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Abstract—Mild cognitive impairment (MCI) has been de-
scribed as the intermediary stage before Alzheimer’s Disease
– many people however remain stable or even demonstrate
improvement in cognition. Early detection of progressive MCI
(pMCI) therefore can be utilised in identifying at-risk individuals
and directing additional medical treatment in order to revert
conversion to AD as well as provide psychosocial support for the
person and their family.

This paper presents a novel solution in the early detection of
pMCI people and classification of AD risk within MCI people.
We proposed a model, MudNet, to utilise deep learning in the
simultaneous prediction of progressive/stable MCI classes and
time-to-AD conversion where high-risk pMCI people see conver-
sion to AD within 24 months and low-risk people greater than 24
months. MudNet is trained and validated using baseline clinical
and volumetric MRI data (n = 559 scans) from participants of
the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The
model utilises T1-weighted structural MRIs alongside clinical
data which also contains neuropsychological (RAVLT, ADAS-11,
ADAS-13, ADASQ4, MMSE) tests as inputs.

The averaged results of our model indicate a binary accuracy
of 69.8% for conversion predictions and a categorical accuracy
of 66.9% for risk classifications.

Index Terms—Deep learning; Convolutional neural network;
Alzheimer’s disease; Mild cognitive impairment; ADNI

I. INTRODUCTION

Alzheimer’s Disease, like other forms of dementia, affects
cognitive ability which is delineated by physical changes to the
brain. These changes are characterised by the loss of neurons
from a variety of causes, one of which can be attributed to the
accumulation of amyloid plaques caused by the breakdown
of amyloid-beta 42 proteins between neurons (1). The toxicity
built up stagnated communication between neurons, eventually
leading to its death. Another protein tau causes a similar effect;
excess tau aggregates to form neurofibrillary tangles blocking
neuron transport and harming communication between the
synapses. Amyloid-beta, being an upstream of tau in AD
triggers its conversion from its normal state to toxicity (2).
Both proteins can also propagate throughout the brain, causing

damage to all regions of the brain – including the hippocampus
(3). It is the complex interplay between these two proteins that
defines the biological precursors to Alzheimer’s disease. There
is also evidence to suggest some hereditary factors increase
one’s risk of dementia – the gene Apolipoprotein E (ApoE4)
is found to be a major determinant of risk with the late onset
of Alzheimer’s (4).

Dementia can be described to have informal stages; typ-
ically, people transition from being displaying symptoms of
mild cognitive impairment (MCI) at early or late stages
before being diagnosed with dementia, most commonly being
Alzheimer’s (5). Most people do not develop dementia (n
= 86 of 1,603 participants) according to a population-based
study (6). Many stabilise at MCI (n = 384 participants),
however, most reverting to consistent normal cognition (n =
881 participants). MCI can therefore be further categorised
into sub-groups; progressive MCI (pMCI) and stable MCI
(sMCI), excluding those who demonstrate improvements.

Around 10%-15% of MCI people are reported to later
develop Alzheimer’s every year over a relatively short obser-
vation period (7). Although only a smaller percentage of the
entire MCI group convert to AD, the disease is still fatal and
contributes to the majority of 87,199 deaths due to dementia
in 2017 UK alone – 1 in 4 deaths amongst people aged 75
and over (8).

It is therefore essential that pMCI people are identified from
sMCI; limited medical resources and treatment can be utilised
effectively diverted to those who are in need the most. It will
enable those who are likely to progress to Alzheimer’s to make
key changes to their lifestyles which, evidence suggests, can
minimise their risks (9).

II. CURRENT METHODOLOGIES

A. State-of-the-art Method

The current state-of-the-art model (10) achieves a 10-fold
cross-validated accuracy of 86% on a train/validation/test split
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of 680/72/32 subjects respectively. Their algorithm was aimed
at distinguishing pMCI people who convert within 3 years;
while also achieving a sensitivity of 87.5% and specificity
of 85%. Their multi-modal model achieved these scores by
using extensive preprocessing such as template registration
and incorporated the use of Jacobian Determinant (JD) from
the ADNI baseline MRI scans. The model also used set
region of interests (ROIs) which targeted areas of the brain
commonly associated with Alzheimer’s – the parietal, temporal
and frontal lobes.

As part of essential data processing for the analysis of
Alzheimer’s Disease in Deep Learning (11), MRI registration
is achieved by nonlinearly co-registering each scan onto a
custom T1 template after additional N4 bias field correction.
The state-of-the-art model also used the Montreal Neurological
T1 Template (MRI scans registered to MNI-152) to address the
co-registration inaccuracies and assess the robustness of their
classification methodology (10). After registration, all the non-
brain areas were masked out using brain masks generated by
Brain Extraction Tool using FSL (12).

Architecture-wise the model uses multiple 3D convolutional
(conv3D) layers with 3D max pooling and batch normalisation.
The Jacobian Determinant images is fed through their custom
conv3D layers which used different filter parameters and
the output were added to the MRI conv3D blocks. Each
of the model perceptrons have non-linearity controlled by
an Exponential Linear Unit (ELU) function. The model’s
layers are regularised with the use of dropout and L2 –
Ridge regularisation, both of which will also be applied in
this project’s CNN model, as they are essential in reducing
overfitting.

The state-of-the-art paper implements the use of residual
learning (13) – a technique used in deep learning to help
propagate input values of earlier layers into deep layers of the
network. Essentially, the problem of deteriorating performance
from deeper networks is alleviated with the use of these
residuals which in turn allows for deeper and therefore more
complex models. The method is based on the architecture
of ResNet, a 152-layer state-of-the-art convolutional network
(13).

B. All Convolutional Method

Although a simpler solution, the all convolutional method
(14) still achieves a binary classification accuracy of 75.1%
with their model in the prediction of conversion to AD. It
also achieves scores of 74.8% and 75.3% in sensitivity and
specificity respectively. Similar to the state-of-the-art model,
the all convolutional method utilised cross-sectional data,
meaning the prognosis are based on a single T1-weighted MRI
scan. Their dataset used a train/validation and testing split
of 90% and 10%. Overall, 1,409 subjects were used across
ADNI-1, ADNI-2 and ADNI-GO projects.

The all convolutional method proposes a unique model
in terms of deep learning architecture by the sole use of
convolutional layers, while omitting the use of fundamental

deep learning techniques such as max-pooling and batch nor-
malisation. Unlike the ResNet architecture of the previous two
approaches as based on – the all convolutional method takes
inspiration from the All Convolutional Net which replaces
max-pooling operations with normal convolutional layers with
increased strides (15). The 14-layered network model also uses
RELU which avoids the vanishing gradient problem of deep
network architectures (16).

Data preprocessing steps applied also include the normali-
sation and registration to an MNI space using Diffeomorphic
Anatomical Registration Exponentiated Lie Algebra (DAR-
TEL) (17). The segmentation of grey matter, white matter
and cerebrospinal fluid tissue to produce probability maps
were utilised in the creation of the DARTEL template with
modulation using Jacobian Determinants. To solve the problem
of limited cross-sectional data, the all convolutional method
used augmentation to randomly apply modification to the MRI
scans. These augmentations include deformation, deformation
and cropping, rotation and flipping, rotation and scaling, thus
increasing the amount of available training and validation data.

C. Deep Residual Method

In the deep residual method, they utilised residuals in
their network architecture - the method achieved 83.01% test
accuracy (18), with sensitivity of 76% and specificity of 87%
in the pMCI and sMCI classification task. A train/test split of
90% and 10% were used.

Their preprocessing method used the statistical parameter
mapping to segment grey matter brain areas and register
the skull-stripped image to the 152 average T1-MNI space.
Further smoothing, warping and modulation were applied
before training. The deep residual method also conducted
a quality analysis correlation check using a threshold from
the population mean image to discard outliers which were
poorly registered. Only 2 of the 830 subjects did not meet
the threshold.

Their extensive data worked with scans across multiple
ADNI projects: ADNI-1, ADNI-2, ADNI-GO and ADNI-
3. MCI diagnosed subjects that did not convert AD were
classified as sMCI while those who converted to AD were
classified as pMCI, excluding those with multiple conversions.
Only baseline scans of each people were used.

In designing the architecture, they found an optimal layer
depth of 15-layers, using 3 residual blocks with each residual
block incorporating 2 basic blocks containing 2 convolutional
layers each. Similar to the state-of-the-art paper, they utilised
batch normalisation, max-pooling and the RELU activation
function for the hidden layers. Overfitting was managed with
the addition of L2 weight decay (ridge regularisation) at a
value of 0.01.

In order to increase the separability of the pMCI versus
sMCI classification, the deep residual method also explored the
use of domain learning (19). Domain learning is the process of
utilising data from a related classification problem. In domains
with limited data i.e. AD conversion from MCI, the domain
transfer paper (13) proposes that other related domains may



still provide valuable information in better solving the original
problem. Therefore, a combination of the most informative
features and samples can be extracted from the target and re-
lated domains for training. Effectively, a model can be trained
with more training data thus better learning the separability of
a classification problem.

This method was able to increase the deep residual method
test classification accuracy to 83.01%, which is an improve-
ment over their original cross-validated test accuracy of
75.01%. They were able to achieve this by utilising MRI
data from an auxiliary domain (Alzheimer’s/healthy brain
classification).

III. KEY ASPECTS

Analysing some of the current methodologies has been clear
in defining some essential techniques better solving the pMCI
vs sMCI problem.

Although different in network architectures, many of the
models perform similarly averaging test scores above 75%
while replicating similar performances when measuring by
sensitivity and specificity. The papers above all employ further
preprocess from the ADNI pipeline; some practices such as the
use of the RELU activation function and MRI registration is
seems common practice –especially with the use of the MNI-
152 template.

A. Preprocessing MRI

The feature space containing all possible features that could
contribute to predicting pMCI conversion is massive. Given
that MRI scans follow dimensions similar to 256×256×166,
resulting in 10, 878, 976 data points per scan. Therefore, the
application of deep learning in the problem requires further
preprocessing of data to reduce its complexity and increase
the extraction of relevant visual features of the progressively
impaired brain.

1) Registration: The MNI-152 template space displayed by
Figure 1 is used by all of the methods above to register their
MRI brain scans. The Montreal Neurological Institute created
the T1-weighted MNI-152 space by co-registering 152 normal
MRI brain scans to the MNI-305 space. The linearly registered
MNI-152 template is adopted by the International Consortium
of Brain Mapping to define the standard, replacing the original
Talairach atlas (20).

In the related research, ADNI MRI scans are used to register
the brains onto the MNI-152 space. The registered images
display a voxel representation of 1 × 1 × 1 mm³ with rows,
columns and slices resulting 197× 233× 189 respectively.

Image registration is essential in the comparative analysis of
medical images – the method allows for the alignment of the
different regions in the brain and when paired non-linear algo-
rithms that incorporate affine and deformable transformations;
the pathological differences between the sMCI and pMCI are
better preserved. The spatial differences, therefore, can be
better calculated by appropriate spatial comparisons made by
convolution operations in convolutional neural networks.

Fig. 1. T1 Weighted MNI-152 (McConnel Brain Imaging Centre, 2014)

2) Skull-stripping: MRI scans represent a complex feature
space. The space denotes features that predict pMCI con-
version from sMCI can be reduced by discarding irrelevant
features within this space, such as the skull and eyes.

Another prevalent preprocessing step taken by all the ap-
proaches in the review of current methodologies is the extrac-
tion of brain thus removal of the skull – also known as skull-
stripping. The deep residual and all convolutional methods
both use grey matter extraction to achieve this.

Brain extraction therefore allows the problem classification
problem to be more easily separable as only more relevant
features exist within this space. Weight optimisation and error
propagation can then focus on the spatial differences within
these relevant features which will reduce the training time of
the model and increase its predictive capacity.

B. Deep Learning Techniques

Current methods show that there is great variability in ap-
plying certain techniques and architectures. Residual learning
is employed by most of the approaches in Section II. However,
each of these methods utilise different CNN architectures as
there exist many different parameters. Some of the models
such as the deep residual and all convolutional, are deeply
layered and large in capacity increase its ability to learn more
complex features yet other solutions such as the state-of-the-
art model perform better without requiring the depth.

1) Residual Learning: The use of residuals is based on
the state-of-the-art convolutional neural network ResNet (13),
achieving 1st place on the ILSVRC 2015 classification task.
Figure 2 shows this shortcut mapping. The method involves
propagating the input values in-between multiple convolutional
layers before the activation function is applied. If the desired
mapping h(x) produces optimal results for pMCI conversion
problem: h(x) can be mapped from the output f(x) = h(x)−x
solving the problem as h(x) = f(x) + x which achieves
the same results. The benefits of this identity transformation
are that the gradient information can be propagated to further
layers which alleviates the problem of reduced model perfor-



mance as depth increases from gradient vanishing/exploding.
(13).

Fig. 2. A Residual block (13)

2) Rectified Linear Unit (RELU): The spatially configured
perceptrons are layered to form convolutional neural networks
with an aim to model the processes of the brain (21). It is the
complex interplay with the activations of neurons within the
brain that propagate signals – enabling thinking and actions.

Rectified Linear Unit is the activation function preferred
by many CNN models as it mitigates the vanishing gradient
problem existed in many deep-layered network architectures.
The key property of activation functions is that they are dif-
ferentiable in order to adjust the weights towards the optimal
value in the backpropagation of error. The use of the sigmoid
function presents a problem due to its gradient – the partial
derivatives of error w.r.t weights calculate the change to the
update of the current weights. Each weight update becomes
decreases by layer, at times effectively the model no longer
updates its weights.

As a ramp function, RELU is able to reduce the vanishing
gradient problem as it achieves a larger and constant gradient
when compared to the maximum gradient of sigmoid. Another
property of RELU is faster convergence (22). It is therefore no
surprise that all the proposed models in the current method-
ologies use RELU or a variation of it (ELU).

3) Batch Normalisation: Batch normalisation is applied to
the convolutional layers output in most of the methods above.
The method with the lowest accuracy, the all convolutional
method, omitted the use of batch normalisation – which may
be a reason for its sub optimal performance when compared
to other methods.

The problem presented in the training of deep learning
models is that it is slowed by the changing distributions of
layer inputs – described as internal covariate shift (23).

The process of batch normalisation aims to normalise layer
inputs similar to how data are normalised during preprocess-
ing. It also acts as a regulariser and enables greater flexibility
in learning rate and initialisation of the model parameters (23).

4) Domain Transfer: The pMCI versus sMCI classification
is a challenging prediction problem due to the complexity
in unknown factors involved with conversion. This is further
exacerbated given the limited data within the domain. This

problem can be alleviated with the use of auxiliary domains
that solve a similar problem (19). Both the state-of-the-art
method and the deep residual method use auxiliary domains
in successfully achieving better classification results for the
original conversion problem. This is done by the utilisation
of AD/CN classification in extracting informative features for
the limited data pMCI/sMCI problem.

IV. METHODS

A. ADNI Data

The data used in training MudNet are collected from the
Alzheimer’s Disease Neuroimaging Initiative (http://adni.loni.
usc.edu/). ADNI’s extensive collection of neuroimaging data
also includes magnetic resonance imaging (MRI), positron
emission tomography (PET), clinical and neurological assess-
ments sampled from 1,821 participants – including MCI, AD
and cognitively normal elderly controls.

In the training of MudNet, cross-sectional data from base-
line measurements (n = 559 people) were used. The data was
a combination of structural MRI and clinical data – contain-
ing neurological assessments (RAVLT, ADAS-11, ADAS-13,
ADASQ4, MMSE) and demographics. The data were pooled
across all ADNI projects (ADNI1/GO/2/3).

Data Preprocessing

1) ADNI Clinical: Clinical data provided by ADNI were
also preprocessed. As shown in Tables I and II, these processes
include one-hot and label-encoding to transform the data into
numerical values to be fed into the model. In addition age,
time in education, and neurological assessment scores were z-
score normalised. The normalisation of input features allows
for faster convergence of gradient decent algorithms (23).

2) Structural MRI: Advanced Normalisation Tools (ANTs)
was used in preprocessing the MRI data (24). The ANTs
scripts provide many components essential in the preprocess-
ing of volumetric MRI data such as bias field correction and
registration while achieving a higher predictive performance
when compared to alternatives like FreeSurfer (25). These
scripts are also available as Python modules (26).

Fig. 3. The preprocessing pipeline – brain extraction and registration

3) N4 Bias Field Correction: Prior to extraction, the T1-
weighted MRI scans were prepared by using N4 Bias Field
Correction. As variant of the N3 Bias Field Correction, it
boasts improved correction of the low frequency intensity
non-uniformity within the volumetric data – increasing the
accuracy of brain extraction and registration.

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/


TABLE I
PERSONAL AND APOE4 DATA (MEAN±STD FORMAT)

No. of subjects Age (years) Gender (M/F) Time in education (years) APOe4
0 1 2

pMCI 205 73.7±7.2 113/92 15.8±2.8 82 89 34
sMCI 354 71.9±7.8 197/157 16.1±2.9 218 110 26

TABLE II
NEUROPHYSIOLOGICAL TEST SCORES (MEAN±STD FORMAT)

CDRSB ADAS11 ADAS13 ADASQ4 MMSE RAVLT
Immediate Learning Forgetting Perceived Forgetting

pMCI 1.9±0.99 12.4±4.5 20.0±6.2 6.6±2.3 27.1±1.8 29.8±7.8 3.3±2.4 5.1±2.3 73.9±28.6
sMCI 1.3±0.72 8.4±3.8 13.6±5.8 4.5±2.3 28.1±1.7 38.3±11.4 4.9±2.6 4.3±2.5 50.0±31.0

4) Brain Extraction: To extract brain tissue from the
MRI data, DeepBrain (https://github.com/iitzco/deepbrain)
was used. The convolutional neural network is an alterna-
tive method which performs fast brain extraction and mask
generation with reasonable accuracy. Brain extraction using
this method was performed in less than 2 seconds which is
considerably faster (1200x) when compared to BET (Brain
Extraction Tool) in FSL (27). The CNN was also tested on a
compound dataset which includes ADNI data, achieving state-
of-the-art 0.97 Sørensen–Dice coefficient/F1 score.

5) Symmetric Diffeomorphic Image Registration: ANTs
provide a novel symmetric image normalisation (SyN) method
in image registration (28). The method is reliable in normal-
ising and making anatomical measurements of neurodegen-
erative brains in volumetric MRI; it achieves strong corre-
lation with volume measurements when compared to expert
labelling.

Both masks and brains from extraction were utilised by
registering to a common space – the T1 weighted MNI-
152 template (Figure 1). Figure 3 visualises this prepro-
cessing pipeline. SyNRA, a variation of SyN was used for
the registration. The registration method applies affine and
deformation transformations also including fine-matching and
further deformation.

6) Fuzzy C-Means-based Intensity Normalisation: Struc-
tural MRIs vary in the distribution of intensity values as
they do not have a standard scale. Prior to classification,
uniformity in the intensity of brain MRIs is applied using
fuzzy c-means (29) to calculate a white matter mask of the
image and normalise the entire image to the mask’s mean. This
method is applied through a python module (https://github.
com/jcreinhold/intensity-normalization). Additionally, z-score
normalisation is applied before training to further ensure the
intensities are in normal distribution.

B. Model Architecture Overview

The architecture of the MudNet is based on the state-of-
the-art method (10) in identifying AD-converters at their MCI
stage. Figure 4 visualises the architecture. Figure 5 expands on
the model’s invidual layers. MudNet aims to simultaneously
solve an additional classification task in predicting the risk
of pMCI conversion – converters are classified between high
risk (≤ 24 months) and low risk (> 24 months) conversions.
It does this by using multi-modality data - MRI and clinical
features.

The model was trained for a maximum of 100 epochs using
a batch-size of 20 and a learning rate of 0.05. This optimal
value was found empirically using Adam optimiser by self-
adaptively increasing the learning rate, with the value that
produced the lowest validation loss selected.

Early stopping is used to prevent the overtraining of the
model. Upon a specified limit of under-performing validation
loss, training is automatically stopped i.e. if the validation loss
fails to improve within 15 iterations, model training is stopped.
Additional optimisation is introduced such as decreasing in
the model’s learning rate upon the plateauing of validation
loss using ReduceLROnPlateau, a TensorFlow module. This
allows for further gradient optimisation with smaller gradient
updates therefore achieving higher test accuracy.

1) Model Depth: The model uses multiple convolutional
layers (n = 7) with batch normalisation and max pooling
operations. Also, layers 3-5 act as a residual block which
utilises residual learning. Fully connected dense layers are
incorporated to extract complex features within the ADNI
clinical dataset; it is also used to produce classifications from
the concatenated MRI and clinical outputs.

The final dense layers represent the class outputs of each
person – pMCI versus sMCI (n = 2) and Risk (n = 3; for high
risk, low risk and no risk).

2) Optimisation Function: The optimisation function to
perform gradient decent is Adam – which achieves computa-

https://github.com/iitzco/deepbrain
https://github.com/jcreinhold/intensity-normalization
https://github.com/jcreinhold/intensity-normalization


Fig. 4. MudNet architecture

tionally efficient optimisation of the networks weight param-
eters whilst being suited to problems require large parameters
and data (30).

3) Loss Functions: As the model outputs both binary and
multi-class classifications, multiple loss functions are used.
Cross-entropy is used in the model to calculate the loss
between predicted and truth values in classification problems
– binary cross-entropy in conversion (binary output) and
categorical cross-entropy in risk (multi-class output).

4) Activation Function: Instead of the popular RELU, a
variation – Exponential Linear Unit (ELU) was used instead.
Unlike RELU, the function also outputs negative values which
allows self-normalisation by pushing the mean unit activation
towards zero. It shares the same characteristics of alleviating
the vanishing gradient problem whilst simultaneously decreas-

Fig. 5. MudNet layers - convolutional Layers, dense Layers and the residual
layers utilising exponential linear unit activation pre-batch normalisation

ing training time in deep neural networks and increasing
classification accuracies (31). The success of the activation
function can also be seen in its use with the state-of-the-art
method (10). The output layers, however, require different
activation functions. The sigmoid and softmax activations
convert their weighted sums into probabilities for activation.
The sigmoid function represented by a single dense perceptron
will activate for AD converters. Softmax, represented by 3
(n = classes) dense units, combine to produce probability
distribution with a summation of 1 – resulting the activation
of the single most probable respective class.

5) Regularisation: To control overfitting, the model uses
both methods of dropout and weight decay. Dropout prevents
the overuse of the same connections within the network by
using a simple method of randomly dropping these connec-
tions. The artificial thinning of overall connections forces the
network in utilising different connections, therefore increasing
its ability to generalise (32). A value of 0.3 represents the
fraction of units to be dropped for the convolutional layers
and 0.1 for dense layers. Weight decay (also known as
L2/Ridge Regression) is applied to the weighted connections
in the kernels of the convolutional layers. This penalises loss
using the squared magnitude of the weight coefficients and
stabilising its updates. An optimal value of 0.0001 is selected
here for all the layers. The value is determined empirically
by testing values in factors of 10, choosing the lowest scoring
validation loss as the final value.

C. Implementation

MudNet was built in Python (version 3.7.10) using
Keras’ Functional API (https://www.tensorflow.org/guide/
keras/functional?hl=en) which utilises TensorFlow (version
2.2.0) as backend. The model was trained on the University
of Hull’s VIPER high performance computer (HPC). More
specifically, 4 NVIDIA TELSA K40M GPUs were used to

https://www.tensorflow.org/guide/keras/functional?hl=en
https://www.tensorflow.org/guide/keras/functional?hl=en


train the model in parallel using TensorFlow’s distributed train-
ing tool – Mirrored-Strategy. This allows the parallelisation of
model training through all four GPUs, drastically decreasing
the training time.

D. Performance Evaluation

The evaluation of the MudNet’s performance was achieved
by using the train-test split method. The dataset (n = 559
MRI scans) is split into a training and testing dataset prior
to training using an 80-20 percentage split. Due to missing
clinical data, some scans (n = 4 MRI scans) were dismissed.
The model’s performance is measured by outputting the final
metric scores when training reaches an optimum test loss. This
process is repeated (n = 10 iterations) with different partitions
of train/test datasets to result an average performance.

In total, the dataset contains 63.3% MCI non-converters
(n = 354 participants) and 36.7% MCI-converters (n = 205
participants). Of the MCI-converters, 65.4% (n = 134) were
high risk individuals when compared to 34.6% (n = 71) who
were low risk. Stratified splits were used in grouping the train
and test splits, this ensures the balance of classes within both
training and test sets so that there are minimal variances in
the scores due to class imbalance.

V. CLASSIFICATION TASKS

Along with the clinical input (14-dimensional vector), Mud-
Net is trained on T1-weighted MRI scans of extracted and
registered brains. These images were renamed to contain the
subject ID, class, and date of scan. This data is then read
into the memory stored as a NumPy float array with its
respective labels generated in another NumPy array at the same
index. Labels that are identified as the truth values for the
conversion classification are defined as y ∈ {0, 1}. The risk
labels are defined as y ∈ {0, 1, 2} representing no conversion,
conversion within 24 months, and conversion within greater
than 24 months, respectively.

VI. RESULTS

To evaluate MudNet’s performance, a test dataset (n = 112
MRI scans) containing 20% of the overall data is used. The
test dataset which is separate to the training dataset acts as
untrained data to evaluate the model’s ability to generalise and
produce predictions on data not seen before. In an attempt to
balance classes within the two datasets stratification is used.
MudNet is trained and evaluated iteratively (n = 10 iterations)
in order to produce the model’s results displayed in table III.

To summarise the results, MudNet achieves an average
accuracies of 69.8% and 66.9% on the test dataset. The
model performs better when measured by the area under the
curve (AUC) of the receiver operating characteristic (ROC) –
achieving values of 0.80 and 0.83 averaged.

When analysing the boxplots in Figures 6 and 7, both
conversion and risk classifications problems accuracy and
AUC of ROC perform similarly. However, specificity shows a
much greater variance in conversion than compared to risk

Fig. 6. Conversion classification

achieving 7.3% and 92.3% as its minimum and maximum
values.

Overall, the model attains better than random results for
both progressive MCI and time-to-ad classification. MudNet
is able to identify pMCI from sMCI people 19.8% better
when compared to random chance (50%). The model is 33.9%
better at classifying pMCI people to their respective time-to-ad
classifications when comparing to random chance (33%).

VII. DISCUSSION

In this paper, a convolutional neural network – MudNet is
developed to discriminate mild cognitively impaired people
who convert to Alzheimer’s Disease, from those who stabilised
at the condition. MudNet also simultaneously predicts the
time-to-conversion of Alzheimer’s Disease, classifying people
into classes that define conversions within a 24-month period
(high risk) or greater (low risk) as well as no risk (sMCI). This
was achieved using preprocessed T1-weighted MRI scans.
Clinical measurements from neurophysiological tests were
also utilised as well as other data regarding time in education,
gender, age and APOe4 genetic status data. The data collected
are baseline measurements meaning they are recorded from
people’s first visits. The use of cross-sectional data attempts
to simulate diagnosis conditions for a person’s first visit.

MudNet is built using different aspects of current perfor-
mant methodologies. The literature review summarises the
some of the advances made in current research for early AD
prediction in terms of the preprocessing employed and the



TABLE III
MUDNET TEST DATASET RESULTS USING 20% (N=112) OF TOTAL AVAILABLE MRI SCANS

Test result Accuracy AUC (ROC) Specificity
Conversion Risk Conversion Risk Conversion Risk

1 0.6786 0.6161 0.7858 0.8261 0.7073 0.5625
2 0.5804 0.5179 0.7470 0.6651 0.9268 0.4375
3 0.7321 0.7143 0.8351 0.8673 0.6829 0.6250
4 0.7143 0.6696 0.7467 0.8336 0.5854 0.6071
5 0.6607 0.6518 0.8262 0.8298 0.0732 0.6429
6 0.7143 0.7248 0.7777 0.8451 0.5854 0.6429
7 0.7411 0.6964 0.8184 0.8632 0.5122 0.6339
8 0.7143 0.7321 0.8253 0.8562 0.3171 0.6875
9 0.7589 0.7232 0.8540 0.8673 0.3902 0.6696
10 0.6875 0.6429 0.8251 0.8467 0.8049 0.5982

Mean 0.69822 0.66891 0.80413 0.83004 0.55854 0.61071
69.8% 66.9% 0.80 0.83 55.9% 61.1%

Fig. 7. Risk classification

deep learning techniques utilised. The existing related research
established certain methodologies in the pMCI versus sMCI
prediction such as image registration of the MRI data in their
preprocessing pipeline. Other methods which can help explain
the successful results achieving over 80% in cross-validation
accuracies and AUCs (ROC) can be attributed to the use of
domain learning in extracting the most informative auxiliary
features from a similar domain I.e. Alzheimer’s Disease versus
cognitively normal classification. All related research that

used domain learning reported an increase in their validation
accuracies. MudNet utilises some of these methods; batch
normalisation and the use of residuals in training parts of the
network with identity mappings are some of the methods also
employed to the model proposed in the paper.

The model developed achieves validation accuracies of
69.8% and 66.9% in progressive MCI conversion and risk
class predictions. Specificity measures the true rate of negative
examples; MudNet achieves scores of 55.9% and 61.1% in
conversion and risk. These results are sub-par to current
research standards and for practical medical use but solidify
that the application of deep learning has potential predictive
power in detecting early individuals at risk in converting to
Alzheimer’s Disease. However, MudNet also aims to classify
pMCI cases to their time-to-AD classes – which is a further
step and a difficult problem to tackle simultaneously when
compared to the existing related current methodologies. The
model shows further potential when measured by its AUC
performance – it achieves 80% and 83% for conversion and
risk predictions respectively. When evaluated with specificity,
the performance of the model is not ideal, especially in the
conversion problem. A specificity of 55.9% would expose
44.1% to misclassifying as stable people.

In respect to the papers aims and objectives – the devel-
opment of MudNet meet the purpose of the research in its
ability to detect the conversion of progressive MCI people
from stable people. The model also meets its secondary ob-
jective in more successfully solving the problem of predicting
the time-to-AD class of these progressive people. However,
the validation results of MudNet suggests further work is
required in developing the model’s architecture and for the
hyper-parameter optimisation. As the data is limited and the
preprocessing pipeline within current standards (11), feature
extraction and therefore the performance can only be improved
with adjustments in these stages.

In a domain with limited data, the use of available data
should be maximised. One method to better solve the problem



of progressive MCI identification and its time-to-AD prognosis
could be domain learning. In the literature review of current
methodologies, domain learning has already seen positive
impact when regarding the model performance and its increase
in papers use the method. The training of the model’s weights
in recognising features between auxiliary AD and non-AD
classes could not increase the performance of the model in
the original problem but serve to reduce training time with
faster convergence.

Brain segmentation is another strategy that could be em-
ployed in achieving better performance. The segmentation
of the brain regions (temporal, parietal, prefrontal, occipital
lobes) can allow the use of parallel 3D convolutional layers
to better extract features specific to these regions in order to
reduce the complex feature space. A smaller feature space
should allow for the easier finding of informative features.

Also, the same data can be utilised in producing additional
features. FSL provides a tool – SIENA SIENAX which allows
for the longitudinal and cross-sectional analysis of structural
changes within the brain (27). Using single or multiple MRI
scans, the rate of neurodegeneration can be measured via
volume changes which could be useful feature in providing
the MudNet improved predictive performance for both pMCI
versus sMCI and time-to-AD classifications.

In summary, MudNet, a convolutional neural network is
developed to simultaneously solve the problems of detecting
of AD converters from non-converters early and identifying
high risk converters (conversion in ≤ 24 months) from low
risk converters (conversion in > 24 months). In these tasks
the model achieves averaged (n = 10) validation accuracies
of 69.8% and 66.9% outperforming random chance but did
not achieve similar results from current research (80%+). The
model attempts solve two complex problem simultaneously
while potentially lacking the architecture depth to do so. Mud-
Net could see improvements with its predictive capabilities if
a singular problem was focused or extra depth is added to the
network architecture. Further methods of improving the model
may also include limiting class samples to ensure a global
balance of classes within the dataset so that the availability of
data does not cause bias.
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