscle-tendon parameters with ABPI led to significant predictions of both ICD and ACD 

(P = 0.041 and P = 0.037, respectively). Sixty-five percent of the variance in ICD could be 

explained using ABPI, GL and GM pennation angle, tendon force, tendon stiffness, and 

mechanical hysteresis (Table 6). Similarly, ABPI, GL and GM pennation angle, tendon force, 
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and mechanical hysteresis was the strongest combination to predict ACD and could explain  

59% of the variance (Table 7).  

  

Discussion   

This study quantified the fascicle architecture of the gastrocnemii muscles and the  

mechanical and material properties of the Achilles tendon in patients with PAD-IC. In partial  

support of our first hypothesis, associations were found between low ABPI values (increased  

disease severity), relatively longer GL and GM fascicles, and increased tendon mechanical  

hysteresis. These were supported by significant differences between claudicants, particularly  

those with more severe forms of disease, and controls in both architectural parameters and  

tendon properties. The results indicate that these changes in muscle-tendon properties play an  

important role in influencing walking endurance in claudicants and can explain a large  

portion of the variance in walking distances that ABPI alone cannot.   

  

Correlation analysis revealed that both GL and GM fascicle lengths increased while tendon  

length decreased significantly, leading to greater fascicle: tendon length ratios with increasing  

disease severity. Additionally, those with lower ABPI had significantly longer GM fascicle:  

tendon lengths compared to those with higher ABPI (Table 2). These adaptations allow the  

muscle-tendon unit to lengthen and shorten with less relative fascicle, and therefore  

sarcomere, displacement. As a result, the GM MTU in those with low ABPI values appear to  

have adapted in such a way that would facilitate length changes during movement with less  

energy consumption per unit of muscle force
10

. However, the impact of this potential energy  

saving adaptation may be negated by the concomitant increase in mechanical hysteresis,  
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which was 42% greater in those with low ABPI compared to the control group (Figure 1 and 

Table 5). Individuals with more severe forms of PAD-IC and those with limited walking 

endurance are less able to utilize this energy recovery mechanism in the tendon and must 

provide metabolic energy to the muscles to make up the shortfall, thus increasing the energy 

cost of movement. This observation is commensurate with reported reductions in walking 

economy with greater disease severity
29

. Therefore, efforts to improve the recovery and 

utilization of the energy stored in the tendon (by reducing hysteresis) through appropriately 

designed interventions, such as progressive resistance training
26

, may have substantial 

benefits for walking endurance in this population. 

 

The second aim of this study was to elucidate the extent to which gastrocnemius muscle 

architecture and Achilles tendon properties influence walking endurance. ABPI alone could 

not explain variations in walking distances, but when combined with the muscle-tendon 

parameters, significant models that could explain a moderate-large portion of the variance (R
2 

 

= 0.65 and R
2 

= 0.59 for ICD and ACD, respectively) were found. The construct of both 

models with the highest adjusted R
2
 (Tables 6 and 7) has justifiable biomechanical and 

physiological reasoning, and this provides confidence in their validity. We hypothesized that 

greater hysteresis would have a negative impact on walking endurance, which has been 

substantiated. Pennation angle, which was included in both models, can be considered to be 

an index of muscle functional “design”, with lower angles suited to large excursions rather 

than force production
9
. Since pennation angle was predominantly associated with negative 

coefficients in both models containing the fewest parameters and those with the highest 

adjusted R
2
 (Tables 6 and 7), this suggests that muscles with a “design” favouring length 

changes are beneficial to walking endurance. Longer fascicle: tendon length ratios would also 

reflect such a functional design, thus, the exclusion of fascicle: tendon length ratio from the 
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models suggests that pennation angle was adequate to explain this portion of the variance. 

Interestingly, GM pennation with negative coefficients was present in models that could 

explain the most variance and the most efficient models for both ICD and ACD, reinforcing 

the importance of muscle “design” in predicting walking capacity. Finally, tendon force had a 

positive coefficient in both models, indicating that greater muscle strength allowed longer 

walking distances. This may be because greater maximum strength would mean the 

mechanical demands of walking are lower relative to maximum capacity, thus according to 

the size principle
30

, the muscle may rely to a greater extent on the more efficient slow-type 

muscle fibers. It must be acknowledged that the sample size of this study was small for 

typical multiple regression models, which require further exploration and validation. Future 

work should further explore the role of each parameter in explaining walking endurance and 

consider how these variables respond to treatment and the subsequent impact on walking 

endurance. 

 

Interestingly, the tendon properties in the asymptomatic-limb group were more similar to the 

claudicating limbs than the controls. This observation was confirmed by additional pairwise 

t-tests between the symptomatic and asymptomatic limbs of unilateral claudicants that 

revealed no significant differences between limbs. It suggests that either systemic adaptations 

were impacting the asymptomatic limb, in particular the asymptomatic tendon, or disuse 

resulting from reduced physical activity levels led to deterioration in tendon properties. At 

this stage it is not possible to determine which of these mechanisms may be responsible.  

 

This study has some limitations. First, architectural characteristics were measured at a single 

site within the muscle, and muscle architecture may not be homogeneous across the entire 
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muscle. Second, the calculation of tendon force required simplification of the forces acting 

about the joint, but this approach has been validated in numerous previous studies
13,23,26

. 

Specifically, accounting for antagonistic co-activation using the EMG of the TA during 

dorsiflexor contractions likely underestimates the true dorsiflexor co-activation moment
31

. 

Additionally, we assumed that the gastrocnemii did not contribute towards measured 

plantarflexor moment with the knee flexed at 90°, though we were unable to confirm this 

quantitatively. However, it is certain that, at such a short muscle length, the gastrocnemius 

force was substantially reduced compared to longer muscle lengths. There were no between 

group differences in antagonist co-activation, moment-angle relationships
32

, or associations 

with disease severity, therefore we do not believe these assumptions have a confounding 

effect on our data. It must also be acknowledged that our sample was small, which may have 

caused some Type II error. Nonetheless, disease-associated changes were detected, and 

biomechanically and physiologically sound multiple regression models were established, thus 

the sample appeared adequate for the purposes of the study. Future work should seek to 

validate these models in larger and more diverse samples.  

 

This study indicates that improving tendon properties and increasing strength, but without 

increasing pennation angle, would be beneficial for walking endurance. Finding such an 

intervention is not simple, since the majority of exercise interventions that improve strength, 

e.g. resistance training, also increase pennation angle
33

. However, eccentric resistance 

training may provide a viable solution, since it has been shown to improve tendon 

properties
34

 and increase muscle strength while lengthening fascicles but not increasing 

pennation
33

. Previous research on resistance training with claudicants is sparse, with 

conflicting reports of effectiveness
35

. This inconsistency could be due to the use of 

conventional, predominantly concentric resistance training, which may not elicit the optimal 
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adaptations for walking endurance. Future exercise studies should evaluate the effectiveness  

of eccentric resistance training for improving walking endurance of individuals with PAD-IC.  

  

Conclusions  

This study has shown that more severe forms of PAD-IC is associated with muscle  

remodelling towards larger GM fascicle: tendon length ratios and less effective utilization of  

elastic energy stored in the Achilles tendon (increased hysteresis). Importantly, when  

combined with ABPI, tendon hysteresis, architectural parameters of muscle functional  

design, and the muscle’s force producing capacity were able to explain large portions (~65%)  

of walking endurance. These findings suggest that eccentric resistance training of the  

plantarflexor muscles may be a valuable intervention to improve tendon properties, muscle  

function, and ultimately walking endurance.   

  

Abbreviations:  

ABPI – Ankle brachial pressure index  

ACD – Absolute claudication distance  

BMI – Body mass index  

CSA – Cross-sectional area  

ES – Effect size  

GL – Lateral gastrocnemius  

GM – Medial gastrocnemius  

GS – Gastrocnemii (i.e. lateral and medial gastrocnemius combined)  

ICD – Initial claudication distance  

MTU – Muscle-tendon unit  
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MVC – Maximal voluntary contraction 

PAD-IC – Peripheral arterial disease 

TA – Tibialis anterior  
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Figure 1.  Correlations between disease severity (ABPI) and GL and GM fascicle : tendon 

length ratio (a and b respectively) and tendon mechanical hysteresis (c). Average control and 

asymptomatic-limb groups are shown for comparison and are not included in correlation 

analysis 
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Table 1. Participant characteristics. Data are presented as group mean (SD) unless otherwise  

stated. BMI – Body mass index, ABPI – Ankle brachial pressure index. ICD – Initial  

claudication distance. ACD – Absolute claudication distance.   

 

 
Low ABPI High ABPI 

Asymptomatic-

limb 

Healthy 

Control 

# limbs 8 8 7 10 

% Men 77.8 87.5 57.1 40 

Age (years) 64.3 (4.7) 65.5 (8.0) 66.1 (7.5) 61.6 (3.6) 

Height (m) 1.72 (0.07) 1.73 (0.06) 1.69 (0.10) 1.67 (0.09) 

Mass (Kg) 81.1 (15.9) 82.5 (21.5) 82.3 (21.1) 72.3 (10.9) 

BMI (Kg/m
2
) 27.6 (5.3) 27.3 (5.9) 28.5 (4.8) 26.1 (3.7) 

ABPI pre-exercise 

ABPI post-exercise 

0.71 (0.19) 0.89 (0.22) 1.01 (0.16) 1.00 (0.09) 

0.39 (0.17) 0.63 (0.15) 0.90 (0.06) 1.01 (0.15) 

ICD (m) 106.3 (51.0) 123.8 (47.2) 80.0 (16.7) n/a 

ACD (m) 285.0 (141.7) 298.8 (147.0) 195.0 (82.6) n/a 

Disease duration (months) 42.8 (44.2) 52.9 (46.7) 31.9 (44.4) n/a 

% Hypertension 50 50 42.9 10 

% Hypercholesterolemia 50 50 71.4 20 

% past smokers 50 62.5 57.1 30 

% present smokers 50 37.5 42.9 0 

Page 26 of 32

John Wiley & Sons, Inc.

Muscle & Nerve

This article is protected by copyright. All rights reserved.



 26 

 

26 

 

Table 2. Pearson partial correlations (controlled for the influence of age) between disease 

severity (ABPI), walking endurance (ICD and ACD), and gastrocnemius architectural 

parameters. Values in bold font indicate those reaching significance (P ≤ .05), and values in 

italics indicate those demonstrating trends towards significance (P ≤ .10).  

Gastrocnemius 

architecture 

GL fascicle : 

tendon length 

GM fascicle : 

tendon length 

GL fascicle 

: muscle 

length 

GM fascicle : 

muscle 

length 

ABPI 
Correlation -0.789 -0.828 -0.451 -0.267 

Significance 0.001 <0.001 0.106 0.357 

ICD 
Correlation -0.547 -0.487 -0.312 -0.252 

Significance 0.043 0.081 0.277 0.385 

ACD 
Correlation -0.436 -0.345 -0.290 -0.353 

Significance 0.120 0.228 0.315 0.216 

Gastrocnemii 

architecture 
GL pennation GM pennation 

ABPI 
Correlation 0.188 -.332 

Significance 0.503 .226 

ICD 
Correlation -0.310 -0.807 

Significance 0.261 <0.001 

ACD 
Correlation -0.566 -0.803 

Significance 0.028 <0.001 
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Table 3. Pearson partial correlations (controlled for the influence of age) between disease 

severity (ABPI), walking endurance (ICD and ACD), and Achilles tendon properties. Values 

in bold font indicate those reaching significance (P ≤ .05) and values in italics indicate those 

demonstrating trends towards significance (P ≤ .10).  

Achilles tendon properties 
Tendon 

length 

Tendon 

force 

Elongation 

at maximal 

tendon force 

Stiffness at 

maximal 

tendon force 

ABPI 
Correlation 0.728 0.052 -0.061 0.166 

Significance 0.003 0.854 0.836 0.570 

ICD 
Correlation 0.365 -0.205 -0.110 -0.141 

Significance 0.199 0.463 0.709 0.630 

ACD 
Correlation 0.262 0.224 -0.124 0.165 

Significance 0.366 0.423 0.672 0.573 

Achilles tendon properties 

Young 

modulus at 

maximal 

tendon force 

Peak strain 
Mechanical 

Hysteresis 

ABPI 
Correlation 0.247 -0.490 -0.740 

Significance 0.395 0.075 0.006 

ICD 
Correlation -0.146 -0.261 -0.598 

Significance 0.619 0.367 0.040 

ACD 
Correlation 0.115 -0.219 -0.277 

Significance 0.696 0.453 0.384 
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Table 4. Group mean (SD) musculotendinous length and size parameters.  

 Low ABPI High ABPI 
Asymptomatic-

limb 
Control 

Tibia length (cm) 40.5 (2.4) 41.6 (1.3)A 39.5 (2.5) 38.9 (3.2) 

MTU length (cm) 45.5 (3.7)C 45.8 (1.1)C 43.0 (3.7) 41.6 (4.3) 

Achilles tendon length (cm) 22.3 (3.0) 24.2 (1.1)C,A 21.5 (2.7) 20.6 (2.5) 

Achilles tendon CSA (cm
2
) 89.6 (13.1) 98.5 (23.9) 82.5 (19.5) 85.1 (12.4) 

Lateral Gastrocnemius     

Muscle length (cm) 22.4 (1.2) 21.3 (0.8) 21.6 (1.8) 20.4 (2.5) 

Fascicle length (cm) 4.98 (0.78) 4.77 (0.38) 4.54 (0.50) 4.60 (0.64) 

Fascicle length : Muscle 

length 
0.22 (0.03) 0.22 (0.02) 0.21 (0.02) 0.23 (0.04) 

Fascicle length : Tendon 

length 
0.23 (0.05) 0.20 (0.02)C 0.21 (0.02) 0.22 (0.03) 

Thickness (cm) 1.26 (0.23) 1.29 (0.20) 1.24 (0.24) 1.17 (0.21) 

Pennation (°) 15.2 (2.0) 16.7 (2.8) 16.9 (2.8) 14.8 (1.8) 

Medial Gastrocnemius     

Muscle length (cm) 23.4 (2.6) 22.0 (1.9) 21.3 (2.5) 21.4 (2.5) 

Fascicle length (cm) 4.34 (0.59)C 4.09 (0.29) 4.10 (0.34) 3.65 (0.45) 

Fascicle length : Muscle 

length 
0.19 (0.03) 0.19 (0.02) 0.19 (0.03) 0.17 (0.02) 

Fascicle length : Tendon 

length 
0.20 (0.03)H 0.17 (0.01) 0.19 (0.03) 0.18 (0.03) 

Thickness (cm) 1.77 (0.33) 1.68 (0.31) 1.73 (0.17) 1.62 (0.20) 

Pennation (°) 27.5 (4.5) 26.4 (3.8) 27.9 (4.0) 29.4 (3.8) 

Values in bold font indicate those reaching significance (P ≤ .05), and values in italics 

indicate those demonstrating trends towards significance (P ≤ .10). L: vs low ABPI group 

(High disease severity); H: vs high ABPI group (low disease severity); A:  vs asymptomatic-

limb group; C: vs control group  
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Table 5. Group mean (SD) measures of MVC, Achilles tendon tensile properties, and 

measures of elastic energy.  

 Low ABPI High ABPI 
Asymptomatic-

limb 
Control 

MVC (Nm) 116.4 (29.0) 100.6 (27.2) 102.2 (33.5) 114.4 (28.5) 

GS moment (Nm) 73.6 (20.6) 64.4 (22.6) 63.6 (20.8) 65.2 (14.6) 

Moment arm (cm) 3.47 (0.73) 3.40 (0.48) 3.59 (0.67) 3.24 (0.58) 

Tendon force (N) 2150.3 (591.0) 1947.4 (827.9) 1834.6 (744.9) 2089.6 (630.7) 

Tendon elongation (mm) 18.4 (3.2) 18.7 (2.2)
 
 18.2 (4.5) 15.3 (3.0) 

Stiffness (N/mm
2
) 139.8 (49.9) 129.5 (51.0) 109.4 (37.2)C 184.3 (65.6) 

Young’s modulus (GPa) 0.33 (0.09)C 0.30 (0.09)C 0.30 (0.12)C 0.48 (0.22) 

Tendon strain (%) 8.6 (1.6) 7.8 (1.2) 8.6 (2.2) 7.5 (1.1) 

Tendon stress (MPa) 24.1 (5.8) 19.6 (5.7) 23.2 (10.5) 24.7 (8.3) 

Energy utilisation     

Energy stored (kJ) 20.4 (5.6) 16.8 (9.7) 16.4 (11.4) 13.0 (5.7) 

Energy released (kJ) 16.2 (4.3) 14.5 (7.4) 12.7 (7.6) 11.3 (5.0) 

Mechanical hysteresis (%) 20.1 (5.7)C,H 12.4 (4.0) 17.2 (9.7) 13.2 (4.7) 

Values in bold font indicate those reaching significance (P ≤ .05), and values in italics 

indicate those demonstrating trends towards significance (P ≤ .10).  L: vs low ABPI group 

(High disease severity); H: vs high ABPI group (low disease severity); A: vs asymptomatic-

limb group; C: vs control group  
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Table 6. Backward step-wise regression between architectural parameters, tendon properties, 

and disease severity (ABPI) and walking endurance (ICD). Prediction equations are depicted 

for the model that explains the highest portion of variance (highest adjusted R
2
) and the most 

efficient model (fewest parameters).  

ICD R R
2
 Adjusted R

2
 P-value 

Model 1 0.918 0.843 0.371 0.345 

Model 2 0.918 0.843 0.528 0.179 

Model 3 0.918 0.842 0.621 0.080 

Model 4 0.908 0.825 0.649 0.041 

Model 5 0.891 0.795 0.648 0.023 

Model 6 0.842 0.710 0.565 0.027 

Model 7 0.820 0.672 0.563 0.015 

Prediction for Model 4 = 483.5 - (4.489*Hysteresis) + (0.027*Tendon Force) - 

(0.269*Tendon stiffness) + (4.044*GL pennation) - (11.401*GM pennation) - 

(136.36*ABPI) 

Prediction for Model 7 = 506.690 – (4.935*Hysteresis) – (9.054*GM 

pennation) – (126.544*ABPI) 

Model 1: ABPI, GM pennation, hysteresis, tendon stiffness, tendon force, GL pennation, GM 

fascicle : tendon length, GL fascicle : tendon length, strain 

Model 2: ABPI, GM pennation, hysteresis, tendon stiffness, tendon force, GL pennation, GM 

fascicle : tendon length, GL fascicle : tendon length  

Model 3: ABPI, GM pennation, hysteresis, tendon stiffness, tendon force, GL pennation, GM 

fascicle : tendon length  

Model 4: ABPI, GM pennation, hysteresis, tendon stiffness, tendon force, GL pennation  

Model 5: ABPI, GM pennation, hysteresis, tendon stiffness, tendon force  

Model 6: ABPI, GM pennation, hysteresis, tendon stiffness 

Model 7: ABPI, GM pennation, hysteresis  
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Table 7. Backward step-wise regression between architectural parameters, tendon properties, 

and disease severity (ABPI) and walking endurance (ACD). Prediction equations are depicted 

for the model that explains the highest portion of variance (highest adjusted R
2
) and the most 

efficient model (fewest parameters). 

ACD R R
2
 Adjusted R

2
 P-value 

Model 1 0.892 0.796 0.184 0.460 

Model 2 0.892 0.796 0.387 0.271 

Model 3 0.890 0.793 0.499 0.145 

Model 4 0.887 0.787 0.574 0.069 

Model 5 0.873 0.762 0.593 0.037 

Model 6 0.839 0.704 0.556 0.029 

Model 7 0.798 0.637 0.516 0.023 

Model 8 0.765 0.585 0.502 0.012 

Model 9 0.699 0.489 0.442 0.008 

Prediction for Model 5 = 1322.244 - (15.515*Hysteresis) + (0.099*Tendon 

Force) - (14.474*GL pennation) - (22.324*GM pennation) - (294.257*ABPI) 

Prediction for Model 9 = 934.509 – (-23.988*GM pennation) 

Model 1: GM pennation, tendon force, hysteresis, ABPI, GL pennation, tendon stiffness, 

strain, GM fascicle : tendon length, GL fascicle : tendon length  

Model 2: GM pennation, tendon force, hysteresis, ABPI, GL pennation, tendon stiffness, 

strain, GM fascicle : tendon length 

Model 3: GM pennation, tendon force, hysteresis, ABPI, GL pennation, tendon stiffness, 

strain 

Model 4: GM pennation, tendon force, hysteresis, ABPI, GL pennation, tendon stiffness 

Model 5: GM pennation, tendon force, hysteresis, ABPI, GL pennation 

Model 6: GM pennation, tendon force, hysteresis, ABPI 

Model 7: GM pennation, tendon force, hysteresis  

Model 8: GM pennation, tendon force 

Model 9: GM pennation 
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Figure 1.  Correlations between disease severity (ABPI) and GL and GM fascicle : tendon length ratio (a and 
b respectively) and tendon mechanical hysteresis (c). Control and asymptomatic-limb groups are shown for 

comparison and are not included in correlation analysis  
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