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Abstract  

Lake Prespa, in the Balkans, contains an important palaeo-archive in a key location for understanding Quaternary 

climate variability in the transition between Mediterranean and central European climate zones. Previous 

palaeoenvironmental research on sediment cores indicates that the lake is highly sensitive to climate change and 

that diatoms are likely to be strong palaeohydrological proxies. Here, we present new results from diatom analysis 

of a ca. 91 ka sequence, core Co1215, which spans the time from the end of the last interglacial to the present. 

Fluctuations in the diatom data were driven primarily by changes in lake level, as a function of shifts in moisture 

availability. Warmer interglacial (MIS 5, MIS 1) and interstadial(MIS3)phases exhibit higher lake levels in spite 

of enhanced evaporative concentration, underlining the importance of changes in precipitation regimes over time. 

Low lake levels during glacial phases indicate extreme aridity, common to all Mediterranean lakes. Evidence for 

fluctuations in trophic status is linked, in part, to lake-level change, but also reflects nutrient enrichment from 

catchment processes. MIS 5a is characterized by the highest lake productivity in the sequence, but low lake levels, 

which are ascribed primarily to very low precipitation. On a suborbital timescale, the diatoms provide evidence for 

correlation to the millennial-scale variability recorded in the Greenland oxygen isotope records and clearly reflect 

theimpactoftheHeinrichH6,H5andH3–1ice-rafting events, suggesting the dominant influence of North Atlantic 

forcing in this region. Although the highest amplitude shift in the diatom assemblages occurs during the time of 

H4 (40–38 ka), it may be superimposed upon the impact of the 39.28 cal ka BP Campanian Ignimbrite volcanic 

eruption. Diatoms from Lake Prespa core Co1215 display the first strong evidence for the impact of Italian volcanic 

activity on lacustrine biota in this region. Results emphasize the complexity of diatom response thresholds in 

different studies across the region. In the case of Lake Prespa, the results highlight the important role of 

precipitation for maintaining the hydrological balance of the lake, and indirectly, its biodiversity. 

Keywords Lake Prespa  Diatoms  Lake-level change  Palaeoclimate  Tephra impact  Quaternary 

Heinrich events 

Introduction 

Quaternary researchers in the last few decades have made considerable efforts to understand spatial climate 

variability in the Mediterranean, but the main underlying mechanisms are still under debate (Magny et al. 2012). 

This is partly because of gaps in our understanding of spatial and temporal variability. Of the various 

palaeolimnological indicators studied, diatoms, in most cases, have been restricted to the late Glacial and Holocene 
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epoch (Wilson et al. 2008; Jones et al. 2013). Diatom palaeoclimate records spanning multiple glacial-interglacial 

transitions are still very rare across the Mediterranean (Ampel et al. 2008, 2010), but demonstrate high sensitivity 

to climate change. A prime example is the diatom record from ancient Lake Ohrid (Reed et al. 2010; Cvetkoska et 

al. 2012), in which diatoms provide strong evidence for the lake’s response to climate variability since the 

penultimate glacial-interglacial transition to the present. 

Lake Prespa, in the Balkans, is an ancient lake that likely co-existed with its neighbour Lake Ohrid for more 

than 1 Ma (Stankovic 1960). Preliminary borehole data, core logging and geochemical data from a 569-m-long 

sediment sequence recovered during the Scientific Collaboration on Past Speciation Conditions (SCOPSCO) 

drilling campaign, indicate that Lake Ohrid is [1.2 Ma old (Wagner et al. 2014a, b). The exact age of Lake Prespa 

is still uncertain. The importance of both lakes, Ohrid and Prespa, as palaeoenvironmental archives for 

Mediterranean Quaternary climate research has been well documented (Wagner et al. 2008a). Multi-proxy 

geochemical analysis of a 10.5-m sequence from the northwestern part of Prespa demonstrates glacial-interglacial 

variability over the last ca. 48 ka (Leng et al. 2010; Wagner et al. 2010). A 17.76-m sequence, Co1215, spans the 

last *91 ka (Damaschke et al. 2013). Multiproxy analysis of the last glacial to Holocene sequence from *17 ka to 

present in Co1215 (Aufgebauer et al. 2012; Wagner et al. 2012; Leng et al. 2013; Panagiotopoulos et al. 2013; 

Cvetkoska et al. 2014a) provides a useful interpretive tool for longer-term climate variability. 

Here, we build on previous palynological and geochemical studies (Panagiotopoulos et al. 2014) of the longer 

sequence, using diatoms to infer hydrological and productivity shifts since Marine Isotope Stage (MIS) 5b to 

present. Diatoms of Lake Prespa are highly sensitive to lake-level variation and are important in elucidating 

hydrological variability (Cvetkoska et al. 2014a). Trends in the extended multi-proxy dataset are assessed to explore 

the links between limnological and catchment change. The diatominferred palaeoclimate data are compared to other 

Mediterranean and global records to improve understanding of the nature of glacial-interglacial climate variability 

in this region. 

Site description 

A detailed description of the geographical, physical and chemical properties of Lake Prespa is provided in Hollis 

and Stevenson (1997). Lake Prespa (Fig. 1), also known as Macro Prespa, Macedonia/Albania/Greece, is located 

at an altitude of 849 m a.s.l., has a surface area of 254 km2, a mean water depth of *14 m, a maximum water depth 

of *48 m and a total volume of 3.6 km3 (Wagner et al. 2012). The water balance is controlled by inputs from river 

inflow, catchment runoff, direct precipitation, inflow from Lake Mikri Prespa and groundwater. Output is via 

surface evaporation, water abstraction for irrigation and subsurface outflow through the karstic aquifers of Galicica 

Mountain into Lake Ohrid (Matzinger et al. 2006). Climate in the catchment is described as Mediterranean in the 

southern part and continental in the northern part, with a sub–alpine character below 1,650 m in elevation and 

alpine character above (Krstic´ 2012). Mean 
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temperature fluctuates from ?1 C in winter to ?21 C in summer, and mean annual precipitation varies between 750 

and 1,200 mm/a in the lake valley and the surrounding mountain ranges, respectively (Hollis and Stevenson 1997). 

Overall, the hydrology of Lake Prespa is controlled by a complex interplay of factors, including the 

geomorphology of the area, catchment vegetation, hydrology of the watershed area, climate, and its relatively large 

but shallow bathymetry, which lacks a surface outflow. This makes Lake Prespa highly sensitive to environmental 

forcing and especially susceptible to lake level change. 

Fig. 1 Topographic map of 

Lake Prespa showing lake 

catchment (blue line) and 

location of cores Co1215 

(this study) and Co1204 

recovered from Lake Prespa 

(Wagner et al. 2010). NASA 

Shuttle Radar Topographic 

Mission (SRTM) Data: 
Jarvis et al. 2008 (modified 

from Panagiotopoulos et al. 

2013). (Color figure online) 
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Materials and methods 

Core Co1215 was recovered in the north-central part of Lake Prespa at a water depth of 14 m, during two field 

campaigns, in November 2009 and June 2011 (Wagner et al. 2012; Damaschke et al. 2013). Coring was performed 

from a floating platform equipped with gravity corers for surface sediments and a 3-m-long percussion piston corer 

for deeper sediments (UWITEC Corp. Austria). Correlation of the individual core sections resulted in a 1,776-cm-

long composite sequence. 

Analytical core analysis, described in detail in Aufgebauer et al. (2012), Wagner et al. (2012), Leng et al. (2013) 

and Panagiotopoulos et al. (2014) consisted of non-destructive X-ray fluorescence (XRF) scanning, total carbon 

(TC) and total inorganic carbon (TIC) measurements, stable isotope ratios, X-ray diffraction (XRD) mineralogy 

and palynological analysis. The final age-depth model for the sequence was presented in detail by Damaschke et 

al. (2013). 

Diatoms were analyzed in 222 samples, taken at *8-cm intervals (resolution =*0.1–0.4 ka), spanning the 1,760-

cm section, or the last 91.0 cal ka. Samples were cleaned using cold H2O2 and 10 % HCl to oxidize organics and 

remove carbonates, respectively (Cvetkoska et al. 2012). Permanent diatom slides were prepared using Naphrax as 

a mountant and *400 diatom valves per slide (Battarbee 1986) were counted under oil immersion at 1,5009 

magnification using a Nikon Eclipse 80i microscope. Identification of diatom taxa followed Krammer and Lange-

Bertalot (1986–1991) and the dedicated Ohrid and Prespa work of Levkov et al. (2007b) and Cvetkoska et al. (2012, 

2014b). Diatom counts were converted to percentage data and displayed using Tilia and TGView v. 2.0.2. (Grimm 

1991). Stratigraphic zone boundaries were defined using Constrained Incremental Sum of Squares cluster analysis 

(Grimm 1987) for diatom taxa present at [2 % abundance. Multi-proxy stratigraphic diagrams were prepared using 

C2 (Juggins 1991–2007). Correlation between diatom relative abundance data and geochemical proxies was tested 

using Spearman’s rho correlation test, in the statistical package ‘‘stats,’’ version 0.8-2 (R Core Team 2012). 

Variation in the diatom data was explored by ordination, and with a gradient length of [2.5, detrended 

correspondence analysis, (‘DCA’) was appropriate (Jongman et al. 1995). 

Results 

Core chronology 

The core chronology (Fig. 2) was developed using accelerator mass spectrometry (AMS) 14C dating, tephra 

analysis, electron spin resonance (ESR) and correlation with NGRIP ice core data (Damaschke et al. 2013). 

Calibration of the radiocarbon ages to calendar years (cal ka BP) was accomplished using the INTCAL09 

calibration curve (Reimer et al. 2009), except for the uppermost sample, which was calibrated using the Levin14C 

dataset (Levin and Kromer 2004). At a core depth of 1,463–1,458 cm, a layer of shells of the mollusk Dreissena 

was dated by electron spin resonance (ESR) and was discussed in Damaschke et al. (2013) and Wagner et al. 

(2014c). Ages presented here are calendar years before present (cal ka BP) with 2r ranges. The detailed 

tephrostratigraphic record and sedimentation rates for the 1,776-cm composite sequence are presented in 

Damaschke et al. (2013). The calculated sediment accumulation rate (mm/a; SAR) is between 0.09 and 1.36 mm/a, 

with the exception of a peak of 190 mm/a at the time of deposition of tephra PT0915–7, correlated to the Campanian 

Ignimbrite (CI) eruption from the Campi Flegrei volcanic field (Damaschke et al. 2013). 

Diatom analysis 

Two hundred and seventy diatom taxa were identified in Lake Prespa core Co1215 and the summary diatom 

diagram (Fig. 3) displays the 40 taxa present at[2 % relative abundance. Six major diatom assemblage zones (D1–
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6), each divided into 2–4 subzones, were identified with CONISS. The DCA results (Fig. 4; Table 1) clearly support 

the stratigraphic zone delineation. Planktonic taxa, i.e. the Cyclotella complex and Aulacoseira spp., have high 

scores on Axis 1 (eigenvalue = 0.47), and benthic taxa have low 

Fig. 2 Age-depth model with 

sediment accumulation rate, 

SAR (mm/a) of the composite 

core Co1215 from Lake Prespa 

(modified from Damaschke et 

al. 2013) 
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Fig. 3 Stratigraphic diagram of diatom taxa present at [2 % abundance in Lake Prespa core Co1215, displaying diatom zones defined 

by CONISS, lithology and lithofacies (modified from Damaschke et al. 2013). IRD = Ice-rafted debris, MIS = Marine Isotope Stage. 

MIS boundaries are from Lisiecki and Raymo (2005) 
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Values in bold are significant at p\0.0001 

Fig. 4 Scatter plot of DCA 

Axis 1 versus DCA Axis 2 

scores of diatom samples 

and species from core 

Co1215. The symbol key in 

the top right hand corner 

represents the diatom zones. 

Diatom zone D1 is split into 

two subzones because of the 

marked difference in Axis 2 

scores. Only selected diatom 

taxa are displayed 

Table 1 Summary of the DCA ordination of the diatom assemblages found in Lake Prespa core Co1215 (222 samples) and 
Spearman’s rho (q) coefficient values for the correlations between selected diatom data and geochemical proxies and DCA score 

Axes DCA 1 DCA 2  DCA 3 DCA 4 

Eigenvalues 0.47 0.23  0.17 0.14 

Axis lengths 3.48 2.95  2.10 1.75 

Decorana values 0.50 0.32  0.12 0.08 

Spearman’s correlation Cyclotella group Fac. Plankton S. pinnata Benthic E. submuralis 

TOC (%) 0.63 -0.49 -0.76 -0.62 0.11 

TN (%) 0.62 -0.54 -0.77 -0.63 -0.06 

TOC/TN 0.52 -0.38 -0.66 -0.53 0.16 

Ca (counts) / / -0.53 -0.38 -0.05 

K (counts) -0.63 0.54 0.69 0.63 0.14 

Ti (counts) -0.57 0.55 0.64 0.56 0.20 

Fe/Ti 0.39 -0.38 -0.41 -0.50 -0.35 

DCA Axis 1 0.87 -0.73 -0.89 -0.58 0.10 

DCA Axis 2 -0.58 0.48 0.39 / -0.51 
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‘‘/’’ no significant correlation 

scores, indicating that Axis 1 reflects lake-level variation. The Spearman’s test results (Table 1) display a positive 

correlation between the Cyclotella group and DCA Axis 1 (q= 0.87, p\0.0001), and a negative correlation between 

the facultative planktonic and benthic group and DCA Axis 1 (q=-0.73 and -0.58, p\0.0001, respectively), 

emphasizing the influence of lake level in the data. Axis 2 scores (eigenvalue = 0.23) reflect a clear trophic gradient 

between oligo-mesotrophic taxa, which include the Cyclotella complex and Eolimna submuralis (Hustedt) Lange-

Bertalot et Kulikovskiy that have relatively low scores on Axis 2, and meso-eutrophic species Aulacoseira 

granulata (Ehrenberg) Simonsen, Aulacoseira ambigua (Grunow) Simonsen, Staurosirella berolinensis 

(Lemmermann) Bukhtiyarova, Stephanodiscus minutulus (Ku¨tzing) Cleve et Mo¨ller and Stephanodiscus rotula 

(Ku¨tzing) Hendey, which have high scores. Based on the hypothesized resource relationships among the 

planktonic diatoms (Kilham et al. 1986), increased abundance and/or dominance of A. granulata in core Co1215, 

is indicative of eutrophic, low-light and turbid-water conditions, whereas A. ambigua stages reflect more stable 

lake stratification, higher light availability and a meso-eutrophic state. From the Spearman test, the trophic gradient 

is supported by the negative correlation between the Cyclotella group and E. submuralis to DCA Axis 2 (q=-0.58 

and -0.51, p\0.0001, respectively). E. submuralis has been described as an epiphytic species from the littoral and 

sub-littoral zone of Lake Ohrid (Hustedt 1945). Diatoms are compared in Fig. 5 to selected geochemical, isotope 

and pollen data from the core according to the chronology of MIS boundaries (Lisiecki and Raymo 2005). 

Description of the diatom zones (D): 

D1: 1,760–1,530 cm depth, 91.0–78.0 cal ka BP 

D1a (1,760–1,652 cm depth, 91.0–85.5 cal ka BP) 

Planktonic, facultative planktonic (FP) and benthic taxa are present in approximately equal proportions at the base 

of the sequence, with minor fluctuations between groups, until an increasing trend in FP at the expense of benthic 

taxa occurs at 90.0 cal ka BP, reaching a maximum of [80 % at 85.5 cal ka BP. Planktonic Cyclotella ocellata 

Pantocsek and C. paraocellata 
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Fig. 5 Diagram of Lake Prespa core Co1215 displaying: abundance (%) of selected diatom taxa, DCA Axis 1 (lakelevel) and DCA 

Axis 2 (lake productivity) scores and diatom plankton (%) abundance. Previously published data include total organic carbon (TOC; 

wt%), total inorganic carbon (TIC; wt%), potassium (K; 1,000 cts), titanium (Ti; 1,000 cts), sand (%) (Wagner et al. 2012), d18OTIC 

(%VPDB), d13CTIC (%VPDB) (Leng et al. 2013), arboreal pollen (%) and concentrations (9105) of arboreal pollen (AP; black), green 

algae (green) and dinoflagellates (purple) (Panagiotopoulos et al. 2014). Light gray band marks the Dreissena shell horizon between 

14.58 and 14.63 m depth, ca. 73.57 ± 7.74 ka (Damaschke et al. 2013). CONISS-delineated diatom zones are marked. Marine Isotope 

Stage (MIS) boundaries are from Lisiecki and Raymo (2005). 
(Color figure online) 

 

Cvetkoska,Hamilton,Ognjanova-RumenovaetLevkov are each present at [20 %, while C. prespanensis Cvetkoska, 

Hamilton, Ognjanova–Rumenova et Levkovisrare,at\5 %relativeabundance.E.submuralisis the most abundant 

benthic species, exhibiting a peak of 22 %at88.0 cal ka BP.Othercommonbenthictaxaare Amphora spp., Diploneis 

spp., Navicula hastata Jurilj and Navicula spp. 

D1b (1,652–1,530 cm depth, 85.5–78.0 cal ka BP) 

Zone D1b is marked by a shift to dominance of planktonic Aulacoseira Thwaites taxa, increasing to [50 % at 84.2 

cal ka BP. A. granulata and A. ambigua co-dominate initially, with A. granulata dominating thereafter ([35 %) 

until 78.0 cal ka BP. A. ambigua is at low abundance except for two peaks of [35 % at 83.0 cal ka BP and 81.2 cal 

ka BP. FP and benthic taxa increase to[30 and 10 %, respectively, from 81.0 cal ka BP. 

D2: 1,530–1,364 cm depth, 78.0–70.2 cal ka BP 

D2a (1,530–1,474, 78.0–74.5 cal ka BP) 

SubzoneD2amarksasharpdeclineintheabundanceof A. granulata and renewed dominance of small Fragilariaceae. 

Benthic species dominate ina single sample at 76.7 cal ka BP, at 70 % abundance, a consequence of peak 

abundance (*60 %) of E. submuralis. 

D2b (1,474–1,364 cm depth, 74.5–70.2 cal ka BP) 

Plankton increases in D2b, but stays below 50 %. In two assemblages, at 73.4 cal ka BP and 70.9 cal ka BP, all 

habitat groups are present at similar abundance. Small Fragilariaceae reach a maximum of 38 % at the upper zone 

boundary. Benthic species are diverse and dominate from 73.0 to 71.5 cal ka BP, with a peak of 71 % at 72.8 cal 

ka BP. Amphora spp., Campylodiscus spp., Diploneis cf. krammeri LangeBertalot et Reichardt, Diploneis sp., 

Fallacia ohridana (Hustedt) Levkov et Krstic, Gyrosigma attenuatum (Ku¨tzing) Cleve, E. submuralis, Navicula 

spp., Nitzschia spp. Hassall and Surirella spp. Turpin are most abundant within the group. 

D3:1,364–1,086 cm depth, 70.2–60.7 cal ka BP 

D3a (1,364–1,284 cm depth, 70.2–67.5 cal ka BP) 

Small Fragilariaceae exhibit a consistent increasing trend to *60 % abundance, driven by S. pinnata. Plankton is 

at\15 % abundance. Benthic taxa decline to *35 % at the upper zone boundary, with E. submuralis and G. 

attenuatum being most common, peaking at 34 % abundance at 70.0 cal ka BP and 27 % at 68.7 cal ka BP, 

respectively. 
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D3b (1,284–1,212 cm depth, 67.5–65.0 cal ka BP) 

Plankton continues to decrease and is mainly represented by Cyclotella spp. (\8 %) and A. granulata (\5 %). High 

Staurosira spp. and S. pinnata abundance at the base of the subzone is replaced by increasing benthic species 

abundance to *80 % at 65.5 cal ka BP, marked by a distinct peak (34 %) of Campylodiscus marginatus Jurilj. 

D3c (1,212–1,086 cm depth, 65.0–60.7 cal ka BP) 

Low plankton abundance (\8 %) is maintained in subzone D3c. Small Fragilariaceae are present at 45–70 % 

throughout. The benthic group increases to 25–50 % abundance throughout the zone. A single peak (6 %) in the 

record of the aerophilous Ellerbeckia arenaria (Moore ex Ralfs) Crawford occurs at 62.5 cal ka BP. The benthic 

group is represented by species similar to those in zone D2b. 

D4:1,086–667 cm depth, 60.7–33.0 cal ka BP 

D4a (1,086–904 cm depth, 60.7–48.1 cal ka BP) 

Subzone D4a is marked by fluctuating abundance of all species groups. Cyclotella species increase from the base 

of the zone, to 60 % at 54.3 cal ka BP, at the expense of FP, while benthic taxa maintain 40–50 % abundance. 

Among them, E. submuralis is most abundant (10–20 %), while Amphora spp. reach maximum abundance of 9 % 

at 58.4 cal ka BP. At 53.4 cal ka BP small FP start to increase towards the upper zone boundary, reaching[50 % at 

49.6 cal ka BP, while at same time, the benthic group decreases to 35 %. 

D4b (904–776 cm depth, 48.1–39.3 cal ka BP) 

Plankton remains below 10 % in subzone D4b, apart from the peak at 46.0 cal ka BP when C. prespanensis peaks 

at 20 %. The zone exhibits high diversity and co-dominance of FP and benthic taxa. E. submuralis is present 

throughout, at up to 25 % abundance. Other abundant benthic species in this subzone are Cocconeis spp., Cavinula 

scutelloides (Smith) LangeBertalot, Cavinula cf. cocconeiformis var. elliptica (Hustedt) Lange-Bertalot, D. 

krammeri, Diploneis sp. and Pinnularia subrupestris Krammer. 

D4c (776–667 cm depth, 39.3–33.0 cal ka BP) 

The only peak of Asterionella formosa Hassall (*30 %) in the record occurs at 39.3 cal ka BP, accompanied by 

peak abundance (22 %) of Nitzschia palea (Ku¨tzing) Smith. The planktonic C. ocellata, Stephanodiscus hantzschii 

Grunow, facultative planktonic Pseudostaurosira brevistriata (Grunow) Williams et Round, S. pinnata and the 

benthic species Fallacia helensis (Schulz) Mann, G. attenuatum and Navicula spp. compose the diatom assemblage 

at 39.3 cal ka BP, all of them present at similar abundance. At 38.6 cal ka BP, C. ocellata is present at 32 %, 

accompanied by a 17 % peak of Cyclotella minuscula (Jurilj) Cvetkoska. 

After a minimum of \10 % at 35.2 cal ka BP, plankton increases again, a consequence of a peak in Cyclotella 

abundance (*65 %). At 34.3 cal ka BP Cyclotella spp. decline again and are replaced by increasing A. granulata, 

which becomes dominant in the plankton at the upper zone boundary. FP dominate only at 35.2 cal ka BP. The 

benthic group is dominant from 39.0 to 34.2 cal ka BP. From 36.2 cal ka BP, E. submuralis declines to\5 %. 

D5: 667–293 cm depth, 33.0–15.7 cal ka BP 
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D5a (667–611 cm depth, 33.0–29.7 cal ka BP) 

Subzone D5a is co-dominated by benthic and FP species. C. ocellata displays a single peak of 30 % at 30.4 cal ka 

BP. G. attenuatum is the dominant benthic species (12–23 % abundance) until 30.9 cal ka BP, when it declines 

and Diploneis alpina Meister peaks at 22 %. Amphora spp., C. marginatus, Cocconeis spp., Diploneis mauleri 

(Brun) Cleve and Gyrosigma macedonicum Levkov, Krstic et Nakov are common. D5b (611–556 cm depth, 29.7–

27.3 cal ka BP) 

Subzone D5b maintains low plankton abundance (\5 %). Small FP species prevail until 27.8 cal ka BP, when 

benthic taxa increase to[55 %. The benthic group is of similar composition to that in D5a. 

D5c (556–405 cm depth, 27.3–21.0 cal ka BP) 

Low plankton abundance (\15 %) is maintained throughout D5c, with Aulacoseira granulata present at \10 %. At 

27.1 cal ka BP, the maximum benthic abundance of 75 % is dominated by D. alpina (35 %) and C. marginatus (15 

%). Benthic domination is replaced by small Fragilariaceae, from 25.4 cal ka BP, mainly because of increased 

abundance of S. pinnata. 

D5d (405–293 cm depth, 21.0–15.7 cal ka BP) 

In subzone D5d small Fragilariaceae continue to increase as benthic taxa decrease, with S. pinnata being dominant 

at [40 % abundance throughout. Plankton remains at low abundance, with a maximum of 10 % at the upper zone 

boundary. Among the benthic species, D. alpina declines to \10 %, while Diploneis sp. increases to 10 % at 17.7 

cal ka BP. 

D6: 293–2 cm depth, 15.7 cal ka BP–present 

D6a (293–220 cm depth, 15.7–12.3 cal ka BP) 

Subzone D6a incorporates a shift at 15.7 cal ka BP to increased abundance of Cyclotella taxa ([25 %). At 15.2 cal 

ka BP, S. rotula exhibits a minor peak of *9 %, which is followed by an increase in the relative proportion of S. 

pinnata (*35 %). From 14.8 cal ka BP, small Fragilariaceae decline and planktonic Cyclotella taxa dominate up to 

the upper zone boundary. The benthic group declines to\20 %, and is similar to D5d. The 13.1–12.3 cal ka BP 

interval comprises only two samples, but is distinct because of a peak of 30 % in A. granulata at 12.9 cal ka BP, 

and of S. pinnata at the upper zone boundary. 

D6b (220–164 cm depth, 12.3–9.3 cal ka BP) 

D6b is delineated by a peak in S. rotula (*30 %) at the base of the zone and a sharp increase in planktonic taxa 

to[70 %. After the initial peak, S. rotula declines towards the upper zone boundary, while the C. ocellata and C. 

paraocellata sum abundance increases to *70 % at 10.5 cal ka BP. The FP decline from *20 % at the base to \5 % 

at the upper zone boundary. The benthic group is present at *10–20 % abundance throughout. 
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D6c (164–70 cm depth, 9.3–1.9 cal ka BP) 

Subzone D6c is delineated by the highest plankton abundance, [90 % relative abundance, between 7.9 and 4.2 cal 

ka BP. C. paraocellata dominates the planktonic group. C. minuscula peaks with 10 % at 8.0 cal ka BP. Benthic 

taxa decline to \10 % after 

7.9 cal ka BP. 

D6d (70-2 cm depth, 1.9 cal ka BP-present) 

C. ocellata becomes dominant at the expense of C. paraocellata, which declines sharply to\10 % abundance. C. 

minuscula peaks between 1.7 and 1.5 cal ka BP and at 0.5 cal ka BP. A. granulata and Staurosira spp. peak at 15 

and 25 % relative abundance, respectively, at 1.0 cal ka BP, while from 0.3 cal ka BP (seventeenth century AD), 

there is a marked trend towards increasing dominance, for the first time, of the benthic species C. scutelloides. It 

reaches a maximum of *40 % at 0.05 cal ka BP (ca. AD 1900), when benthic taxa dominate at[60 %. The surface 

sediment sample is dominated by C. ocellata ([80 %), accompanied by the benthic N. subacicularis Hustedt. 

Discussion 

Diatom response 

Shifts in relative abundance of C. ocellata, C. paraocellata and C. prespanensis were interpreted in the late glacial 

to Holocene record as a response to shifts in trophic status within waters of low to medium productivity (Cvetkoska 

et al. 2014a). In the longer record, this is supported in part by the absence of more eutrophic taxa such as A. 

granulata in Cyclotelladominated zones. Across a range of diatoms with contrasting P-availability and light-

intensity preferences, Kilham et al. (1986) placed A. ambigua as intermediate between the oligotrophic, high-

lightdemanding Aulacoseira distans (Ehrenberg) Simonsen, and the eutrophic, low-light A. granulata. 

Dominance of small Fragilariaceae and the benthic E. submuralis likely reflect a shallow, low-productivity lake. 

S. pinnata is considered a typical glacial-type species, based on inferences for its high sensitivity to the climate-

related variables ‘‘duration of ice cover’’ and ‘‘mean July water temperature’’ (Schmidt et al. 2004) and also its 

presence in glacial phases of other Mediterranean lakes such as Ioannina (Wilson et al. 2008; Jones et al. 2013). 

During interglacials, small Fragilariaceae tend to occur in marginal open lake waters at the start of the warming 

season and are often regarded as pioneering taxa with broad ecological preferences (Smol 1988). 

The highly diverse benthic group is mainly represented by species with large, heavily silicified valves such as 

C. marginatus, D. alpina, G. attenuatum and Surirella spp., without major species turnover from the last interglacial 

to the present. Modern ecological studies (Levkov et al. 2007a, b) demonstrate that these species dominate as 

epipelic taxa in deeper waters (4–18 m) and the physico-chemical properties of the lake (substrate, light intensity, 

dissolved oxygen, Si) are the main factors that determine the structure of these communities. 

MIS 5 (91.0–71.0 cal ka BP; D1, D2) 

MIS 5b (91.0–85.0 cal ka BP; D1a) 

Rapidly fluctuating lake levels during MIS 5b are inferred from the shifts in Cyclotella abundance (10–45 %) in 

the basal diatom zone (Fig. 3) and positive, but low DCA Axis 1 scores (Fig. 4), overall representative of an 

intermediate, moderately deep lake. Minima at 90.0, 88.4 and 85.6 cal ka BP indicate low-lake-level phases. The 
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dominant Staurosira spp., S. construens and E. submuralis, reflect diatom growth restricted to the sandy, shallow 

and nutrient-depleted littoral zone. 

Panagiotopoulos et al. (2014) suggest MIS 5b was a period of rather high lake productivity based on high AP 

% and green algae concentration, TOC and C/N values. However, the diatoms indicate an oligomesotrophic state 

(Cvetkoska et al. 2014a), correlating with a decreasing trend in TOC values from the base of the sequence. The 

higher SAR (Fig. 2) and sand content (Fig. 5) indicate catchment erosion, supported by a gradual increase in Ti 

and K, but apparently insufficient nutrients to generate high productivity. 

Diatom-inferred intermediate moisture availability and possible (based on low productivity) relatively low 

temperatures in MIS 5b, are indicated more strongly by the absence of warm, sclerophyllous Mediterranean taxa 

in the pollen record between 91.0 and 85.0 cal ka BP, which suggests unfavorable winter temperatures for such 

vegetation around Lake Prespa (Panagiotopoulos et al. 2014). Overall, the data suggest a phase of unstable climate 

with moderate, but fluctuating moisture availability and temperature, which may reflect a transitional phase 

towards the end of the previous interglacial. 

MIS 5a (85.0–71.0 cal ka BP; D1b, D2) 

Initial dominance of a eutrophic diatom flora and high DCA Axis 2 scores indicative of high productivity, support 

inferences from rising Ti and K counts (Fig. 5) for increased allochthonus input and/or nutrient upwelling from 

the sediment. The peak in A. granulata correlates with high TOC at ca. 85.0–84.0 cal ka BP, a double peak in TIC 

between 85.0 and 83.0 cal ka BP and maximum concentration of green algae and dinocysts. Although diatom 

response is dominated by a productivity shift, low DCA Axis 1 scores also indicate low lake levels between 85.0 

and 83.0 cal ka BP, correlated with peaks of Artemisia (32 %) and Chenopodiaceae (12 %), indicative of drought 

(Panagiotopoulos et al. 2014). As in the upper record, productivity may be high in low-lake-level phases, in 

particular when wind-induced mixing causes nutrient re-suspension from bottom sediments. This is at odds with 

inferences for low evaporative concentration based on relatively low d18O (-5 to -4 %) values. 

A second lake low-stand is inferred between 77.6 and 76.6 cal ka BP from diatoms and low DCA Axis 1 scores. 

The occurrence of ice rafted debris (IRD) for the first time in the sediment record of Lake Prespa (Damaschke et 

al. 2013) provides strong evidence that the lake was ice-covered during the winter season, and along with the 

decline in Quercus pollen (Panagiotopoulos et al. 2014), supports the lake low-stand being triggered by decreased 

precipitation during cold/dry ‘glacial’ climate conditions. A diatom-inferred moderate increase in lake level and 

moisture availability after 76.6 cal ka BP is clear from Cyclotella abundance and DCA Axis 1 scores; the lack of 

sensitivity of other proxy indicators suggests high diatom sensitivity to a phase of subtle climate change at the end 

of the last interglacial, until 70.2 cal ka BP. 

The most distinct horizon in the core is the Dreissena presbensis shell layer, at 73.6 ± 7.7 ka (Damaschke et al. 

2013), and a lake level low-stand in Lake Prespa (and potentially Lake Ohrid) has been inferred from a combination 

of seismic, isotope and pollen data (Wagner et al. 2012; Leng et al. 2013; Panagiotopoulos et al. 2014). Wagner et 

al. (2014c) recognize tectonic events or karst processes as a possible cause of this low-stand, but also note its 

intriguing chronological correspondence to the 74 ka BP eruption of the Toba volcano. A peak in abundance of 

mesotrophic S. rotula (*15 %), in an assemblage dominated by the Cyclotella group, occurs at 73.6 cal ka BP. This 

can indicate a mixed diatom assemblage, not correlated completely with the shell horizon, or increasing lake levels 

immediately after its deposition. Higher-resolution analysis is needed to test these scenarios. 

MIS 4 (71.0–57.0 cal ka BP; D3, part of D4a) 

The diatoms and low DCA Axis 2 scores in zone D3 reflect low lake productivity and match well with the silty 

sediments and low organic content of lithofacies 1 (Damaschke et al. 2013), reflecting glacial onset. Dominance 

of small Fragilariaceae, E. submuralis and Cocconeis spp. implies that diatom growth was mainly restricted to ice-
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free, shallow littoral habitats, most likely during a short growing season. S. pinnata, at 30 % abundance, points to 

prolonged ice cover and low mean summer temperatures. The high abundance of large, heavily silicified benthic 

species throughout the zone, such as G. attenuatum, Campylodiscus spp. and D. mauleri, does not reflect increased 

productivity, because growth was probably facilitated by high water transparency, resulting from low plankton 

concentration in the epilimnion during the glacial, and points to a sufficient Si supply, necessary for formation of 

their large, complex frustules. Relatively high Ti and K values and SAR between 70.0 and 60.0 cal ka BP indicate 

high catchment erosion, most likely caused by greater input of ice-melt water during the spring/summer season, in 

agreement with the simultaneous opening of the landscape (Panagiotopoulos et al. 2014). 

The low DCA Axis 1 scores and Cyclotella group at \10 % provide strong evidence for lake-level decline since 

MIS 5, indicative of glacial aridity in MIS 4. The maximum benthic abundance (85 %) at 65.5 cal ka BP is 

synchronous with distinct minima in the AP percentages in the pollen record, indicative of low moisture 

availability. 

MIS 3 (57.0–29.0 cal ka BP; D4, D5a) 

Positive DCA Axis 1 scores and Cyclotella ([10 %) suggest increased lake level as a rapid response to increased 

moisture availability at the start of MIS 3. Phases of low lake level within the time period are indicated by peaks 

in small Fragilariaceae and E. submuralis between 49.0–46.6 and 45.0–39.5 cal ka BP and correlate with high 

erosion inferred from high Ti and K values (Wagner et al. 2012). Although the interstadial climate was relatively 

warm, the diatoms, low DCA Axis 2 scores and the relatively low TOC and TIC, suggest low productivity and/or 

higher decomposition of the organic matter until 38.2 cal ka BP. 

An unusual shift at 39.28 cal ka BP, to a species richness of\10 in a diatom assemblage co-dominated by A. 

formosa (*30 %) and N. palea (*20 %), can be ascribed to the influence of the PT0915-7/Y-5 tephra deposition, 

fingerprinted to the CI eruption of the Campi Flegrei caldera, considered the most explosive eruption in Europe 

over the last ca. 200 ka (Barberi et al. 1978; Fitzsimmons et al. 2013). Tephra influx increases the silica content in 

the water (Barker et al. 2000) and in the case of Lake Prespa, both dominant species require a high Si:P ratio and 

have maximum growth rates at temperatures below 20 C (Holm and Armstrong 1981). The tephra deposition most 

likely altered the lake water chemistry and the benthic habitats, and caused a shift in conditions that reduced the 

diversity of ecological niches and favored only a few species. The diatom data, the high SAR, spike in TIC, low 

TOC (Wagner et al. 2012; Damaschke et al. 2013), low C/N and d18O (-2.8 %; Leng et al. 2013), and extremely 

low AP (*10 %; Panagiotopoulos et al. 2014), suggest that the CI eruption enhanced climate aridity and/or cooling, 

which affected both the lake and its catchment area. 

The subsequent peak of C. minuscula at 38.7 cal ka BP indicates nutrient enrichment, possibly representing a 

lag response to the tephra deposition, as in the appearance of small-sized species and the single appearance of S. 

minutulus in Lake Ohrid core Co1202 (Cvetkoska et al. 2012) after tephra deposition associated with the FL 

eruption of Etna at 3.4 cal ka BP (Wagner et al. 2008b; Vogel et al. 2010). The increasing abundance of A. granulata 

thereafter, suggests relatively high trophic status was maintained until 33.0 cal ka BP. Similar shifts in the structure 

and productivity of the diatom assemblages caused by volcanic disturbance were also noted in other parts of the 

world, for example Lake Galletue´ in the Chilean Andes (Cruces et al. 2006). The subsequent return to dominance 

of small Fragilariaceae and benthic taxa indicates renewed aridification and/or cooling, supporting palynological 

inferences that define the end of MIS 3 at 29.0 cal ka BP. 
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MIS 2 (29.0–14.0 cal ka BP; D5b-d, part of D6a) 

The diatoms and low DCA Axis 1 scores at the base of zone D5c point to low lake levels and mark the onset of 

the Last Glacial Maximum (LGM) in Lake Prespa (Clark et al. 2009). The concurrent TIC spike, siderite 

precipitation and high d13C imply within-sediment reducing conditions and methanogenesis (Leng et al. 2013). 

The overall high facultative planktonic and benthic abundance between 29.0 and 15.7 cal ka BP reflects a shift in 

the hydrological balance, most likely triggered by reduced moisture availability and low temperatures at the time 

of the LGM, as also indicated by the domination of open vegetation in the catchment (Panagiotopoulos et al. 2014). 

The low DCA Axis 2 scores reflect low productivity of the lake, as indicated by low TOC and TIC values, and 

may be assigned to the lower biomass available in the catchment, as suggested by the pollen concentration curve 

(Panagiotopoulos et al. 2014). 

The onset of late glacial warming and increased moisture availability is indicated from 15.7 cal ka BP by a 

diatom-inferred increase in lake level, correlating with rising TOC values. The shift in dominance of A. granulata 

and S. pinnata between 13.1 and 12.3 cal ka BP has been interpreted as strong evidence for the Younger Dryas 

climate reversal. According to the age model presented in Aufgebauer et al. (2012), the ‘‘YD’’ event in Lake 

Prespa has an earlier onset than in most sites, where it tends to occur from 12.8 to 11.7 ka (cf. Alley 2000). The 

diatoms support previous inferences derived from the pollen record (Panagiotopoulos et al. 2013) and probably 

represent a nutrient pulse linked to enhanced catchment erosion caused by a combination of lake-level reduction 

and wind stress (Cvetkoska et al. 2014a). 

The Holocene (14.0 cal ka BP-present, part of D6a, D6b-D6d) 

The gradual transition to the Holocene, and diatom response to Holocene climate change and human impact in 

Lake Prespa, was discussed in detail by Cvetkoska et al. (2014a). A middle Holocene (7.9–1.9 cal ka BP) phase 

of high diatom-inferred lake levels and humidity, peaking from 7.9 to 

6.0 cal ka BP, is the most important feature. After 1.9 cal ka BP, intensified human impact and associated increases 

in nutrient status occur, along with two lake-level declines at 1.0 and 0.1 cal ka BP. The prominent climatic aridity 

at 1.0 cal ka BP is also noted in sediment records from Lake Ohrid (Wagner et al. 2009; Vogel et al. 2010; Lacey 

et al. 2014). 

Comparison with other records 

Diatom response thresholds 

Few long-term diatom studies have been carried out in the Mediterranean, but there are two relevant studies in 

close proximity to Lake Prespa. Published data from the Co1202 diatom record from Prespa’s sister lake, Lake 

Ohrid (Fig. 6) span the last ca. 140 cal ka BP (Vogel et al. 2010). Published data from ancient Lake Ioannina, 

Greece, is currently restricted to MIS 4 to present (Fig. 6) and the earlier interglacial-glacial transition at ca. 189–

170 ka (Wilson et al. 2013). Lakes Prespa, Ohrid and Ioannina all show strong diatom responses to orbital and 

suborbital climate variability, but the results of this study confirm clear contrasts in response mechanisms. A good 

example is the evidence for climate warming and wetting during MIS 3. As a deep lake system, Ohrid’s strong 

diatom response appears to be driven by temperature-induced productivity change (Reed et al. 2010; Cvetkoska et 

al. 2012), whereas the Prespa signal is one of increasing moisture availability, underlining the importance of 

changes in precipitation in spite of increased temperature-induced evaporation. This is evident in MIS 5a when the 

low lake levels induced by drought accelerated the eutrophication of Lake Prespa. This suggests that in Lake 

Prespa, the hydrological balance is crucial, and future drought would cause serious consequences to the lake and 

its biota. 
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Comparison of glacial and interglacial taxonomic shifts also highlights contrasting drivers of ecological 

response in groups of diatom taxa, indicating that a ‘transfer-function’ approach incorporating simple response to 

climate variables is invalid. All the lakes were dominated by the Cyclotella ocellata complex during interglacials, 

but, as in MIS 3, with a contrast in productivity (Ohrid) versus moisture availability (Prespa, Ioannina) as drivers. 

Preservation of diatoms during glacial phases also differs between deep Lake Ohrid, which exhibits monospecific 

dominance by the planktonic C. fottii/hustedtii complex, and the shallower lakes, where small Fragilariaceae 

dominate in glacial phases and are thus taken as indicators of a cold, arid climate. In contrast, Reed et al. (2010) 

note that in Ohrid these taxa are strongly indicative of initial glacial-interstadial warming, as productivity increased 

in the littoral zone. The similarity in response mechanisms between Prespa and Ioannina supports the validity of 

direct comparison. There is evidence for a strong response to the YD climate reversal and initial warming/wetting 

at the Holocene transition in both sites, based on a switch from small Fragilariales to Cyclotella ocellata, but a 

major divergence in the timing of middle Holocene humidity. Whereas in Lake Prespa high lake levels are 

maintained until 1.9 cal ka BP (Cvetkoska et al. 2014a), lake-level decline in Ioannina started at 7.0 cal ka BP 

(Jones et al. 2013). In terms of climate change, this would suggest disparity in moisture availability at both sites, 

but nevertheless, the lake low-stand at Ioannina might be the culmination of a longer-term trend toward natural 

lake infilling (Jones et al. 2013) rather than a simple climate response. Future research on longer records is required 

to test this. 

Sub-orbital climate variability 

During the last glacial, six episodes of massive iceberg discharges, named Heinrich (H) events, reduced ocean 

deep-water formation and caused cooling of the North Atlantic (Bond et al. 1993). Potential correlations with 



 17 

123 

Fig. 6 Relative abundance (%) of planktonic and facultative planktonic taxa compared between Lake Prespa core Co1215 (black; this 

study), Lake Ohrid core Co1202 (blue; Reed et al. 2010) and Lake Ioannina core I-08 (green; data from Jones et al. 2013). The relative 

abundance (%) of the Cyclotella complex (orange, this study), interpreted as a proxy record of lake-level variations in Lake Prespa, is 

compared to arboreal pollen (AP, blue) percentages from core Co1215 (Panagiotopoulos et al. 2014) and relative abundance of S. 

pinnata (%; this study) and d18O H2O (% SMOW) of the NGRIP ice core record (GICC05); the Dansgaard/Oeschger (D/O) warming 

events/Greenland interstadials (GI) are numbered. Explanation: MIS (Marine Isotope Stages) from Lisiecki and Raymo (2005), gray 

bands mark the H1–6 (Heinrich events) and the Younger Dryas (YD) as in Panagiotopoulos et al. (2014) and the C19–21 ice-rafting 

events (Chapman and Shackleton 1999). (Color figure online) 

and differences between H events and several shortterm hydrological changes at Lake Prespa, are defined by 

distinct peaks in Mn and TIC from core Co1204 (Wagner et al. 2010). By interpreting several distinct minima in 

the AP percentages in core Co1215 as reflecting the influence of Heinrich events on Lake Prespa catchment 

vegetation, and comparing existing proxy data from lakes Ohrid and Prespa with the ages of the H events, 

Panagiotopoulos et al. (2014) hypothesized that the northern Mediterranean was influenced by rapid climate 

change in the North Atlantic. It is possible to test this hypothesis further using the strong proxy data for 
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hydrological shifts. As noted, S. pinnata is typical of glacial environments in Lake Prespa and its abundance curve 

displays a very close match to the GICC05 d18O record 

(GICC05modelext 2010) by increased values during the GS (Greenland Stadial) and distinct declines at the 

beginning of the GI (Greenland Interstadial). For example, the diatom-inferred low lake stand at 85.6 cal ka BP 

coincides with GS 22 (*88–85 ka; NGRIP members 2004) and the minimum in benthic d13C during the C21 ice-

rafting episode at *86 ka (Chapman and Shackleton 1999). The lake low stand from 77.6 to 76.6 cal ka BP 

correlates to the GS 21 (77.8–76.4 ka; Wolff et al. 2010). 

Peaks of S. pinnata, coincident with distinct declines in the Cyclotella complex abundance at 65.5; 29.0; 25.0 

and 16.0 cal ka BP are correlated to the AP minima in the pollen record, implying a well synchronized response 

between the catchment vegetation and the lake to the potential impact of the H6, H3–1 events. The impact of the 

H5 event (48.0 cal ka BP) was described as less severe on the arboreal catchment vegetation (Panagiotopoulos et 

al. 2014), however, the Cyclotella complex abundance (\8 %) between 49.0 and 46.6 cal ka BP implies that the H5 

event had a more severe influence on the lake. The H4 event has been described as most severe on the catchment 

vegetation, enhanced by the Campanian Ignimbrite volcanic eruption at 39.3 cal ka BP (Panagiotopoulos et al. 

2014). The diatoms also prove the severity of the H4 event and the Y5 tephra deposition, but disentangling their 

respective influences is difficult, because it appears that the diatom record primarily reflects the tephra impact. 

The distinct minimum in the Cyclotella complex at 25.0 cal ka BP is approximately comparable to the H2 event 

in the diatom record from Les Echets (Ampel et al. 2008). Overall, we infer that North Atlantic forcing has had a 

major influence on climate variability in Lake Prespa on a variety of timescales since MIS 5. 

Conclusions 

The diatom record of Lake Prespa core Co1215 and the multi-proxy approach in the interpretation demonstrate an 

outstanding potential for inferring past climate change in this area at orbital and sub-orbital scales. The glacial-

interglacial shifts in species assemblage composition support the notion that precipitation drives the diatom 

response, enabling confident interpretation of changes in moisture availability. The sensitivity of the lake and its 

biota to changes in the hydrological balance, and hence shifts in nutrient status, are the most notable elements of 

variation since MIS 5 to the present. 

The imprint of rapid climate variations in the diatom record is readily apparent, implying that North Atlantic 

forcing was the prime factor driving changes in Lake Prespa over the last 91.0 cal ka. Indeed, variations in the 

relative abundances of S. pinnata and the Cyclotella complex can be regarded as indicative of differences in the 

intensity of the impact of glacial Heinrich events on the lake, implying that the H2, H5 and H6 events were probably 

more severe than H1 and H3. The imprint of H4 needs future clarification, to disentangle the effects of climate and 

tephra influx on the diatom flora. Still, more diatom data from longer regional records are required to test temporal 

and spatial variation of moisture availability in the northern Mediterranean. 

Acknowledgments The authors thank the Alexander von Humboldt Foundation for financial support of the project ‘‘Reconstruction of 

past environmental variations in ancient Lake Ohrid, a diatom inferred perspective.’’ The project was partly funded by the German 

Research Foundation (DFG) within the scope of the Project B2 of the Collaborative Research Center 806 ‘‘Our Way to Europe.’’ We 

thank Paul B. Hamilton, Canadian Museum of Nature, Canada, for helpful discussions about palaeolimnology and Mrs. Danijela Mitic´ 

Kopanja, Institute of Biology, Faculty of Natural Sciences, Skopje, Macedonia for technical assistance. We also thank our colleagues 

in the Institute of Geology and Mineralogy and the Seminar of Geography and Education (University of Cologne) for help in the field 

and in the lab. We are grateful to Dr. Timothy Jones, Lancaster Environment Centre, Lancaster University, UK for providing diatom 

data from Lake Ioannina core I-08. 



 19 

123 

References 

Alley RB (2000) The younger dryas cold interval as viewed from central Greenland. Quat Sci Rev 19:213–226 
Ampel L, Wohlfarth B, Risberg J, Veres D (2008) Paleolimnological response to millennial and centennial scale climate variability 

during MIS 3 and 2 as suggested by the diatom record in Les Echets, France. Quat Sci Rev 27:1493–1504 
Ampel L, Bigler C, Wohlfarth B, Risberg J, Lotter AF, Veres D (2010) Modest summer temperature variability during DO cycles in 

western Europe. Quat Sci Rev 29:1322–1327 
Aufgebauer A, Panagiotopoulos K, Wagner B, Scha¨bitz F, Viehberg FA, Vogel H, Zanchetta G, Sulpizio R, Leng MJ, Damaschke M 

(2012) Climate and environmental change 
in the Balkans over the last 17 ka recorded in sediments from Lake Prespa (Albania/F.Y.R. of Macedonia/Greece). Quat Int 

274:122–135 
Barberi F, Innocenti F, Lirer L, Munno R, Pescatore TS, Scandone R (1978) The Campanian Ignimbrite: a major prehistoric eruption 

in the Neapolitan area (Italy). Bull Volcanol 41:10–22 
Barker P, Telford R, Merdaci O, Williamson D, Taieb M, Vincens A, Gibert E (2000) The sensitivity of a Tanzanian crater lake to 

catastrophic tephra input and four millennia of climate change. The Holocene 10:303–310 
Battarbee RW (1986) Diatom analysis. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, 

Chichester, pp 527–570 
Bond G, Broecker W, Johnsen S, McManus J, Labeyrie L, Jouzel J, Bonani G (1993) Correlations between climate records from North 

Atlantic sediments and Greenland ice. Nature 365:143–147 
Chapman MR, Shackleton NJ (1999) Global ice-volume fluctuations, North Atlantic ice-rafted events, and deep-ocean circulation 

changes between 130 and 70 ka. Geology 27:795–798 
Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM (2009) The last glacial 

maximum. Science 325:710–714 
Cruces F, Urrutia R, Parra O, Araneda A, Treutler H, Bertrand S, Fagel N, Torres L, Barra R, Chirinos L (2006) Changes in diatom 

assemblages in an Andean lake in response to a recent volcanic event. Arch Hydrobiol 165(1):23–35 
Cvetkoska A, Reed JM, Levkov Z (2012) Diatoms as indicators of environmental change in ancient Lake Ohrid during the last glacial-

interglacial cycle (ca 140 ka). In: Witkowski A (ed) Diatom monographs, vol 15. ARG Gartner Verlag, Ruggell, Liechtenstein, p 

220 
Cvetkoska A, Hamilton PB, Ognjanova-Rumenova N, Levkov Z (2014a) Observations of the genus Cyclotella (Ku¨tzing) Bre´bisson 

in ancient lakes Ohrid and Prespa and a description of two new species C. paraocellata sp. nov. and C. prespanensis sp. nov. Nova 

Hedwigia 98(3–4): 313–340 
Cvetkoska A, Levkov Z, Reed JM, Wagner B (2014b) Late glacial to Holocene climate change and human impact in the Mediterranean: 

the last ca. 17 ka diatom record of Lake Prespa (Macedonia/Albania/Greece). Palaeogeogr Palaeoclimatol Palaeoecol 406:22–32 
Damaschke M, Sulpizio R, Zanchetta G, Wagner B, Bo¨hm A, Nowaczyk N, Rethemeyer J, Hilgers A (2013) Tephrostratigraphic 

studies on a sediment core from Lake Prespa in the Balkans. Clim Past 9:267–287 
Fitzsimmons KE, Hambach U, Veres D, Iovita R (2013) The Campanian Ignimbrite Eruption: new data on volcanic ash dispersal and 

its potential impact on human evolution. PLoS One 8(6):e65839 
GICC05modelext (2010). http://www.iceandclimate.nbi.ku.dk/ data/. Accessed 15 Jan 2014 
Grimm EC (1987) CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental 

sum of squares. Comput Geosci 13:13–35 
Grimm EC (1991) Tilia and Tilia-Graph. Illinois State Museum, 

Springfield 
Hollis GE, Stevenson AC (1997) The physical basis of the Lake Mikri Prespa systems: geology, climate, hydrology and water quality. 

Hydrobiologia 351:1–19 
Holm NP, Armstrong DE (1981) Role of nutrient limitation and competition in controlling the populations of Asterionella formosa 

and Microcystis aeruginosa in semicontinuous culture. Limnol Oceanogr 24(4):622–634 
Hustedt F (1945) Diatomeen aus Seen und Quellgebieten der Balkan-Halbinsel. Arch Hydrobiol 40:867–973 
Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the Globe Version 4. Available from: the CGIAR-CSI SRTM 

90 m Database. Retrieved 27.11.2011, 
from http://srtm.csi.cgiar.org 

Jones TD, Lawson IT, Reed JM, Wilson GP, Leng MJ, Gierga M, Bernasconi SM, Smittenberg RH, Hajdas I, Bryant CL, Tzedakis 

PC (2013) Diatom-inferred late Pleistocene and Holocene palaeolimnological changes in the Ioannina basin, northwest Greece. J 

Paleolimnol 49:185–204 
Jongman RHG, ter Braak CJF, van Tongeren OFR (1995) Data analysis in community and landscape ecology. Cambridge University 

Press, Cambridge, p 324 
Juggins S (1991–2007) C2 Version 1.5 User guide. Software for ecological and palaeoecological data analysis and visualization. 

Newcastle University, Newcastle upon Tyne, UK, p 73 

http://www.iceandclimate.nbi.ku.dk/data/
http://www.iceandclimate.nbi.ku.dk/data/
http://srtm.csi.cgiar.org/


20  

 

Kilham P, Kilham SS, Hecky RE (1986) Hypothesized resource relationships among African planktonic diatoms. Limnol Oceanogr 

31:1169–1181 
Krammer K, Lange-Bertalot H (1986–1991) Su?bsswassswasserflora von Mitteleuropa. In: Ettl H, Ga?rtner 998 G, Gerloff J, Heynig 

H, Mollenhauer D (eds) . 2/1: p. 876; 2/2: 
p. 596; 2/3: 1000 p. 576; 2/4: p. 437; 2/5: Gustav Fischer Verlag, Stuttgart 

Krstic´ S (2012) Environmental changes in Lakes catchments as a trigger for rapid eutrophication—A Prespa Lake Case Study. In: 

Piacentini T (ed) Studies on environmental and applied geomorphology, pp 63–118. http://www.intechopen.com/ books/studies-

on-environmental-and-applied-geomorphology/ geomorphological-changes-in-lakes-catchments-as-a-triggerfor-rapid-

eutrophication-a-prespa-lake-cas 
Lacey JH, Francke A, Leng MJ, Christopher VH, Wagner B (2014) A high-resolution Late Glacial to Holocene record of environmental 

change in the Mediterranean from Lake Ohrid (Macedonia/Albania). Int J Earth Sci (Geol Rundsch). doi:10.1007/s00531-014-

1033-6 
Leng MJ, Baneschi I, Zanchetta G, Jex CN, Wagner B, Vogel H (2010) Late Quaternary palaeoenvironmental reconstruction from 

Lakes Ohrid and Prespa (Macedonia/Albania border) using stable isotopes. Biogeosciences 7:3109–3122 
Leng MJ, Wagner B, Boehm A, Panagiotopoulos K, Vane CH, Snelling A, Haidon C, Woodley E, Vogel H, Zanchetta G, Baneschi I 

(2013) Understanding past climatic and hydrological variability in the Mediterranean from Lake Prespa sediment isotope and 

geochemical record over the Last Glacial cycle. Quat Sci Rev 66:123–136 

Levin I, Kromer B (2004) The tropospheric 14CO2 level in midlatitudes of the Northern Hemisphere (1959–2003). Radiocarbon 

46:1261–1272 
Levkov Z, Blanco S, Krstic S, Nakov T, Ector L (2007a) Ecology of benthic diatoms from Lake Macro Prespa 

(Macedonia). Algol Stud 124:71–83 
Levkov Z, Krstic S, Metzeltin D, Nakov T (2007b) Diatoms of Lakes Prespa and Ohrid. About 500 taxa from ancient lake system. 

Iconographia Diatomologica 16. ARG Gartner Verlag, Ruggell, p 603 
Lisiecki LE, Raymo ME (2005) A Pliocene–Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography 

20:PA1003 
Magny M, Joannin S, Galop D, Vanniere B, Haas JN, Basseti M, Bellintani P, Scandolari R, Desmet M (2012) Holocene 

palaeohydrological changes in the Northern Mediterranean borderlands as reflected by the lake-level record of Lake Ledro, 

Northeastern Italy. Quat Res 77:382–396 
Matzinger A, Spirkovski Z, Patceva S, Wu¨est A (2006) Sensitivity of ancient Lake Ohrid to local anthropogenic impacts and global 

warming. J Gt Lakes Res 32:158–179 
North Greenland Ice Core Project members (2004) High-resolution record of Northern Hemisphere climate extending into the last 

interglacial period. Nature 431:147–151 
Panagiotopoulos K, Aufgebauer A, Scha¨bitz F, Wagner B (2013) Vegetation and climate history of the Lake Prespa region since the 

Lateglacial. Quat Int 293:157–169 
Panagiotopoulos K, Bo¨hm A, Leng MJ, Wagner B, Scha¨bitz F (2014) Climate variability over the last 92 ka in SW Balkans from 

analysis of sediments from Lake Prespa. Clim Past 10:643–660 
R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 

ISBN 3-900051-07-0. http://www.Rproject.org/ 
Reed JM, Cvetkoska A, Levkov Z, Vogel H, Wagner B (2010) The last glacial-interglacial cycle in Lake Ohrid (Macedonia/Albania): 

testing diatom response to climate. Biogeosciences 7:3083–3094 
Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich 

M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, 
McCormac FG, Manning SW, Reimer RW, Richards DA, 

Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age 

calibration curves, 0–50,000 years cal BP. Radiocarbon 51:1111–1150 
Schmidt R, Kamenik C, Lange-Bertalot H, Klee R (2004) Fragilaria and Staurosira (Bacillariophyceae) from sediment surfaces of 40 

lakes in the Austrian Alps in relation to environmental variables, and their potential for palaeoclimatology. J Limnol 63(2):171–

189 
Smol JP (1988) Paleoclimate proxy data from freshwater arctic diatoms. Verh Int Ver Limnol 23:837–844 
Stankovic´ S (1960) The Balkan Lake Ohrid and its living world. Monogr. Biol. IX. Uitgeverij Dr. W. Junk, Den Haag, Netherlands 
Vogel H, Zanchetta G, Sulpizio R, Wagner B, Nowaczyk N (2010) A tephrostratigraphic record for the last glacial interglacial cycle 

from Lake Ohrid, Albania and Macedonia. J Quat Sci 25:320–338 
Wagner B, Reicherter K, Daut G, Wessels M, Matzinger A, Schwalb A, Spirkovski Z, Sanxhaku M (2008a) The potential of Lake 

Ohrid for long-term palaeoenvironmental reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol 259:341–356 
Wagner B, Sulpizio R, Zanchetta G, Wulf S, Wessels M, Daut G (2008b) The last 40 ka tephrostratigraphic record of Lake Ohrid, 

Albania and Macedonia: a very distal archive for ash dispersal from Italian volcanoes. J Volcanol Geoth Res 177:71–80 
Wagner B, Lotter AF, Nowaczyk N, Reed JM, Schwalb A, Sulpizio R, Valsecchi V, Wessels M, Zanchetta G (2009) A 40.000-year 

record of environmental change from ancient Lake Ohrid (Albania and Macedonia). J Paleolimnol 41: 407–430 

http://www.intechopen.com/books/studies-on-environmental-and-applied-geomorphology/geomorphological-changes-in-lakes-catchments-as-a-trigger-for-rapid-eutrophication-a-prespa-lake-cas
http://www.intechopen.com/books/studies-on-environmental-and-applied-geomorphology/geomorphological-changes-in-lakes-catchments-as-a-trigger-for-rapid-eutrophication-a-prespa-lake-cas
http://www.intechopen.com/books/studies-on-environmental-and-applied-geomorphology/geomorphological-changes-in-lakes-catchments-as-a-trigger-for-rapid-eutrophication-a-prespa-lake-cas
http://www.intechopen.com/books/studies-on-environmental-and-applied-geomorphology/geomorphological-changes-in-lakes-catchments-as-a-trigger-for-rapid-eutrophication-a-prespa-lake-cas
http://www.intechopen.com/books/studies-on-environmental-and-applied-geomorphology/geomorphological-changes-in-lakes-catchments-as-a-trigger-for-rapid-eutrophication-a-prespa-lake-cas
http://www.intechopen.com/books/studies-on-environmental-and-applied-geomorphology/geomorphological-changes-in-lakes-catchments-as-a-trigger-for-rapid-eutrophication-a-prespa-lake-cas
http://dx.doi.org/10.1007/s00531-014-1033-6
http://dx.doi.org/10.1007/s00531-014-1033-6
http://www.r-project.org/
http://www.r-project.org/


 21 

123 

Wagner B, Vogel H, Zanchetta G, Sulpizio R (2010) Environmental changes on the Balkans recorded in the sediments from lakes 

Prespa and Ohrid. Biogeosciences 7:3365–3392 
Wagner B, Aufgebauer A, Vogel H, Zanchetta G, Sulpizio R, Damaschke M (2012) Late Pleistocene and Holocene contourite drift in 

Lake Prespa Albania/F.Y.R. of Macedonia/Greece. Quat Int 274:112–121 
Wagner B, Leng MJ, Wilke T, Bo¨hm A, Panagiotopoulos K, Vogel H, Lacey JH, Zanchetta G, Sulpizio R (2014a) Distinct lake level 

lowstand in Lake Prespa (SE Europe) at the time of the 74 (75) ka Toba eruption. Clim Past 10:261–267 
Wagner B, Wilke T, Krastel S, Zanchetta G, Sulpizio K, Reicherter K, Leng M, Grazhdani A, Trajanovski S, Levkov Z, Reed J, Wonik 

T (2014b) More than one million years of history in Lake Ohrid cores. Eos Trans Am Geophys Union 95(3):25–26 
Wagner B, Wilke T, Krastel S, Zanchetta G, Sulpizio R, Reicherter K, Leng MJ, Grazhdani A, Trajanovski S, Francke A, Lindhorst 

K, Levkov Z, Cvetkoska A, Reed JM, Zhang X, Lacey JH, Wonik T, Baumgarten H, Vogel H (2014c) The SCOPSCO drilling 

project recovers more than 1.2 million years history from Lake Ohrid. Sci Drill 17:19–29 
Wilson GP, Reed JM, Lawson IT, Frogley MR, Preece RC, Tzedakis PC (2008) Diatom response to the last glacial interglacial 

transition in the Ioannina basin, northwest Greece: implications for Mediterranean palaeoclimate reconstruction. Quat Sci Rev 

27:428–440 
Wilson GP, Frogley MR, Roucoux KH, Jones TD, Leng MJ, Lawson IT, Hughes PD (2013) Limnetic and terrestrial responses to 

climate change during the onset of the penultimate glacial stage in NW Greece. Glob Planet Change 107:213–225 
Wolff EW, Chappellaz J, Blunier T, Rasmussen SO, Svensson A (2010) Millennial-scale variability during the last glacial: the ice core 

record. Quat Sci Rev 29:2828–2838 


