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Abstract 

This paper investigates the extent to which the size affects the SMEs probabilities of bankruptcy. Using 

a dataset of (11,117) US non-financial firms, of which (465) filed for insolvency under chapters 7/11 

between 1980 and 2013. We forecast the bankruptcy probabilities by developing four discrete-time 

duration-dependant hazard models for SMEs, Micro, Small, and Medium firms. A comparison of the 

default prediction models for medium firms and SMEs suggest that an almost identical set of 

explanatory variables affect the default probabilities leading us to believe that treating each of these 

groups separately has no material impact on the decision making process. However, comparisons 

between the micro and small firms with the SMEs firms strongly suggest that these categories need 

to be considered separately when modelling their credit risk.  
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1. Introduction: 

Small and medium-sized enterprises (SMEs) are viewed as the backbone of the economy of 

many countries all over the world since they are the incubators of employment, growth, and 

innovation (Altman and Sabato, 2007). SMEs play a vital role in the US economy where 

statistics from the “US Small Business Administration3” show that small businesses make up 

99.7% of US employer firms in 2011, and they accounted for 63% of the new jobs created 

between 1993 and 2013. These numbers emphasize the importance of SMEs as job creation 

engines; Furthermore, the Bureau of Labour Statistics4 and a study by the economist 

intelligence unit in 2009 show that during the financial crises SMEs continued to hire 

employees and create new job opportunities (Economist intelligence Unit, 2009).  

The introduction of the new Basel Capital accord and the global financial crises of 2007 

opened the door for more in-depth and adequate research on failure5 prediction models for 

all firms. However, the financial distress definition of Basel II, 90 days overdue on credit 

agreement payments, which is considered as the operational definition failed to distinguish 

between large and small firms which have different structure from credit risk point of view 

(Dietsch and Petey, 2004; and Altman and Sabato, 2007).  

Credit risk modelling for large, listed firms is extensive and gravitates towards two 

approaches: The Altman (1968) approach which uses historical accounting data to predict 

bankruptcy; and the Merton (1974) approach which relies on securities market information.   

More recently, banks and financial institutions started to realize the importance of 

distinguishing SMEs from large firms while modelling credit risk since they require specific risk 

management tools and methodologies to be developed for them (Altman et al., 2010). In line 

with this, Dietsch and Petey (2004) argue that German and French SMEs are riskier than large 

firms but have lower asset correlation with each other. Altman and Sabato (2007) provide a 

                                                           
3 Small Business Administration known as “SBA” was created in 1953 as an independent agency of the federal 
government to aid, counsel, assist and protect the interests of small businesses in the US. For more details: 
http://www.sba.gov/ 
4 Source: Bureau of Labour Statistics, BED. For the latest employment statistics, see Advocacy’s quarterly reports, 
www.sba.gov/advocacy/10871. 
5 The terms failure, bankruptcy, default, and insolvency are used interchangeably in this paper. 
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distress prediction model specifically designed for the US SMEs sector based on a set of 

financial ratios derived from accounting information.  

In recent years a new strand of literature has started to focus on the diversity within the SME 

category dividing the SMEs into micro, small, and medium sized firms. These categories are 

classified in terms of the firms’ management style (Wager, 1998), access to finance (Beck et 

al., 2006), number of employees (Gupta et al., 2014) etc. A limited literature in this area has 

been devoted to studying the credit risk behaviour of these different categories (see for 

example, Gupta et al., 2014). In our study we will address this research gap by classifying SMEs 

into three distinct categories (micro, small, and medium) while developing a bankruptcy 

prediction model using a set of financial ratios. We will apply the discrete-time duration-

dependant hazard rate modelling technique to develop separate bankruptcy prediction 

models for each of the three categories.  

The main contribution of this paper is to investigate the extent to which the size affects the SMEs 

probabilities of bankruptcy by dividing our sample into three main size segments namely micro, small, 

and medium. In addition, we forecast the bankruptcy probabilities by developing discrete-time 

duration-dependant hazard models. Our paper is a continuation and improvement on three 

papers in the literature about SMEs failure: Altman and Sabato (2007), Holmes et al. (2010), 

and Gupta et al. (2014). We differ from Altman and Sabato’s (2007) paper in two ways. Firstly, 

we classify SMEs into three categories (micro, small, and medium) while modelling for 

bankruptcy prediction. We try to capture any differences that exist between these categories 

and to what extent this might help lenders to further improve their credit models. Secondly, 

we utilize a more recent sample period (in and out of sample) which includes the recent 

financial crises in 2007, by doing this we assess the extent to which the financial crises 

affected the SMEs sector and the bankruptcy prediction model of SME firms. Holmes et al. 

(2010) study the survival of SMEs for the period from 1973 till 2001 and distinguish between 

micro firms and small and medium firms using hazard model methodology. They find that 

each segment is affected differently by firm-specific and macro-economic factors. However, 

the data used in their study differs significantly from our data, as they concentrate their 

sample on a specific geographical location within the UK (North-East England) and limited 

their sample only to a specific industrial segment which is the manufacturing sector and this 

sector represents only 12% of the UK firms. Moreover, they have not used any financial 
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information in their analysis and cover a wide and back dated sampling period. We differ from 

the paper of Gupta et al.’s (2014) in several ways. First, we test the SMEs categories on a 

geographically different sample (US firms) and in doing so we emphasize the soundness and 

significance of distinguishing between the broad SMEs categories. Second, from a 

methodological point of view, while applying discreet hazard models, the estimation of 

baseline hazard should be done using time dummies (Beck et al., 1998) or some other 

functional form to model time (Jenkins, 2005). However, Gupta et al. (2014) have created the 

baseline hazard while including insolvency risk variable which distorts the idea of baseline 

hazard. Moreover, they utilize the ROC curve as their out of sample validation technique, 

however, this technique has been criticized by many scholars who argued it generates 

misleading results. In our study, we apply certain improvements to their paper by establishing 

a more precise baseline hazard function based on time dummies and apply an out of sample 

evaluation technique similar to the one used by Shumway (2001) which provides more 

accurate results.  

Our analysis is carried out on a sample of (11,117) US non-financial firms of which (465) are 

defaulted firms, spanning a time period from 1980 till 2013. Our empirical findings show that 

significant differences exist between the bankruptcy attributes of micro and small firms on 

one hand and SMEs firms on the other. Therefore, separate treatment should be provided 

while modelling the credit risks of these categories. Moreover, we find similar results to those 

found by Gupta et al. (2014) in that the explanatory power of financial reports increases with 

the firm size. We find that medium and SMEs bankruptcy attributes have almost identical 

explanatory power leading us to believe that there is no material impact on the decision 

making process between these two groups unlike the micro and small SMEs. Finally, we 

provide an out of sample validation following the Shumway (2001) measure. Our out of 

sample results show good performance classifications for the four bankruptcy prediction 

models developed.  

The remainder of the paper proceeds as follows. Section 2 provides an overview of the 

definition of SMEs, previous attempts to model failure probabilities for SMEs, and the studies 

conducted on micro, small, and medium-sized enterprises. Section 3 provides explanations 

about the source of the data used, the statistical methods utilized in this research, and the 

selection of covariates included in this study. Section 4 presents the key descriptive statistics 

 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



5 
 

for the covariates used and their correlation matrix, the univariate analysis applied, and the 

development of the discrete-time duration-dependant hazard models estimated for each of 

the SMEs segments.  Finally, section 6 provides conclusions. 

 

2. Literature Review 

Research on small and medium-sized enterprises has gained a lot of attention and covered a 

wide range of issues in the previous decade. This section reviews the issues that are of 

particular relevance to this study which are the definition of SMEs, previous attempts to 

model failure probabilities for SMEs, and studies conducted on micro, small, and medium-

sized enterprises. 

2.1. SMEs Definition 

To date, countries have failed to agree a general definition for small and medium sized 

enterprises. Therefore, each country defines their SMEs according to a particular set of firm-

characteristics and quantitative variables. The most used variables in distinguishing small 

from large firms are the legal status, number of employees, independence, employment, 

industrial sector, asset size, and capital investment. The two main economic zones of interest 

to our study that provide detailed definitions for SMEs are the European Union and the US.  

The Small Business Administration (SBA) is the main organisation that has been created by 

the US congress to deal with issues relating to SMEs. The SBA is also considered to be the 

major authority that defines SMEs in the US. A small business is defined in terms of the 

average number of employees and the average annual receipts. In addition, the SBA defines 

a number of other criteria to qualify as a small business: (i) is organised for profit (ii) has a 

place of business in the US (iii) Contributes to the US economy by paying taxes or using 

American products, materials, or labours (iv) independently owned and operated (v) does not 

exceed the numerical size standard for its industry6. In general, two widely used size 

standards have been established by the SBA, the maximum number of employees should be 

                                                           
6 For detailed information about determining the business size, see http://www.sba.gov/content/determining-
business-size 
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500 and the average annual receipts should be less than $7.5 million. However, there are a 

number of exceptions depending on the industry classification of the firm.  

The 1996 law concerning the SMEs operating within the European Union Framework was 

updated in 2003 and provides a widely accepted definition for SMEs taking into account the 

new Basel rules. The law defines SMEs as firms having less than 250 employees with annual 

turnover of less than €50 million in sales.  

2.2. Small and Medium-Sized Enterprises Failure 

Measuring and tracking the probability of failure of small and medium-sized enterprises is a 

difficult task. This is due to the difficulties associated with locating and identifying these firms, 

in addition to determining the exact reasons for their failure (Altman et al., 2010). Despite the 

existence of these difficulties a considerable amount of research has been carried out to 

investigate the rates and causation of such failures (see for example, Watson and Everett 

(1993); Headd (2003); Carter and Auken (2006); Altman et al. (2010); and Gupta et al. (2014)).  

The failure of new firms should not always be taken as economically inefficient, since it might 

enhance social welfare and reduce industry costs. In addition, according to Knott and Posen 

(2005) not all business failures are due to financial difficulties. Given this argument, before 

analysing business failure rates, it is essential to distinguish between firm failure and firm 

planned exit strategies where the business is actually healthy enough to continue operation 

(Headd (2003); and Bates (2005)). In line with this, Watson and Everett (1996) argue that 

some financially successful firms might decide to close for different reasons such as closing to 

limit losses, change of ownership, opportunity cost, switching costs, personal decisions etc.  

Headd (2003) report that only one third of new businesses closure is due to circumstances 

that owner believed were due to a lack of success. Therefore in our study we have 

distinguished between failure due to financial constraints and closure due to strategic gains. 

Since the aim of this study is to develop a default prediction model for SMEs we separate the 

cases of failure from those of closure to improve the quality of the information available and 

the power of the prediction model and include only the firms that failed due to financial 

constraints. 
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The literature has further investigated the reasons behind business failures. Altman et al. 

(2010) mention two principle reasons for firms’ closure which are lack of planning and 

insufficient capitalisation. Hutchinson and Xavier (2006) suggest that financial difficulties are 

the main factor for SMEs failure, while others such as Peacock (2000) report that poor 

managerial skills are behind these failures. Carter and Auken (2006) classify default factors 

into direct and indirect costs. They have suggested that the direct costs such as lack of 

knowledge, economic climate, and debt financing are the main reasons for firm failure, while 

indirect costs such as self-employment, personal collateral, self-esteem can play a secondary 

role.  

In their paper Altman et al. (2010) suggest that different asset size segments lead to different 

SMEs insolvency risk behaviour. They find that the relationship between asset size and 

insolvency risk appears to be non-linear. They justify their argument that the lower the asset 

values the less likely the firm to be pursued by creditors for bankruptcy proceedings, since 

little opportunity remains for creditors to recover their debts. However, when the firm’s 

assets value increases, insolvency proceedings become more attractive for creditors. 

Therefore, insolvency risk increases with increasing the asset size. However, after a certain 

threshold level this increase in bankruptcy risk starts to decline with additional increase in 

assets value. This finding is further supported in the literature that finds a non-monotone 

impact of size (for more details see, Brüderl et al. (1992); Falkenstein (2000); and Hamerle et 

al. (2006)). In line with the asset size argument, this paper tends to further classify SMEs into 

three distinctive categories (micro, small, and medium)  believing that some factors leading 

to failure probability may vary across the three size categories. To our knowledge this is the 

first study conducted on the US market that develops a SMEs model for credit risk while 

distinguishing among micro, small, and medium firms.  

2.3. Micro, Small, and Medium-Sized Enterprises 

Micro, small and medium-sized enterprises (SMEs) are the engine of the economy. They are 

an essential source of jobs and create entrepreneurial spirit and innovation and are thus 

crucial for fostering competitiveness and employment. In 2005 a new definition from the EU 

came into force further classifying SMEs into three categories namely, micro, small, and 

medium enterprises. They defines a firm as ‘micro’ if it has less than 10 employees and an 
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annual turnover of under €2 million; ‘small’ if it has less than 50 employees with an annual 

turnover of less than €10 million, and ‘medium’ if it has less than 250 employees with an 

annual turnover of less than €50 million. Since our paper aims to analyse the US market, we 

partially adopt these definitions and try to fit them within the SBA definition for SMEs in the 

US relying on the number of employees as the main factor of classification. Therefore, we will 

define a firm as ‘micro’ if it has less than 20 employees; ‘small’ if it has less than 100 

employees; and ‘medium’ if it has less than 500 employees.  

 

The empirical literature on SMEs has been extensively investigated especially after the new 

Basel Accord for bank capital adequacy (Basel II) (see for example Saurina and Trucharte 

(2004); Altman and Sabato (2005); and Berger (2006)). These studies covered a broad area of 

SMEs literature such as understanding the capital structure determinants of SMEs (Sogorb-

Mira, 2005), investigating the key drivers of SME profitability and riskiness for US banks (Kolari 

and Shin, 2004) and the lending structure and strategies (Berger and Udell, 2004) etc.  

 

Despite all these studies, a limited number of research studies have tried to further 

understand the sub-categories of SMEs and whether each category enjoys a unique set of 

characteristics. A study on the personnel management dimension within the SMEs conducted 

by Kotey and Slade (2005) show that differences exists between micro, small, and medium 

Australian firms. Their paper reports that the rate of adoption of formal human resources 

management practices increases with firm size. The results reported demonstrate a move 

toward division of labour, hierarchical structures, increased documentation, and more 

administrative processes as the number of employees increase.  In addition, they advise 

taking into account the diversity of practices associated with various firm sizes and providing 

consultation and management training to SMEs personnel. Another study by De Mel et al. 

(2009) focused on the innovation dimension within the different categories of SMEs. They 

report that more than one quarter of microenterprises are found to be engaging in 

innovation, with marketing innovations the most common, and firm size is found to have a 

stronger positive effect, and competition a stronger negative effect, on process and 

organizational innovations than on product innovations.  
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Beck et al. (2005) investigate the effect of firm size on the extent to which the corruption of 

bank officials and financial and legal issue constrain a firm’s growth. They found that the 

smaller the firm the more it is affected by these constrains. Besides differences in personnel 

management, innovation, and corruption, Beck et al. (2006) find that accessing finance also 

depends on the firm size, where they find that the larger the firm size the less access to 

finance is seen as a problem. They report that the probability a firm rates financing as a major 

obstacle toward its growth is 39% for small, 38% for medium, and 29% for large firms.  

 

With regard to leverage decisions and capital structure, Ramalho and Da Silva (2009) conduct 

a study on Portuguese SMEs firms and show that different size structure (micro, small, 

medium, and large) significantly affect the determinants of leverage decisions. Research by 

Mateev et al. (2003) explores the capital structure choices for each of the SMEs categories. 

They find that medium-sized firms are mainly dependant on long term bank loans as their 

preferred method of external financing, while short-term loans and trade credits are the main 

source of external financing for both micro and small firms. 

 

Recently, more attention has been given to the effect of SMEs categories on default 

probabilities and to what extent firm size matters in prediction of default. Empirical literature 

argues that the larger the firm is the more stable cash flow it holds and the more diversified 

it is (Gill et al., 2009) leading to a negative relationship between firm size and default 

probabilities (Pettit and Singer, 1985).  A recent study by Gupta et al. (2013) investigates the 

financial and non-financial factors that influence failure within each of the SME categories 

(micro, small, and medium). Their findings provide strong evidence that the credit risk 

characteristics of firms within the broad SMEs segment do vary suggesting a separate 

treatment for each of the categories to get a better pricing of credit risk.  

 

 

 

 

 

3. Empirical Analysis 
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This section provides detailed explanation about the source of the data used, the statistical 
methods utilized in this research, and the selection of covariates included in this study.  

3.1. Data: 

Our empirical analysis is performed using panel data from the Compustat database. The 

sample employs annual firm-level accounting data for (465) bankrupt and (11,117) non-

bankrupt US small and medium-sized enterprises having less than 500 employees and an 

average annual receipts of less than $ 7.5 million, covering an analysis period from 1980 till 

2013.  

{Insert Table I here} 

Furthermore, to validate the out-of-sample prediction performance of the models developed 

the entire study window is divided into two groups: the estimation period (1980-2008, 28 

years) for the model building and the forecasting period (2009-2013, 5 years) for the out-of-

sample forecasting performance test.  

As discussed above, the SBA has established a widely used size standard to define SMEs of 

500 employees and annual turnover receipts of $ 7.5 million for most industries. Moreover, 

the SMEs can be further classified into sub-samples of micro, small, and medium firms. The 

micro firms consists of less than 20 employees; firms are classified as “Small” if they have 

greater than or equal to 20 but less than 100; and “Medium” firms if they have greater than 

or equal to 100 and less than 500 employees. Further details regarding to the sub-samples 

are reported in table (I). It is important to mention that these definitions differ from the 

European Union ones which classify firms with only less than 250 employees as SMEs and 

which are used in different studies such as Altman et al. (2010) and Gupta (2014). Using our 

classifications, (213) failed micro firms are reported constituting around 46% of the total 

bankrupt SMEs sample compared to (115) failed firms for small SMEs and (137) failed firms 

for medium SMEs contributing 25% and 29% of the total bankrupt SMEs sample respectively.  

{Insert table II} 

In this study, we will consider firms to have failed only if they filed for legal bankruptcy 

proceedings (both Chapter 11 and 7) within the time period studied. Firms are classified as 

being legally bankrupt in Compustat database if the company has “TL” footnote on the status 
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alert (Data item STALT) indicating that the firm is bankruptcy or in liquidation (e.g. Chapter 

7/11). Furthermore, in line with other studies such as Altman et al. (2010) and Gupta et al. 

(2014), we exclude financial, insurance, and utility firms from our sample. The firms 

eliminated have industrial classification (SIC) codes from 6000 through 6999 for financial firms 

and 4900 through 4949 for regulated utilities. Finally, we will control for macroeconomic 

effects by including the changes in annual interest rates in the US throughout the period of 

our sample. This macroeconomic variable has been suggested by Hillegeist et al. (2001) as a 

control for macroeconomic conditions affecting the firm’s default probabilities. In addition, 

we control for industry effects by classifying the firms into nine distinctive categories 

according to the SIC codes and including the variable as a factorial variable. Extreme outliers 

have been eliminated so that our models are not heavily influenced by them, we winsorised 

all our financial ratios between 5th and 95th percentiles. In addition, we have lagged all the 

covariates by one-time period so that all information is available in the beginning of the 

relevant time period.  

{Insert table III} 

3.2. Discrete-Time Duration-Dependant Hazard Model 
3.2.1. The Hazard Model 

In his seminal work Shumway (2001) argues that static models such as multiple discriminant 

analysis (MDA) and ordinary single-period logit techniques are inappropriate for default 

prediction due to the characteristics of bankruptcy data. The underlying characteristics for 

the majority of firms evolve over time but static models allow only for a single firm-year 

observation for each non-failed firm that is randomly drawn from the used data-set, while, 

for failed firms the firm-year observation immediately preceding the bankruptcy filing year is 

selected on a non-random basis leading to a possible sample selection bias (Hillegeist et al. 

2004). Moreover, the single-period logit technique leads to understated values of standard 

errors (Beck et al. 1998), and fails to capture time-varying changes in the explanatory variable 

(Hillegeist et al. 2004). Therefore, researchers proposed new techniques to overcome the 

problems associated with static models. Hwang et al (2007) propose a robust semi-parametric 

logit model with smaller hold-out sample error rates. Whereas, Kukuk and Ronnberg (2013) 

suggest a mixed logit model which extends the normal logit model by allowing for varying 

stochastic parameters and non-linearity of covariates. Furthermore, Shumway (2001) 
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suggests the utilization of hazard models in predicting bankruptcy probabilities where these 

models should be specified as duration dependant models with time-varying covariates. He 

highlights three reasons why the hazard model should be preferred over the static model: (i) 

the failure of the static logit to account for each firm’s period at risk, (ii) the incorporation of 

time-varying explanatory variables, (iii) hazard models enjoy a higher predictive power in out-

of-sample tests. Recent studies compare the Shumway model with other static models and 

show better forecasting performance of hazard models (see among others Chava and Jarrow 

(2004); and Bauer and Agarwal (2014)).  

Furthermore, Hwang (2012) reports the superior performance of discrete-time duration-

dependant hazard rate compared to the discrete-time hazard model without time-varying 

specification. 

Nam et al. (2008) also argue that the discrete-time duration-dependant hazard model can be 

equivalent to a panel logistic model that incorporates macro-dependant base-line hazard.  

The conditional probability of a discrete time hazard function (𝜆𝜆) for firm i to default in the 

time interval t, given it survives up to this time interval is as follows:  

(𝜆𝜆�𝑡𝑡\𝑋𝑋𝑖𝑖,𝑡𝑡� = 𝑃𝑃𝑃𝑃(𝑇𝑇 = 𝑡𝑡\𝑇𝑇 ≥ 𝑡𝑡,𝑋𝑋𝑖𝑖,𝑡𝑡) 

T is discrete failure time; T = t states failure within the time interval t and 𝑋𝑋𝑖𝑖,𝑡𝑡 is the value of 

the covariates of firm i up to time interval t, whereas the hazard model can be expressed in 

the following equation: 

ℎ(𝑡𝑡\𝑋𝑋𝑖𝑖,𝑡𝑡) = ℎ(𝑡𝑡\0) . exp {𝑋𝑋𝑖𝑖,𝑡𝑡` 𝛽𝛽} 

Where, ℎ(𝑡𝑡\𝑋𝑋𝑖𝑖,𝑡𝑡) is the individual hazard rate of firm i at time t and 𝑋𝑋𝑖𝑖,𝑡𝑡 is the vector of 

covariates of each company i at time.  

The discrete hazard technique fits well with the characteristics of the bankruptcy data utilized 

since it is consistent with the binary dependant variables and enjoys both time-series and 

cross-sectional characteristics. Furthermore, in line with the previous literature and to avoid 

the limitation of other statistical techniques we estimate our hazard models in a discrete-time 

framework with random effects (𝑎𝑎𝑖𝑖) thus controlling for unobserved heterogeneity and 

shared frailty. The final equation used in this paper takes the following form, where a(t) is the 
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time-varying covariate introduced to capture the baseline hazard rate and 𝑃𝑃𝑖𝑖,𝑡𝑡 is the 

probability of experiencing the event by subject i and time t.  

𝑃𝑃𝑖𝑖,𝑡𝑡 =  
𝑒𝑒𝛼𝛼(𝑡𝑡)+ 𝛽𝛽𝑋𝑋𝑖𝑖,𝑡𝑡

1 +  𝑒𝑒𝛼𝛼(𝑡𝑡)+ 𝛽𝛽𝑋𝑋𝑖𝑖,𝑡𝑡
 

3.2.2. Specification of The Baseline Hazard Rate: 

There are several ways to proxy the baseline hazard function a(t), when all the covariates are 

equal to zero, depending on the definition of the time-varying covariates that have functional 

relationships with survival times. The first method is the log (survival time) which has been 

applied by Shumway (2001) who used a time-invariant constant term, ln(Age). This is used for 

duration-independent models where the baseline hazard rate is assumed to be a constant 

term. In this case, the individual hazard rate, h(t\Xi,t) for firm i will be independent of the 

particular point of time or the survival period. The second method employs time dummies as 

a proxy for the baseline hazard rate. This method is utilized for duration-dependant models 

where the baseline hazard is assumed to be time-varying. Beck et al (1998) uses this method 

in their work, where the baseline hazard term, kt , is a dummy variable marking the length of 

the sequence of zeroes that precede the current observation. For example if the maximum 

survival time is sixty four years, then sixty three dummy variables are required for model 

estimation7. However, this method becomes more difficult if the maximum survival time in 

the dataset is very high as in the case of insolvency databases. Therefore, an alternative 

method to specify the baseline hazard rate is to use the piece-wise constant method. 

According to Jenkins (2005) this method splits the survival times into different time intervals 

that are each assumed to exhibit constant hazard rates. Overall, the choice of method 

depends on the shape of the hazard curve where frequent and continuous rises and falls 

suggest the use of fully non-parametric baseline hazard estimation.  

Recently, some studies have moved away from baseline hazard estimation using time 

dummies by establishing other versions of baseline hazard that incorporates different types 

of variables.  According to Nam et al (2008), indirect measures like time dummies are less 

effective in capturing time-varying macro dependences. Therefore, many researchers 

                                                           
7 The model is run using sixty three years rather than sixty four dummies in order not to fall in the 
multicollinearity trap.  
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propose direct measures to estimate the baseline hazard rate. For example, Hillegeist et al 

(2001) propose the use of two direct measures; the rate of recent defaults and changes in 

interest rates. Nam et al (2008) use changes in interest rates and volatility of foreign exchange 

rates, whereas Altman et al (2010) and Gupta et al. (2014) construct industry “weight of 

evidence” variables.  

3.2.3. Performance Evaluation 

In order to examine the effectiveness of the models developed for the predition of SMEs 

bankruptcy we perform a bankruptcy out-of-sample prediction test similar to Shumway 

(2001). We specify our out-of-sample period to be from 2009 to 2013. Therefore, we re-

calculate all the forecasting models for the period from 1980 till 2008 and then year by year 

we rank the firms into deciles based on their computed bankruptcy probabilities. The firms 

most likely to default in the subsequent year are placed into the first decile, the next most 

likely to default in the second decile, and so on. Subsequently, we report for each decile the 

percentage of firms that defaulted. The model is considered to enjoy better classification 

performance the higher the percentage of firms that experience default in the top deciles.  

 

3.3. Selection of Covariates 

A considerable number of ratios have been tested and used in the literature to predict SMEs 

default risk. Chen and Shimerda (1981) state that out of more than 100 financial ratios, almost 

50% were found useful in at least one empirical study. This study focuses on the role of 

accounting ratios on the probability of SMEs failure. Therefore, the variables are selected 

from five broad categories that capture the firm’s performance in the dimensions of 

profitability, leverage, activity, solvency, and liquidity.  For each of these categories, we add 

a number of financial ratios that have previously been shown to be effective in predicting 

SMEs insolvency risk.  

In order to select the most appropriate ratios for our final multivariate model, we apply two 

tests for each of the (20) financial ratios distributed over the five categories. Table (IV) 

presents the competing covariates that will be included in the univariate tests.   

{Insert Table IV here} 
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The first step in choosing among these ratios is the implementation of a univariate regression 

analysis. This univariate test provides us with an initial understanding of the discriminatory 

power of the explanatory variables (Nam et al. (2008); Altman et al. (2010)).  We keep all the 

ratios that show significant explanatory power and enjoy the expected sign relative to the 

dependant variable which is the probability of default. For the selected ratios we run a 

correlation test to identify any high correlations between these ratios. When ratios within 

each group exhibit high correlation, the covariates with lower chi-square values will be 

dropped from the final multivariate model since that indicates lower explanatory power for 

those ratios.  

 

 

 

 

 

 

 

 

 

4. Results and Discussion 

In this section we perform a univariate analysis of each individual covariate in our broad list 

of ratios followed by a correlation test. Furthermore, an analysis of key measures of 

descriptive statistics of the final selected explanatory variables is presented. Then we 

illustrate the process of developing our multivariate models for each SMEs category and for 

the SMEs as a whole. Thus allows us to compare and highlight the main differences between 

the models. Finally, we discuss the development of our out of sample classification 

performance for the models developed. 
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4.1. Univariate Analysis and Correlation Matrix 

In this section univariate analysis is provided before proceeding to the development of the 

final multivariate models. Univariate analysis has been widely recommended and used in the 

literature to obtain an initial understanding of the discriminate power of the explanatory 

variables (Nam et al. (2008); Altman et al. (2010); and Gupta et al. (2014)). Usually, the 

standard approach in survival analysis is to obtain an insight about the shape of survival 

functions through the estimation of Kaplan-Meier survival curves for all categorical variables 

(Cleves et al., 2010). In addition, non-parametric tests such as log-rank and Wilcoxon-Breslow-

Gehan tests are widely used to test the equality of survival functions for these categorical 

predictors (Cleves et al., 2010). However, the use of these tests may lead to biased 

discriminatory results if they have been applied on continuous predictors such as the case of 

our independent continuous variables8. So, to avoid any biased results univariate analysis will 

be conducted.  

The results of the univariate regressions are reported in table (V).  

{Insert Table V here} 

To select the set of covariates that enter our multivariate model we choose those covariates 

that enjoy the expected sign while displaying significant discriminatory power when 

estimated using the discrete-hazard model for the different SMEs segments. An initial 

overview on table (V) indicates that within the profitability ratios all of the covariates, except 

for NISALE, RETA, and NITE have a significant discriminatory power and all those covariates 

show the expected sign compared to the dependant variable. However, among the leverage 

ratios, STDEBV and TDTA do not show the expected sign, at a significant level, relative to the 

probability of failure for all the three SMEs segments. Therefore, those two covariates are not 

considered during the next step. Regarding the remaining three ratio categories each of CG, 

WCSALE, CSIS, QCACL and CSIAT are not further considered in the correlation process because 

they do not provide enough statistical significance. Finally, after analysing the univariate 

regression for each covariates, the following covariates are tested to detect any 

                                                           
8 See for example http://www.ats.ucla.edu/STAT/stata/seminars/stata_survival/default.htm. Also see Cleves 
et al. (2010) for a more thorough understanding. 
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multicollinearity, EBIDTAIE, EBIDTATA, NITA, XINTTA, CLTA, TCTA, TLTA, CETL, CASALE, TTA, 

WCTA, and CACL. 

The correlation matrix is presented in table (VI) providing details about the collinearity level 

among the selected covariates. Out of the twelve covariates, the highest correlations can be 

found between EBIDTATA and NITA of about (0.9104), CACL and CETL (0.8314), CACL and 

WCTA (0.7789), TLTA and WCTA (-0.7577). A number of other covariates  also have a 

substantial degree of correlation such as XINTTA and TLTA (0.6936) and CETL and CLTA (-

0.6728). Some of the covariates have to be dropped from our final multivariate model due to 

the high correlations that exist between them. When two covariates are highly correlated 

with each other we keep the covariate that enjoys higher Wald chi-square value obtained 

from the univariate test table. Therefore, we determine seven covariates to enter the 

multivariate models namely, EBIDTAIE, NITA, TLTA, TCTA,  CASALE, TTA, and WCTA.   

{Insert Table VI here} 

 

4.2. Descriptive Statistics  

 A discussion about the descriptive statistics of the covariates used in this study provides us 

with an initial understanding about any potential biases and variability that may arise among 

the variables in the multivariate models. In table (VII) we report the mean values and standard 

deviations for each of the three SMEs categories (micro, small, and medium) and for the 

whole sample separating the healthy and failed firms. A general overview of the descriptive 

analysis for the covariates selected shows initial evidence of differences among the variables 

in different SMEs categories which supports our argument that the factors influencing failure 

probability differ between each segment. For instance, the mean of EBIDTAIE differs among 

each category particularly between the SMEs which have (-4.518) mean value for failed firms 

and the medium failed firms with mean of (1.601) which might indicate that the profitability 

in medium failed firms is much higher than other groups. Surprisingly, the profitability of 

healthy micro and small SMEs have negative profitability ratios compared to healthy medium 

SMEs who enjoy a positive mean of (10.183). 
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In addition, the liquidity ratio WCTA among the micro and small failed firms provide negative 

results of (-0.006) and (-0.007) respectively, whereas it is positive among their peers in 

medium SMEs. This leads us to assume a liquidity problem among the micro and small failed 

firms compared to medium SMEs.  

On the other hand, according to economic hypotheses and previous studies such as (Altman 

and Sabato (2007); Altman et al. (2010) etc.) we expect higher means in the failed group than 

for healthy group for the covariates that enjoy a positive relationship with the probability of 

failure. Not surprisingly, the means of the leverage ratios (TLTA) and (TCTA) for failed firms 

are higher than that for the firms in the healthy group among all the categories. Similarly 

lower means are expected for the covariates in the failed groups compared to those in the 

healthy groups when these covariates are negatively related to failure probability such as 

EBIDTAIE, NITA, CASALE, TLTA, and WCTA.  Generally these expected relationships hold with 

the exception of that for TLTA. 

{Insert Table VII here} 

 

4.3. The Development of The Discrete-Time Duration-Dependant Hazard Models 

In this section, we report on four hazard models that have been separately developed for 

SMEs, micro, small, and medium firms. The first step in this section is the detection of the 

baseline hazard rate which is the corner stone to further develop the discrete-time duration-

dependant hazard models. This is followed by the development and discussion of the final 

multivariate models for each segment. The dependant variable for each model is a binary 

choice variable where (1) indicates bankruptcy and (0) indicates non-bankruptcy. The 

covariates selected to set up the multivariate models are chosen after consideration of their 

significance and correlation with other potential variables.  

4.3.1. Determination of the Baseline Hazard Rate 

The construction of the baseline hazard rate for these models can be done in different ways 

as explained in section (3.2.2.). However to chose between these methods the survival and 

hazard curves most be estimated and analysed. Figure (I) provides the estimated curves based 
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on the Kaplan-Meier estimator for the four models separately. The survival probabilities for 

the whole SMEs model tend towards slightly above 0.50 as the firm age increases towards 

sixty. However, the survival probability for micro SMEs reduces to below 0.25 when the firms’ 

age touches sixty years. Regarding the survival probability of small SMEs it moves to less than 

0.50 when the firms’ age approaches sixty years. In contrast to the small SMEs the survival 

probabilities of medium SMEs move in line with those of the SMEs taken as a whole to indicate 

survival probabilities of just above 0.50 at age 60. The different behaviours of the survival 

curves for each segment indicate that the survival attributes may be different for each size 

category. Even though the survival curves give us an initial understanding about the 

relationship between survival probabilities and the firms’ age, it is important to plot the 

hazard curve for each model in order to decide the most appropriate method of calculating 

the baseline hazard. From figure (I) we can observe that different baseline hazard rate 

specifications are required for each model since each hazard curve exhibits a different 

functional relationship with firms’ age. Moreover, since all the hazard curves show non-

constant hazard rates for any defined age group a piecewise-constant method is 

inappropriate for this calculation, therefore we will use a fully non-parametric baseline hazard 

specification using age specific dummy variables to specify the baseline hazard rate. The 

minimum age of a firm in our sample is 1 while the maximum age is 64. Therefore, we 

generate 63 age specific dummies to represent all age categories.  

{Insert Figure I here} 

 

 

 

4.3.2. Discrete-time Duration-dependant Hazard Models 

4.3.2.1. Hazard Model for all SMEs 

The first model developed in this paper is the hazard model for all the SMEs in our sample 

which contain all the firms having less than 500 employees accounting for a total of 79,016 

firm-year observations. In this model we have included all the covariates that are found to be 

significant during our univariate analysis. Table (VIII) provides the final results of the SMEs 
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prediction model where it can be seen that all the covariates have coefficients of the expected 

sign. However, the NITA covariate fails to provide any significant discriminatory power in the 

multivariate setup.  

4.3.2.2. Hazard Model for Micro Firms 

This model has been estimated using the Micro SMEs’ sample of firms that have less than 20 

employees. Table (VIII) reports the final distress prediction model for Micro firms using the 

six selected covariates. The results in table (VIII) indicate that only two covariates show 

significant power in identifying the financial distress of micro SMEs namely TLTA and WCTA, 

whereas EBIDTAIE, NITA, TCTA, TTA, and CASALES exhibit insignificant power in the micro 

model. These findings are in line with the findings of Gupta et al. (2014) in the UK market that 

the explanatory power of financial reports increases with the size of the firm. We find that 

the larger the firm’s size, the more similar are the results for the model to those for the SMEs 

model for all firms. In addition, after comparison between the small and medium models and 

the SMEs model, the empirical findings strongly suggest that the credit risk characteristics of 

micro SMEs differ from other SMEs and need to be considered separately when modelling 

their credit risks.  

4.3.2.3. Hazard Model for Small Firms 

This model has been estimated using the small SMEs’ sample of firms which have has less 

than 100 and more than 20 employees. The results in table (VIII) indicate that four covariates 

in the model are insignificant in explaining the financial distress of Small firms namely 

EBIDTAIE, NITA, WCTA, and CASALES.  

 

4.3.2.4. Hazard Model for Medium Firms 

This model has been estimated using the medium firms’ sample of firms which have less than 

500 and more than 100 employees. The model for medium SMEs gives relatively similar 

results to the final model for SMEs showing highly significant covariates (except for NITA and 

TTA). After a comparison between the results of the two models, we can conclude that there 
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are no strong reasons for creditors and decision makers to treat SMEs and medium firms 

separately.  

4.4. Model Forecasting Accuracy 

As mentioned in section (3) to test the effectiveness of the models developed in the predition 

of SMEs bankruptcy and their forecasting abilities table (IX) provides the classification 

performance measure for each of the prediction models developed. In terms of the models 

classification performance we find that all of the four models are able to capture more than 

60% of the distress firms in the top three deciles which is considered to be a good percentage 

whereas the total number of the last five percentiles is less than 20%.  

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion 

This paper investigates the extent to which the size of SMEs affects their probabilities of 

bankruptcy. To answer this question we classify SMEs into three size categories (micro, small, 
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and medium) while modelling for bankruptcy prediction. We will try to capture any 

differences that exist among these categories and to what extent this might help lenders to 

improve their credit models.  

We apply discrete-time duration-dependent hazard rate modelling techniques to develop 

separate bankruptcy prediction models for micro, small, and medium firms respectively, using 

a relatively large database of US firms. We compare their performance with the model 

developed for SMEs, as a whole including micro, small, and medium firms.  

Our empirical analysis is performed using panel data available to us from the Compustat 

database. The sample employs annual firm-level accounting data for (465) bankrupt and 

(11,117) non-bankrupt US small and medium-sized enterprises having less than 500 

employees and average annual receipts of less than $ 7.5 million, covering an analysis period 

from 1980 till 2013.  

 

In order to test the effectiveness of the models developed in the perdition of SMEs 

bankruptcy and their forecasting abilities we perform a bankruptcy out-of-sample prediction 

test similar to Shumway (2001). We specify our out-of-sample period to be from 2009 to 2013. 

Therefore, we re-calculate all the forecasting models for the period from 1980 till 2008 and 

then year by year we rank the firms into deciles based on their computed bankruptcy 

probabilities. The firms most likely to default in the subsequent year are placed into the first 

decile, the next most likely to default in the second decile, and so on. Hence, the higher 

percentage of firms that experience default in the top deciles reflects a model with better 

classification performance. All the multivariate models developed exhibit strong classification 

performance capturing more than 60% of the distressed firms in the top three deciles which 

is considered to be a good percentage whereas the total number of the last five deciles is less 

than 20%.  

A comparison of the default prediction models for medium SMEs and the whole SME sample 

suggest that an almost identical set of explanatory variables affect the default probabilities 

leading us to believe that there is no material impact on the decision making process by 

treating each of these groups separately. However, comparisons between the micro and small 

SMEs with the whole SME firms strongly suggest that they need to be considered separately 

when modelling credit risk for them. Based on our findings, we strongly advise lenders to 
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provide a separate credit modelling assessment for micro and small SMEs since financial 

reports do not provide sufficient information about the likelihood of their default. 
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List of Tables and Figures 

Table I: The composition of the sample of Bankrupt and Healthy firms 

Number of firms by year 

Year Bankrupt firms % of Total sample  Healthy firm % of total sample Total Sample 

1980 15 1.98 743 98.02 758 

1981 4 0.98 403 99.02 407 

1982 7 1.67 413 98.33 420 

1983 15 3.59 403 96.41 418 

1984 12 2.95 395 97.05 407 

1985 13 2.73 463 97.27 476 

1986 21 4.31 466 95.69 487 

1987 18 4.74 362 95.26 380 

1988 11 3.78 280 96.22 291 

1989 20 7.69 240 92.31 260 

1990 17 6.88 230 93.12 247 

1991 24 6.82 328 93.18 352 

1992 13 4.04 309 95.96 322 

1993 23 5.42 401 94.58 424 

1994 21 5.13 388 94.87 409 

1995 19 3.91 467 96.09 486 

1996 18 3.44 505 96.56 523 

1997 23 6.12 353 93.88 376 

1998 26 8.67 274 91.33 300 

1999 17 2.96 558 97.04 575 

2000 13 3.07 411 96.93 424 

2001 19 7.79 225 92.21 244 

2002 11 7.01 146 92.99 157 

2003 14 6.97 187 93.03 201 

2004 9 7.26 115 92.74 124 

2005 13 8.50 140 91.50 153 

2006 9 5.36 159 94.64 168 

2007 4 2.31 169 97.69 173 

2008 8 6.06 124 93.94 132 

2009 10 6.37 147 93.63 157 

2010 6 3.17 183 96.83 189 

2011 4 1.95 201 98.05 205 

2012 5 1.84 267 98.16 272 

2013 3 1.50 197 98.50 200 

Total 465 4.18 10652 95.82 11117 
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Table II: The distribution of US dataset across SMEs segments 

Firm Category Failed Healthy Total  Failed/Total % 

SMEs 465 10652 11117 4.18 

Micro 213 2638 2851 7.47 

Small 115 3389 3504 3.28 

Medium 137 4625 4762 2.88 

The table shows the sub-classification of our database among micro, small, and medium firms, in addition to their 
default rate percentage 

 

 

Table III: Industry code construction   
IND 

Code 
SIC code Industry name number of 

bankruptcies 
% of 

Bankruptcies 
1 <1000 Agriculture, Forestry and Fisheries 7 1.51% 
2 1000 to less than 1500 Mineral Industries 36 7.74% 
3 1500 to less than 1800 Construction Industries 14 3.01% 
4 2000 to less than 4000 Manufacturing 186 40.00% 
5 4000 to less than 4899 Transportation and 

Communications 
36 7.74% 

6 4950 to less than 5200 Wholesale Trade 28 6.02% 
7 5200 to less than 6000 Retail Trade 40 8.60% 
8 7000 to less than 8900 Service Industries 53 11.40% 
9 9100 to less than 

10000 
Public Administration 65 13.98% 

    Total # of Bankruptcies 465 100.00% 
The above table gives the SIC codes a corresponding Industry codes along with the name of each industry. The last 
column gives the number of bankruptcies during the sample period 1980 - 2013 in each of these industries. 
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Table IV: Definition of variables 

Code Definition Compustat item code 

Profitability Ratios 

EBIDTAIE Earnings before interest taxes depreciation and  
amortization/Interest expense 

EBIDTA/XINT 

EBIDTATA Earnings before interest taxes depreciation and  
amortization/Total Assets 

EBIDTA/AT 

NISALE Net income to net sales NI/SALE 

RETA Retained earnings to Total assets RE/AT 

NITA Net income to Total Assets NI/AT 

NITE Net income to total equity NI/TE 

Leverage 

XINTTA Financial Expenses/Total Assets XINT/AT 

CLTA Total current liabilities/Total assets LCT/AT 

TCTA Trade Creditors/Total Assets AP/AT 

TLTA Total Liabilities to Total Assets AT/AT 

STDEBV short term debt to equity book value DLC/SEQ 

TDTA Total debt to total assets DT/AT 

Activity 

CETL Capital employed/Total liabilities (AT - LCT)/LT 

TTA Taxes/Total Assets TXT/AT 

CG Capital Growth; Capital/Capital[_n-1] ((AT-LCT)/(AT[_n-1]-LCT[_n-1]))-1  

WCSALE Working capital to Sales WCAP/SALE 

CASALE current asset to Sales ACT/SALE 

CSIS cash and short-term investments/Sales CHE/SALE 

Liquidity 

WCTA Working capital/Total Assets WCAP/AT 

CSIAT Cash and short term investment to Total Assets CHE/AT 

Solvency 

CACL current assets to current liabilities ACT/LCT 

QCACL (current assets - inventory) to current liabilities (ACT-INVT)/LCT 
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Table V: Univariate analysis 
Ratio A Priori SMEs Micro Small Medium 

  β Chi^2 β Chi^2 β Chi^2 β Chi^2 
Profitability         

EBIDTAIE  (-) -.0108494*** 22.07*** -.063638*** 13.09*** -.040803*** 10.83*** -.022254*** 21.75*** 
EBIDTATA  (-) -1.19361*** 19.50*** -.4889101*** 4.72*** -.7048448*** 4.75*** -2.107552*** 27.01*** 

NISALE (-) -.2319702*** 22.34*** -.1565969*** 5.27*** -.0593781 0.39 -.2997896*** 4.97*** 
RETA  (-) -.1839748*** 100.92*** -.0230958 0.90 -.0152018 0.12 -.3237676*** 31.43*** 
NITA  (-) -1.177601*** 97.26*** -1.101897*** 23.37*** -1.061895*** 18.52*** -2.552399*** 75.71*** 
NITE  (-) .0511206 0.58 .0544052 0.34 .1791202 1.55 -.1472788 1.11 

Leverage         
XINTTA  (+) 18.77527*** 174.76*** 6.154547*** 10.07*** 21.7166*** 55.38*** 36.05052*** 121.76**** 

CLTA  (+) 2.587964*** 196.91*** .8571542*** 12.31*** 2.504709*** 40.24*** 5.487994*** 145.48*** 
TCTA  (+) 3.449214*** 47.91*** 1.690175*** 6.46*** 1.998587 3.56 5.395494*** 21.88*** 
TLTA  (+) 2.280608*** 296.29*** .7880578*** 21.61*** 2.826424*** 97.01*** 4.703341*** 188.93*** 

STDEBV  (+) .2985613 4.60 .098034 0.17 .3659389 1.73 .1431478 0.34 
TDTA  (+) .6552854 3.30 .3326899 0.46 1.955847***   8.03*** 2.593609*** 11.69*** 

Activity         
CETL  (-) -.3459681*** 107.01*** -.1571821*** 18.95*** -.8830357*** 49.42*** -1.592596*** 88.91*** 

CASALE  (-) -.3063103*** 20.64*** -.376093*** 18.36*** -.6182409*** 14.16*** -1.187548*** 20.33*** 
TTA  (-) -15.99513*** 143.34*** -26.546821*** 25.76*** -27.16891*** 52.25*** -24.35967*** 130.08*** 
CG  (-) -.4290882*** 45.41*** -.1534083 3.03 -.2201675 3.13 -1.071719*** 39.32*** 

WCSALE (-) -1.053956*** 88.47*** -.3517744  8.51 -1.186603*** 25.97*** -3.96608*** 97.55*** 
CSIS  (-) -.4340475*** 23.30*** -.3558847 10.11 -1.460792*** 25.74*** -1.658405*** 20.76*** 

Liquidity         
WCTA  (-) -2.199152*** 197.37*** -1.2612188*** 46.63*** -2.480588*** 55.98*** -5.438686*** 171.54*** 
CSIAT  (-) -.7235075*** 9.41*** -1.63 2.50 -5.79959*** 46.76*** -5.173211*** 38.79*** 

Solvency         
CACL  (-) -.321967*** 96.34*** -.1010271*** 6.98*** -.4620135*** 33.67*** -1.090778*** 80.92*** 

QCACL  (-) -.33133*** 84.50*** -.1234249*** 8.62*** -.1387676 3.55 -1.219197*** 68.80*** 
This table reports the coefficients obtained from univariate regression analysis of respective covariates for different SMEs segments as discussed in section (3 ). For each size segment 
the coefficients estimated using discrete-time duration-dependant hazard function. ***, **, * indicates that the coefficient is significant at the 1%, 5%, and 10% respectively. 
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Table VI: Correlation matrix         
Variable EBIDTAIE  EBIDTATA  CACL  NITA  XINTTA  TLTA  CETL  TTA  CLTA  TCTA   CASALE  WCTA  

EBIDTAIE  1            
EBIDTATA  0.5489* 1           
CACL  0.0412* 0.0916* 1          
NITA  0.4787* 0.9104* 0.1902* 1         
XINTTA  -0.1130* -0.2401* -0.4404* -0.3283*  1        
TLTA  -0.1574* -0.3471* -0.6374* -0.4305* 0.6936* 1       
CETL  0.0579* 0.0917*  0.8314* 0.1799* -0.4925* -0.7390* 1      
TTA  0.4465* 0.4049* 0.0960*   0.3461*  -0.1689*  -0.1676* 0.0630* 1     
CLTA  -0.1413* -0.3832* -0.6458* -0.4480* 0.5213* 0.8266* -0.6728*  -0.1324*  1    
TCTA   -0.1045* -0.3058* -0.4980*  -0.3429* 0.3504*  0.4871* -0.5189* -0.0831* 0.7051* 1   
CASALE  -0.3391* -0.4079* 0.4832*  -0.2947* -0.1543* -0.2187* 0.4098* -0.1923*   -0.2146*  -0.2422*  1  
WCTA   0.1315* 0.2828*  0.7789*  0.3745* -0.5500* -0.7577*  0.6040*  0.1956* -0.7382* -0.4937* 0.3055* 1  

This table lists the correlation matrix among the covariates used in this study. The * indicates that the correlation is significant at the 1%. 
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Table VII: Descriptive statistics 

Variable Micro Small Medium SMEs 

  Mean SD Mean SD Mean SD Mean SD 

EBIDTAIE           
 Failed -11.393 21.059 -5.073 13.867 1.601 13.975 -4.518 18.287 

 Healthy -7.216 26.241 -4.178 31.029 10.183 34.941 1.073 33.227 

NITA          
 Failed -0.585 0.498 -0.390 0.449 -0.231 0.345 -0.347 0.457 

 Healthy -0.301 0.519 -0.269 0.406 -0.073 0.255 -0.228 0.412 

TLTA           
 Failed 0.760 0.520 0.948 0.413 0.911 0.396 0.840 0.476 

 Healthy 0.686 0.522 0.535 0.382 0.484 0.293 0.545 0.390 

TCTA           
 Failed 0.153 0.135 0.132 0.115 0.122 0.108 0.130 0.124 

 Healthy 0.141 0.129 0.115 0.099 0.101 0.084 0.114 0.101 

TTA           
 Failed 0.005 0.021 0.001 0.017 0.006 0.023 0.004 0.021 

 Healthy 0.014 0.017 0.008 0.024 0.018 0.030 0.012 0.027 

CASALE           
 Failed 0.986 1.021 0.767 0.852 0.496 0.506 0.806 0.896 

 Healthy 1.425 1.227 1.150 1.106 0.812 0.823 1.045 1.039 

WCTA           
 Failed -0.006 0.442 -0.007 0.347 0.046 0.340 0.021 0.399 

 Healthy 0.047 0.440 0.268 0.358 0.322 0.280 0.245 0.362 

This table reports the descriptive statistics of the independent variables used in the study followed by the failed and healthy groups in the second column. The statistics are provided 
for the whole SME sample, micro, small, and medium. 
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Figure I: Survival and Hazard Curves 
 
A. SMEs Survival and Hazard curves 

 

 
 

B. Micro SMEs survival and Hazard curves 
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C. Small SMEs survival and Hazard curves 

  

D. Medium SMEs survival and Hazard curves 
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Table VIII: Multivariate Hazard Models 

  Micro  Small  Medium  SMEs 

Variable  Coefficient SE  Coefficient SE  Coefficient SE  Coefficient SE 

EBIDTAIE 28 -0.0025 0.0048  -0.0021 0.0072  -0.0130* 0.0073  -0.0109*** 0.0032 

NITA 5 -0.0924 0.2172  -0.0943 0.3574  -0.3329 0.4290  -0.1698 0.1576 

TLTA 31 1.34949*** 0.3033  2.8226*** 0.4429  2.6630*** 0.4647  1.9519*** 0.2043 

TCTA 33 0.9417 0.9348  3.1230*** 1.3415  2.8267** 1.4312  1.2203** 0.6225 

WCTA 20 -1.186459*** 0.0010  -0.6447 0.5101  -3.3204*** 0.5819  -0.6221*** 0.2444 

TTA 32 -2.0863 4.5838  -15.5357*** 7.1535  -11.9163*** 5.4457  -7.1121*** 2.7305 

CASALE 24 -0.3677 0.1047  -0.2871 0.1842  -0.3697 0.2538  -0.1110 0.0761 

Constant  -12.7023*** 1.7318  -14.6922*** 2.2521  -13.0451*** 1.7266  -13.1424*** 1.3608 

IRC  0.2851*** 0.0544  0.3595*** 0.0790  0.2243*** 0.0671  0.1832*** 0.0327 

Age dummies  Yes   Yes   Yes   Yes  
Industry control  Yes   Yes   Yes   Yes  

             
      Goodness of fit            

Wald chi2  157.0300***   167.63***   220.9000***   549.9100***  
Log Likelihood  -772.9203   -806.1630   -1124.5943   -2933.9049  

AIC  5991.81            2367.189   1720.326            1641.84  
BIC  6567.009            2822.551   2179.792            2029.234  

Number of observations 16,614   23,640   36,630   79,016  
            

This table reports the estimations corresponding to micro, small, medium, and SMEs respectively. For each segment the table reports the results obtained from respective multivariate 
hazard analysis followed by goodness of fit measures. ***, **, * indicates the significance at the 1%, 5%, and 10% respectively.  

 

 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



37 
 

 

Table IX Classification performance measure 

Decile Micro Small Medium SMEs 

1 18.67% 23.67% 21.45% 24.41% 

2 25.51% 24.00% 27.65% 31.00% 

3 19.00% 17.33% 15.75% 13.73% 

4 9.51% 14.55% 12.45% 8.33% 

5 8.66% 8.32% 9.05% 5.00% 

6 , 10 18.65% 12.13% 13.65% 17.53% 

Total 100.00% 100.00% 100.00% 100.00% 

          

This table reports the classification performance measures for each of the SMEs size segments: Micro, small, medium, 
and whole SMEs sample for the period from 2009 till 2013. Values in parenthesis are cumulative classification measures 
over the ten deciles.  
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