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Abstract. In [29], the second author showed that a tunnel of
a tunnel number one, fibered link in S3 can be isotoped to lie
as a properly embedded arc in the fiber surface of the link. In
this paper, we observe that this is true for fibered links in any 3-
manifold, we analyze how the arc behaves under the monodromy
action, and we show that the tunnel arc is nearly clean, with the
possible exception of twisting around the boundary of the fiber.

1. Introduction

The Berge Conjecture is a long-standing conjecture that attempts
to classify all knots in S3 that admit Dehn surgeries resulting in a
lens space. Such a classification is foundational to understanding Dehn
surgery on 3-manifolds, and has been a motivating topic of research in
low dimensional topology for decades. The so-called Berge knots are
conjectured to be all knots admitting such surgeries, and are known to
be both tunnel number one, and fibered. Yi Ni also proved that any
knot admitting such a surgery must be fibered, [26]. In light of this,
we aim to understand tunnel number one, fibered knots and links.

In Section 2, we will define three well-understood operations on
fibered links: Stallings twisting, Hopf plumbing, and its inverse Hopf
de-plumbing. All three of these operations can be characterized by arcs
that are clean, i.e. disjoint from their images under the monodromy map
(except at their endpoints).

Our goal in this paper is to understand how the monodromy acts
on tunnels sitting as arcs in the fiber. We show that such tunnels sit
weakly cleanly in the fiber. We prove the following theorem:

Theorem 1.1. Let F be a compact, connected, orientable surface with
one or more boundary components and let h : F → F be an orientation-
preserving homeomorphism. Let M = (F × I)/h, and denote by F the
surface F × {0} in M . Let τ be an arc properly embedded in F such
that M r n(τ) is a (genus two) handlebody, where n(τ) is a regular
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neighborhood of τ in M . Then there is an arc that is freely ambient
isotopic in F to h(τ) and is disjoint from τ .

We then obtain the following Theorem about link exteriors in 3-
manifolds as a corollary:

Theorem 1.2. Suppose K is a tunnel number one, fibered link in a
3-manifold M , with fiber F , monodromy h, and a properly embedded
arc τ in F that is an unknotting tunnel for K. Then there exists a
properly embedded arc β ⊂ F , freely ambient isotopic in F to h(τ), so
that τ∩β = ∅. In particular, up to isotopy rel ∂F , there exists a regular
neighborhood of ∂F outside of which τ and h(τ) do not intersect.

Johnson [20] investigated closed surface bundles with genus two Hee-
gaard splittings. Johnson’s work gives a description of the monodromy
of a fibered, tunnel number one knot, but it does not tell us about
the case of a two-component link. Kobayashi and Johannson indepen-
dently proved that for once-punctured torus bundles, an unknotting
tunnel could be isotoped into a fiber so that the arc is disjoint from
its image under the monodromy of the bundle (see [31]). According
to a survey article by Sakuma, [32], Kobayashi and Johannson also
independently proved the same result for arbitrary punctured surface
bundles. However, both references are talks, and it is unclear what
the relevant restrictions or equivalence classes on the monodromy map
and/or the arcs are meant to be. This paper is meant to help clarify
some of the various technical distinctions, particularly between surface
bundles and link exteriors, and provide a written proof of the proper
result. In Section 4 we will discuss examples of tunnel number one,
fibered links in S3 with tunnels α that are properly embedded in a
fiber F , but are not disjoint from their images under the monodromy
unless we allow the free-isotopy mentioned in Theorem 1.2.

This paper is organized as follows: Section 2 details definitions, back-
ground, and motivation for the statement and proof of the main theo-
rem, found in Section 3. Section 4 discusses limitations of the theorem
owing to difficulties associated with (fractional) Dehn twists around
the boundary of the fiber surface. And finally, Section 5 provides an
application to bounding the cusp area for hyperbolic, fibered knots.

The authors would like to give special thanks to Abigail Thompson,
Ken Baker, Kai Ishihara, Dave Futer, and the reviewer, who helped to
improve this paper substantially.
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2. Definitions and Background

Definition 2.1. A manifold M with boundary is said to have tunnel
number one if there exists an arc τ (an unknotting tunnel) properly
embedded in the manifold so that M r n(τ) is a handlebody. We say
that a link K is tunnel number one if the link exterior has such an
unknotting tunnel.

A tunnel number one link can therefore have at most two link com-
ponents, and in this case, the tunnel must have one endpoint on each
component. Tunnel number one knots and links have been studied in
great depth (see, for example, [33], [17], [24], [19]). Cho and McCul-
lough have given a bijective correspondence between tunnel number
one knots (with their unknotting tunnels) and a subset of vertices of a
certain tree related to a subcomplex of non-separating disks in a genus
two handlebody [6]. They are further able to parameterize all tunnel
number one knots by a sequence of ‘cabling’ operations (see [5] and
[7]). While the cabling operation is a very natural way of describing
and modifying knots, it is generally not clear how properties of the
exterior change.

Definition 2.2. LetK be a link in a 3-manifoldM (with an orientation
for each component). A Seifert surface for K is a compact, orientable
surface F , with no closed components, embedded in M such that ∂F =
K (and with a boundary orientation that agrees with the orientation
of K).

Definition 2.3. If F is a compact, orientable surface (possibly with
boundary), I is the unit interval [0, 1], and h : F → F is an orientation-
preserving homeomorphism from F to itself, then a surface bundle is
the 3-manifold obtained from the Cartesian product of the surface and
the interval, F × I, by identifying F ×{0} with F ×{1} via the home-
omorphism h. That is, the surface bundle is homeomorphic to the
quotient (F × I)/ ∼, where (x, 0) ∼ (h(x), 1) for all x ∈ F . We may
also denote this by (F × I)/h. The map h is called the monodromy of
the bundle, and the image of each F × {t} is called a fiber.

Note 2.4. The monodromy h of a surface bundle is well-defined up
to free isotopy of the homeomorphism (preserving the boundary, set-
wise), and also up to conjugation by elements of the mapping class
group of F .

Definition 2.5. A link K ⊂ M is said to be fibered if M r n(K) is a
surface bundle where each fiber is a Seifert surface for the link K.
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If we drill out a neighborhood of a fibered link from the manifold
M , then there is a natural marking on each boundary component by
a meridian which encodes the original manifold M . If we then remove
a neighborhood of a Seifert surface, the result is homeomorphic to
F × I, but we still retain a marking on the boundary (∂F ) × I ⊂
∂(F × I) which still encodes the original manifold M . Forgetting this
marking or losing track of it by twisting along boundary components,
however, fails to encode the manifold M . This motivates a slightly
more restrictive definition when we are interested in preserving this
meridian information.

Definition 2.6. The monodromy of a fibered link K in M is a choice of
homeomorphism h : F → F so that h is the identity on the boundary
of F , h|∂F = Id, the exterior of K is homeomorphic to the surface
bundle determined by h, M r n(K) ∼= (F × I)/h, and further, filling
each toral boundary component with a solid torus so that the curve
arising from the quotient of {pt.} × I bounds a disk in the solid torus
results in the manifold M .

Note 2.7. If h̃ differs from h by a product of Dehn twists about curves

each parallel to a component of ∂F , then (F ×I)/h ∼= (F ×I)/h̃. Now,
however, Dehn filling the toral boundary along the curve(s) defined
by {x} × I where x ∈ ∂F in each case may result in different closed
3-manifolds, related to the original by ±(1/n)–surgeries. So the re-
quirement that the loops from ‘vertical’ slopes give rise to meridians
for the link K in M restricts the free isotopy class of h. The mon-
odromy h of a fibered link is still only well-defined up to conjugation
by an element of the mapping class group of F .

Fibered knots and links, too, have been studied in great depth (see,
for example, [2], [18], [25], [1]). Stallings described a pair of operations
on fibered links that result in new fibered links, which are now called
the Murasugi sum and Stallings twists, [35]. Harer then showed that
twists and a certain type of Murasugi sum called Hopf plumbing (and
its inverse, Hopf de-plumbing) were sufficient to transform any fibered
link in S3 into any other fibered link in S3, [18]. (In fact, recent work of
Giroux and Goodman showed that Stallings twists are not necessary,
[15].)

These constructions are intimately connected to arcs in a fiber sur-
face with certain properties of disjointness from their images under
monodromy maps. However, we will take care to distinguish mon-
odromy maps in surface bundles versus link complements, so we must
be cautious about the setting in which we are discussing these arcs.
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Definition 2.8. We will say that an arc α properly embedded in a
fiber F of a surface bundle with monodromy h is weakly clean if there

is a representative of h, say h̃, so that α ∩ h̃(α) = ∅.

Definition 2.9. An arc α properly embedded in a fiber F of a link
complement in a manifold M with monodromy h is said to be clean if

there is a representative of h, say h̃, so that α ∩ h̃(α) = ∂α = ∂h̃(α).

In this language, Theorem 1.1 says that unknotting tunnels in the
fibers of surface bundles are weakly clean, while Theorem 1.2 and the
discussion in Section 4 show that unknotting tunnels in the fibers
of fibered link exteriors may not be clean, owing only to boundary-
twisting.

There is good reason to inquire about cleanliness of arcs in the fiber
of a fibered link. Suppose α is a clean arc in a fiber of a fibered link
with monodromy h. There are two distinct behaviors of h(α) near the
boundary of α, each of which have implications for the topology of the
fiber surface.

Definition 2.10. Let α be a clean arc in a fiber F of a fibered link,
and let α × [0, 1] be a small product neighborhood of the arc α in F .
We say that α is alternating if the image of α under the monodromy
must intersect both α × {0} and α × {1} in a neighborhood of the
endpoints. Otherwise, say that α is non-alternating.

Clean, alternating arcs are related to Hopf plumbings.

Definition 2.11. Let F be a Seifert surface for a link L. Let α be
an arc properly embedded in F . Hopf plumbing along α is a change in
the surface F within a neighborhood of the arc α, as shown in Figure
1. That is, a disk is attached to F along two sub-arcs of its boundary.
The positioning of the disk is defined by α, and the disk contains a full
twist relative to F . This disk is referred to as a Hopf band. Given F
and α there are two ways to perform Hopf plumbing, distinguished by
the handedness of this twisting. The result is a new surface F ′ and a
new link K ′ = ∂F ′.

Suppose F is a Seifert surface for the link ∂F , and Hopf plumbing
results in a Seifert surface F ′ for the link ∂F ′. Then F is a fiber surface
if and only if F ′ is a fiber surface, and moreover, the monodromy of F ′

differs from the monodromy of F exactly by composition with a Dehn
twist along the core of the Hopf band (see [11]).

De-plumbing a Hopf band corresponds exactly to cutting the fiber
surface along an arc that is clean and alternating with respect to the
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Figure 1. Hopf plumbing is a change in a surface F in
the neighborhood of an arc α.

monodromy. This is implicit in work of Gabai ([12]), and attributed to
Sakuma ([30]). For a proof, see Coward–Lackenby [8].

Clean, non-alternating arcs are related to Stallings twists.

Definition 2.12. Let c be a simple closed curve, embedded and es-
sential in a fiber surface F of a fibered link in a manifold M so that c
bounds a disk in M . Let c′ be a push-off of c to one side of F , and let
l be the linking number of c and c′. If l ∈ {0, 2,−2}, and there exist
δ1, δ2 ∈ {±1} satisfying l + δ1 = δ2, then δ2-surgery along c is called a
Stallings twist.

Figure 2. A Stallings twist (of type (0, 1)) results from
a ±1-Dehn surgery on an unknotted curve in the fiber
surface. (Here we show the effect of a −1-surgery on the
surface.)

In the case that l = 0, Stallings proved that the image of a fibered
link under such a twist is another fibered link, with fiber surface home-
omorphic to the original fiber surface [35]. Harer then extended this
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to the definition above ([18]). Moreover, the monodromy of the new fi-
bration differs from the original exactly by composition with a δ1-Dehn
twist around the curve c.

Yamamoto ([38]) proved that the existence of a Stallings twist of
a certain type (type (0, 1), see Figure 2) corresponds exactly to the
existence of an arc that is clean and non-alternating with respect to
the monodromy, and moreover that the interior of the disk bounded by
c intersects the fiber surface exactly in such an arc.

Not only do these operations have close relationships to the behavior
of arcs in a fiber surface, but when the arcs are unknotting tunnels,
these operations also respect the nature of these tunnels. In [29], the
second author showed that in a tunnel number one, fibered link exterior
in S3, an unknotting tunnel can be isotoped to lie in a fiber surface. In
fact, the argument in [29] shows that this statement holds for fibered
links in arbitrary 3-manifolds.

Proposition 2.13. Suppose K is an oriented, fibered link in a 3-
manifold M , and τ is an unknotting tunnel for K. Then τ may be
slid and isotoped until it lies in a fiber of K.

Proof. The proof in [29] for two-component fibered links depends in no
way on the ambient manifold being S3. For tunnel number one, fibered
knots, the proof relies on S3 only because of the use of Proposition 4.2
from [34]. However, the argument in the final paragraph of Theorem
2.10 in [29] applies equally well in the case that K is a knot and the
ambient manifold in not S3 to show that an unknotting tunnel can
be made disjoint from a minimal genus Seifert surface when the knot
is fibered. The rest of the argument, then, goes through in the more
general case. �

Thus, for any tunnel number one, fibered link, since an unknotting
tunnel can be isotoped to lie as an arc in a fiber surface, and important
operations on fiber surfaces are related to arcs properly embedded in
the surface, it is a natural question to investigate what happens if
we perform these operations along arcs that happen to be unknotting
tunnels.

If a Hopf plumbing is performed along an unknotting tunnel lying in
the fiber surface, then the resulting link is fibered and is again tunnel
number one. Moreover, there is a naturally induced unknotting tunnel
for the resulting link, namely the arc that runs across the Hopf band.
Conversely, if de-plumbing a Hopf band corresponds to cutting along
an arc that is also an unknotting tunnel lying in the fiber surface, then
the resulting link is fibered and is again tunnel number one. Moreover,
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there is a naturally induced unknotting tunnel for the resulting link,
namely the arc that spans the gap left by the cut, which is then isotopic
into the new fiber surface as the arc that determined the position of
the old Hopf band. One result of this is that we can start with, say,
the unknot in S3, which is fibered with fiber a disk, and progressively
plumb Hopf bands along unknotting tunnels to generate tunnel number
one, fibered links with fiber surfaces of increasing genus. Another is
that if an unknotting tunnel, having been pushed into a fiber surface
for a fibered link, is a clean, alternating arc, then the fiber surface
has a de-plumbing resulting in a new tunnel number one, fibered link.
We might then ask whether the next unknotting tunnel, having been
pushed in the fiber surface, might also be clean and alternating, and
how far this process might be continued. If, for instance, a tunnel
were always clean and alternating when pushed into a fiber surface,
then any tunnel number one, fibered link would come equipped with a
set of instructions indicating a sequence of tunnel number one, fibered
links, each obtained from the last by de-plumbing along an unknotting
tunnel, resulting in a fibered link with fiber a disk.

Similarly, if a Stallings twist is performed along a curve bounding a
disk that intersects a fiber surface in an arc that is also an unknotting
tunnel, then the resulting link is fibered and again tunnel number one.
In this case, the very same arc will persist as an unknotting tunnel.

In light of these close connections between unknotting tunnels that
sit as clean arcs in a fiber surface, and operations that are known to
be sufficient to generate all fibered links in S3, it would be quite inter-
esting, although optimistic, to suspect that unknotting tunnels sitting
as arcs in fiber surfaces would always be clean. However, our main
result shows that the obstruction to cleanliness comes only from twist-
ing around boundary components of the fiber. Even more surprising,
in S3, the only examples known with this obstruction appear to be 2-
component links where one component is unknotted, as we will discuss
in Section 4.

3. Analyzing a Tunnel in a Fiber

The main aim of this section is to prove Theorem 1.1, and Theorem
1.2 will follow quickly. We restate the first theorem here:

Theorem 1.1. Let F be a compact, connected, orientable surface with
one or more boundary components and let h : F → F be an orientation-
preserving homeomorphism. Let M = (F × I)/h, and denote by F the
surface F × {0} in M . Let τ be an arc properly embedded in F such
that M r n(τ) is a (genus two) handlebody, where n(τ) is a regular
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neighborhood of τ in M . Then there is an arc that is freely ambient
isotopic in F to h(τ) and is disjoint from τ .

Note 3.1. Observe that since τ is an unknotting tunnel for the mani-
fold M , M can have at most two (toral) boundary components. Thus,
the boundary components of F must be permuted in one or two orbits.

Proof. If F is either a disk or an annulus, the mapping class group of
F is quite limited, and the result is immediate. Thus, we may assume
that F is neither a disk nor an annulus. Note that since the only fibered
handlebody is S1 ×D2, this implies that M is not a handlebody.

As M is not a handlebody but Mrn(τ) is, the arc τ must be essential
in F . Set F ′ = F r n(τ). Let τ1 be an arc in F × {1} ⊂ F × I and τ0
be an arc in F ×{0} ⊂ F × I so that in the quotient (F × I)/h, arcs τ0
and τ1 are both identified as the arc τ . Observe that h(π(τ0)) = π(τ1),
where π : F × I → F is projection. Then for i ∈ {0, 1}, we will refer to
(F ×{i})rn(τi), contained in (F ×I) = M r F , as F ′i . By free isotopy
of h, (which corresponds to isotopy of τ1 in F × {1}), we may assume
that π(τ0) and π(τ1) intersect minimally and transversely. Recall that
F × I is irreducible and F × {0, 1} is incompressible in F × I.

Let A be the annulus ∂n(τ) r ∂M . Then A is divided into two
rectangles by F . Let A1 be the rectangle incident to F × {1}, and
A0 the rectangle incident to F × {0} in M r F . By a slight abuse
of notation, we may think of A1 as a neighborhood of τ1 contained in
F × {1}, and similarly for A0 ⊂ F × {0}, so that F ′i = (F × {i}) r Ai

for each i = 0, 1.
The proof of Theorem 1.1 works by controlling certain disks within

M r n(τ), in particular how they relate to the annulus A. We now
build up some language to describe these disks.

3.1. Special Arcs. Let D be a disk properly embedded in F × I such
that ∂D is transverse to ∂F × {0, 1} and to τ0 and τ1.

Lemma 3.2. No essential disk in F × I can be disjoint from F × {i}
for i ∈ {0, 1}.

Proof. Without loss of generality, suppose that D is an essential disk
in F ×I that is disjoint from F ×{1}. Then every arc in ∂D∩ (∂F ×I)
is inessential in ∂F × I. On the other hand, any simple closed curve in
∂F ×I is either trivial or parallel to a component of ∂F ×{0}. We may
therefore isotope ∂D into F × {0}. This contradicts that F × {0, 1} is
incompressible in F × I. Thus no such disk exists. �
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Definition 3.3. If ∂D ∩ (∂F × {0, 1}) 6= ∅ then the points of ∂D ∩
(∂F ×{0, 1}) divide ∂D into a finite set of sub-arcs of the following six
possible types.

(1) Sub-arcs in F × {0} parallel in F to τ0; call these τ0–arcs.
(2) Sub-arcs in F × {1} parallel in F to τ1; call these τ1–arcs.
(3) Sub-arcs in ∂F × I; call these boundary arcs.
(4) Sub-arcs in F × {0} or F × {1} that are trivial in F ; call these

extra arcs.
(5) Sub-arcs in F ×{i} for i ∈ {0, 1} that are essential in F but are

not τi–arcs and can be isotoped (fixing endpoints) to be disjoint
from τi; call these special arcs.

(6) Sub-arcs in F × {i} for i ∈ {0, 1} that are essential in F , are
not τi–arcs, and necessarily intersect τi; call these bad arcs.

For i ∈ {0, 1}, label each sub-arc of ∂D with i if it is contained in
F × {i}.

We will show in Lemma 3.8 that the disks of interest to us do not
contain bad arcs.

Definition 3.4. An extra arc that is outermost in F × {i} can be
isotoped off F × {i}, along the subdisk it cuts off from F × {i}, join-
ing two sub-arcs on ∂F × I into a single boundary arc. Call this a
tightening-move. Notice that this does not affect the isotopy type of
any essential arc in F ×{0, 1}, and has the effect of deleting an i–label
from the labeling of ∂D.

If τ is incident to two boundary components of F , the following
definition gives two isotopy classes of arcs in F (hence four isotopy
classes in ∂(F × I)) that will be of special interest to us. These arcs
are boundary-parallel in F ′, and have both endpoints on the same
component of ∂F . The two isotopy classes are distinguished by which
component of ∂F contains the endpoints of the arc.

Definition 3.5. Call a special arc a τ2–arc if it is parallel in F to the
union of the two arcs in ∂Ai r ∂F and one of the two components of
∂F rAi. See Figure 3. Roughly speaking, it runs parallel to τi, around
∂F while avoiding τi, and then back parallel to τi.

It is interesting to note that if a τ2–arc α exists in ∂D, pushing part
of α across the disk of F ′ cut off by α into the component of ∂F × I
that does not contain the endpoints of α would change the special arc
α into two τi–arcs and one boundary arc.

The significance of τ2–arcs is their appearance in following lemma.
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Figure 3. A τ2–arc runs parallel to τi, around ∂F , and
back parallel to τi.

Lemma 3.6. If ∂D contains exactly one special arc and no bad arcs
then either D is essential in F × I, or τ is incident to two boundary
components of F and the special arc is a τ2–arc.

Proof. Without loss of generality, assume the special arc α is labeled 1.
Perform as many tightening-moves as possible to remove all extra arcs.
This neither creates any new special or bad arcs, nor alters α. Then
∂D ∩ (F × {1}) consists of α together with some number of τ1–arcs.

Suppose D is boundary parallel in F × I, and let D′ be the disk
in ∂(F × I) to which D is parallel. Consider the two components of

(F × {1}) r ∂D adjacent to α, one of which is a subsurface of D′. Call
this D′′. Note that D′′ is planar, and all but one of the components
of ∂D′′ are contained in int(D′) and therefore are components of ∂F .
Any such components of ∂F must also bound disks in ∂(F × I). Since
there are no such components of ∂F , we see that D′′ is a disk. There
can be at most two τ1–arcs in ∂D′′, and exactly one copy of α.

If ∂D′′ contained no τ1–arcs then D′′ would provide an isotopy of α
into ∂(F × {1}), which is not possible. If ∂D′′ contained exactly one
τ1–arc then D′′ would provide an isotopy of α onto τ1, which is also
impossible. Therefore ∂D′′ contains two τ1–arcs. Notice that ∂D′′ r α
is contained in ∂F ′1. Suppose τ (and therefore τ1) is incident to a single
component of ∂(F × {1}). Then ∂F ′1 has two components, with one
copy of τ in each. Therefore no such disk D′′ could exist. Hence, τ is
incident to two components of ∂F . The disk D′′ demonstrates that α
is a τ2–arc. �

3.2. Special Disks. Lemma 3.6 shows that disks whose boundaries
contain no bad arcs and only one special arc are important. This
motivates the following definition.

Definition 3.7. Given a disk D properly embedded in F ×I such that
∂D is transverse to ∂F × {0, 1}, say that D is special if it is essential
in F × I, and there are no bad arcs and at most one special arc in
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∂D. We will call D a 0-special or 1-special disk depending on the label
and location of the special arc if one exists. If there is no special arc,
then Lemma 3.2 says that there must be both τ1– and τ0–arcs, so for
convenience we will distinguish one τ1–arc as a special arc and say the
disk is 1-special.

Lemma 3.8. There exist special disks in (M r n(τ)) r F ′.

Proof. As M r n(τ) is a genus two handlebody, we know that ∂(M r
n(τ)) is compressible in M r n(τ). Let D′ be a compression disk such
that ∂D′ ∩A consists of straight arcs, each essential in A and running
from one component of Ai ∩ ∂M to the other, and such that |D′ ∩ F ′|
is minimal among such disks. Since ∂M is incompressible in M rn(τ),
we know that ∂D′ runs across A at least once.

If D′∩F ′ = ∅ then D′ is a disk in F × I and ∂D′ contains no special
or bad arcs. Note that D′ is essential in F × I since it is essential in
M r n(τ) and F ′ is not a disk. Therefore D′ is a special disk.

If D′ ∩ F ′ 6= ∅, then notice that D′ ∩ F ′ consists only of arcs, since
circles of intersection innermost in D′ and essential in F would give
rise to compressions for F , and inessential ones could be removed to
reduce |D′ ∩ F ′|. Moreover, as τ is essential in F , the minimality of
|D′ ∩ F ′| implies that every arc of D′ ∩ F ′ is essential in F . Knowing
this, the minimality of |D′ ∩ F ′| further implies that no arc of D′ ∩ F ′
is isotopic to τ in F .

Consider an arc α of D′ ∩ F ′ that is outermost in D′, cutting off a
subdisk D from D′. Now view D as a disk in F × I. Without loss
of generality, assume α is labeled 1. Note also that α is a special
arc. Because ∂D contains exactly one special arc and no bad arcs, by
Lemma 3.6 either the disk D is essential in F × I as required, or α
is a τ2–arc. In this case, α would cut off a disk from F ′. This disk
might contain other arcs of D′ ∩ F ′. Boundary compressing D′ along
this disk would reduce |D′ ∩ F ′|, creating at least two disks, at least
one of which would contradict the minimality condition in the choice
of D′. Therefore D is essential, and so is a special disk. �

Lemma 3.9. If D is an i-special disk in F ×I for some i ∈ {0, 1} then
∂D contains at least one τ1−i–arc.

Proof. Without loss of generality, assume D is 1-special. Perform as
many tightening-moves on D as possible. This does not change that D
is 1-special, and does not alter any τ0–arcs in ∂D. Having done this,
we see that ∂D ∩ (F × {0}) consists only of τ0–arcs. As D is essential
in F × I, Lemma 3.2 implies that there must be at least one arc of
∂D ∩ (F × {0}) remaining, which is therefore a τ0–arc. �
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Now, consider the vertical product disks E0 = τ0×I, and E1 = τ1×I.
We would like to find an i-special disk D, for some i ∈ {0, 1}, such
that ∂D and ∂Ei do not intersect on F × {1 − i}. Since π(Ei) =
π(∂Ei ∩ (F × {1− i})) = π(τi), and a τ1−i–arc in ∂D projects under π
to π(τ1−i), this would show that π(τ0) and π(τ1) are disjoint.

Recall that h(π(τ0)) = π(τ1), and that we have assumed that the
monodromy has been isotoped (including along the boundary) so as to
minimize |π(τ0) ∩ π(τ1)|.

Definition 3.10. The size of a special disk D is the triple (|∂D∩ (F ×
{0, 1})|, |D∩Ej|, |∂D∩∂Ej∩(F ×{0, 1})|), where D is a j-special disk.
We will compare the size of two special disks using the lexicographical
order.

That is, we order disks first by the total number of τ0–, τ1–, extra
and special arcs, second by the number of arcs and simple closed curves
of intersection with the product disk Ej, and finally by the number of
endpoints of these intersection arcs that lie on F .

It is worth noting that this situation looks similar to that found in
Lemma 2.3 of [16]. It appears that one could conclude immediately
that a special disk was boundary compressible towards F × {1}, and
repeat such compressions until one arrived at a product disk. This is
the idea of our proof, but we need to show some additional care as we
want the arcs of ∂D ∩ (F ×{0, 1}) to stay parallel to τ0 and τ1 so that
we can conclude something about the tunnel arc.

Since we know that special disks exist, we may take a special disk
with minimal size, and call it D. Recall that if ∂D contains no special
arc, then we have agreed to pick a τ1–arc and call it special so that D
is 1-special. On the other hand, if it does contain a special arc then
we may assume without loss of generality (by flipping [0, 1]) that D is
1-special. In either case, call the special arc α.

Lemma 3.11. There are no extra arcs in ∂D.

Proof. If there is an extra arc in ∂D, we can perform a tightening-
move. This will reduce the number of extra arcs without changing the
number of τ0–, τ1– or special arcs. This therefore reduces the size of
D, a contradiction. �

Lemma 3.11 implies that ∂D ∩ (F × {0}) consists only of τ0–arcs.
Let E ′ = E1. Although it is not necessary, for notational convenience
we will continue to assume that, for i ∈ {0, 1}, all τi–arcs are contained
within the rectangle Ai and run straight from one component of Ai∩∂F
to the other.
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Lemma 3.12. Every arc of ∂D on F × {1} is disjoint from ∂E ′.

Proof. Choose ε > 0 such that (∂F × [1− ε, 1)) ∩ (∂D ∪ ∂E ′) consists
of disjoint embedded arcs that are essential in the half-open annulus
∂F × [1−ε, 1). Let F+ = (F ×{1})∪(∂F × [1−ε, 1)). Since ∂D∩(F ×
{1}) contains only τ1– and special arcs, there is an isotopy of ∂D∩F+,
fixed on ∂F+, that makes ∂D disjoint from ∂E ′ on F ×{1}. See Figure
4. Because ∂E ′ ∩F+ is a single arc, this isotopy can be chosen so that
it does not increase |∂D ∩ ∂E ′ ∩ F+| at any point. Note that such an
isotopy does not change the type of any arc of ∂D∩(F×{1}). Therefore
this means that the isotopy can be extended to an isotopy of D that
does not increase |D∩E ′|. If ∂D∩∂E ′∩(F×{1}) 6= ∅ before the isotopy
then the isotopy strictly reduces the size of D, which is a contradiction.
Thus no such isotopy is required and ∂D ∩ ∂E ′ ∩ (F × {1}) = ∅. �

Figure 4. Arcs of ∂D∩ (F ×{1}) can be made disjoint
from the arc of ∂E ′∩(F×{1}) without increasing |D∩E ′|.

Lemma 3.13. We may assume that the endpoints of the arc ∂E ′ ∩
(F ×{0}) are disjoint from A0, and that every arc of ∂E ′∩A0 connects
opposite sides of A0 and intersects each τ0–arc of ∂D exactly once.

Proof. By Lemma 3.11, ∂D∩(F×{0}) consists only of τ0–arcs. We have
assumed that each of these lies in A0, connecting the two components
of A0 ∩ ∂(F × {0}). By isotoping A0 ∩ F ′0 in (F × {0}) r ∂D, we may
assume that ∂E ′ is transverse to ∂A0.

Consider the arcs of ∂E ′ ∩A0. Each of the two sides of A0 on ∂(F ×
{0}) contains at most one endpoint of these arcs. All other endpoints
must lie on the two components of A0 ∩ F ′0. Choose ε > 0 such that
((A0 ∩ ∂F ) × (0, ε]) ∩ (∂D ∪ ∂E ′) consists of disjoint embedded arcs
each having one endpoint on (A0 ∩ ∂F ) × {0} and one endpoint on
(A0 ∩ ∂F )× {ε}. Let A+

0 = A0 ∪ ((A0 ∩ ∂F )× (0, ε]). As in the proof
of Lemma 3.12, there is an isotopy of ∂D within A+

0 , fixed on ∂A+
0 , to
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minimize |∂D ∩ ∂E ′ ∩A0|, and moreover this isotopy can be chosen so
that it extends to an isotopy of D that does not increase the size of D
(see Figure 5). Again, if this isotopy strictly reduced |∂D ∩ ∂E ′ ∩ A0|
then it would strictly reduce the size of D, contradicting that D was
chosen to have minimal size. Therefore no such isotopy is needed, and
the arcs of ∂E ′ ∩ A+

0 have minimal intersection in A0 with the arcs of
∂D ∩ A+

0 .
Let γ be an arc of ∂E ′ ∩ A+

0 . If the endpoints of γ lie on distinct
components of A0∩F ′0 then we see that γ intersects each arc of ∂D∩A0

exactly once, and because |∂D∩ (F ×{0})| has not increased we know
that this intersection occurs within A0. If the endpoints of γ lie on
the same component of A0 ∩ F ′0 then we find that γ is disjoint from
∂D. In this case we may isotope A0 ∩ F ′0 to remove γ from ∂E ′ ∩ A0

without affecting ∂D ∩ A0 (again see Figure 5). If γ has one endpoint
on A0∩∂(F ×{0}) and the other on A0∩F ′0 then γ∩A0 is disjoint from
∂D ∩ A0, and again we may isotope ∂A0 to remove γ from ∂E ′ ∩ A0.
Finally suppose that γ has both endpoints on components of A0∩∂(F×
{0}). Then γ is a τ1–arc. Since π(γ) = π(τ0) this shows that τ and
h(τ) are isotopic in F , and in this case the proof of Theorem 1.1 is
complete. �

Figure 5. |∂D ∩ ∂E ′ ∩ A0| and |A0 ∩ F ′ ∩ ∂E ′| can be
minimized without increasing |D ∩ E ′|.

Lemma 3.14. Let γ be an arc of ∂E ′ ∩F ′0. If γ has both endpoints on
A0 ∩ F ′0 then γ does not co-bound a disk in F ′0 with A0 ∩ F ′0. If γ has
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one endpoint on A0 ∩ F ′0 and one on ∂(F × {0}) rA0 then γ does not
cut off from F ′0 a disk whose boundary consists of γ, a single sub-arc of
A0 ∩ F ′0 and a single sub-arc of ∂(F × {0}) r A0.

Proof. Given Lemma 3.13, this follows immediately from the minimal-
ity of |π(τ0) ∩ π(τ1)| (see Figure 6). �

Figure 6. Arcs of ∂E ′ ∩ F ′ do not cut off certain types of disk.

Now consider D ∩ E ′. By innermost disk arguments, any simple
closed curves of intersection could be removed, since F × I is irre-
ducible. Thus, since D has minimal size, the intersection consists of
arcs. From Lemma 3.12 we know that none of these intersection arcs
have endpoints on F ×{1}. We will show that there are also no arcs of
intersection with an endpoint on F ×{0}. There are three types of arcs
that we will be concerned with: type 0 will be arcs with both endpoints
on the same component of ∂E ′ ∩ (∂F × I); type I will be those with
one endpoint on F ×{0}, and the other on ∂F × I; type II will be arcs
with both endpoints incident to F × {0} (see Figure 7). Showing that
none of these arcs exist, and hence ∂D ∩ ∂E ′ ∩ (F × {0}) = ∅, will
complete the proof of Theorem 1.1. (Note that there may be arcs of
intersection of D∩E ′ which have endpoints on different components of
∂E ′ ∩ (∂F × I), but these have no impact on the removal of arcs with
an endpoint on F × {0}.)

3.3. Arcs of type 0. Suppose there is an arc of D ∩ E ′ with both
endpoints on the same component of E ′ ∩ (∂F × I). Choose such an
arc that is outermost in E ′, and let E be the subdisk of E ′ it cuts off.
Compress D along E, reducing |D ∩ E ′| without altering the arcs of
∂D ∩ (F × {0, 1}). This gives two disks, D∗ and D∗∗. Take D∗ to be
the one containing α in its boundary. At least one of D∗ and D∗∗ is
essential, and neither has more than one special arc or any bad arcs in
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Figure 7. Arcs of D ∩ E ′ of type 0, type I and type II in E ′.

its boundary. In addition, |D∗ ∩ (F ×{0, 1})| ≤ |D ∩ (F ×{0, 1})| and
|D∗ ∩ E ′| < |D ∩ E ′|, while |D∗∗ ∩ (F × {0, 1})| < |D ∩ (F × {0, 1})|.
Therefore at least one of D∗ and D∗∗ is special and has smaller size
than D, which is a contradiction. Hence no arcs of type 0 exist.

3.4. Arcs of type II. If there is an arc of type II, then there is an arc
of type II that is outermost in E ′. Call this arc δ, and call the subdisk
of E ′ that it cuts off E. Let γ = ∂E r δ. Boundary compressing D
along E reduces |D∩E ′| and gives two disks, D∗ and D∗∗, at least one
of which is essential. Take D∗ to be the resulting disk containing α in
its boundary. The endpoints of γ must both be on τ0–arcs.

First suppose that γ ⊂ A0. Then by Lemma 3.13 we know that
the endpoints of γ lie on distinct τ0–arcs of ∂D. Let β∗ and β∗∗ be
the sub-arcs of ∂D∗ ∩ (F × {0}) and ∂D∗∗ ∩ (F × {0}) respectively
that contain copies of γ. Then β∗ and β∗∗ are both extra arcs (see
Figure 8), so neither D∗ nor D∗∗ has any bad arcs or more than one
special arc in its boundary. Moreover, it is again the case that |D∗ ∩
(F × {0, 1})| ≤ |D ∩ (F × {0, 1})| and |D∗ ∩ E ′| < |D ∩ E ′|, while
|D∗∗∩ (F ×{0, 1})| < |D∩ (F ×{0, 1})|. This tells us that at least one
of D∗ and D∗∗ is special and has smaller size than D, a contradiction.

Now assume instead that γ 6⊂ A0. Then it runs between two τ0–arcs
that are outermost in A0. That is, γ runs from a sub-arc of ∂D, across
one of the sides of ∂A0 incident to F ′0, through F ′0, then across a side of
∂A0 and to another sub-arc of ∂D. There are, then, two things which
might happen. Either γ returns to the same side of ∂A0 (see Figure 9),
or it returns to the other side of ∂A0 (see Figure 10).

If γ returns to the same side of ∂A0, then both endpoints must be
incident to the same component of ∂D∩A0 (see Figure 9) and ∂D∗∗ is
a simple closed curve in F × {0}. Lemma 3.14 shows that ∂D∗∗ does
not bound a disk in F , so this means that D∗∗ is a compression disk
for F , contradicting that F × {0} is incompressible in F × I.
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Figure 8. If γ ⊂ A0 then β∗ and β∗∗ are extra arcs.

Figure 9. If γ 6⊂ A0, and returns to A0 on the same
side, then D∗∗ is a compression disk for F .

If γ returns to the other side of ∂A0, then the orientation onD implies
that there are at least two τ0–arcs in ∂D. Let β∗ and β∗∗ be the sub-arcs
of ∂D∗ and ∂D∗∗ respectively that contain copies of γ (see Figure 10).
There are no bad arcs in either ∂D∗ or ∂D∗∗, and there is at most one
special arc in ∂D∗∗. As before, |D∗ ∩ (F ×{0, 1})| ≤ |D∩ (F ×{0, 1})|
and |D∗∩E ′| < |D∩E ′|, while |D∗∗∩(F ×{0, 1})| < |D∩(F ×{0, 1})|.

If D∗∗ is essential then it is a special disk with smaller size than D,
which is a contradiction. Suppose otherwise. Then D∗ is essential.
Additionally, by Lemma 3.6, β∗∗ is either an extra arc, a τ0–arc or a
τ2–arc.

If β∗∗ is a τ0–arc then τ is incident to only one boundary component
of F , since the endpoints of β∗∗ lie on the same component of ∂F .
However, there is an arc parallel to τ0 in A0 that is disjoint from β∗∗

and whose endpoints interleave on ∂(F × {0}) with those of β∗∗. It
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Figure 10. If γ 6⊂ A0 then |D∗ ∩ (F ×{0, 1})|+ |D∗∗ ∩
(F × {0, 1})| = |D ∩ (F × {0, 1})|.

is therefore impossible that these two arcs together bound a disk in
F × {0}. This shows that β∗∗ is not a τ0–arc.

If β∗∗ is a τ2–arc then τ is incident to two boundary components of
F and β∗ is an extra arc. Thus D∗ is a special disk with smaller size
than D, a contradiction.

If β∗∗ is an extra arc then τ is incident to two boundary components
of F and β∗ is a τ2–arc. Let F ∗ be the subdisk of F ′0 that β∗ cuts off.
Now, (∂E ′ ∩ (F × {0})) r γ consists of two arcs; call these γ′ and γ′′.
From their endpoints that meet γ, both γ′ and γ′′ run to the opposite
side of A0, by Lemma 3.13. At this point, therefore, one of γ′ and γ′′

lies closer than the other in A0 to the component of A0 ∩ ∂(F × {0})
containing the endpoints of β∗. Take this to be γ′. See Figure 11.

Consider the path of γ′′ from the endpoint that meets γ. When it
first leaves A0, γ

′′ enters the disk F ∗. As we continue to follow its
path, it can either end on the component of ∂F × {0} that contains
the endpoints of β∗∗ or else return to A0 ∩F ′0 (necessarily on the other
side, by Lemma 3.14). We see, therefore, that γ′′ spirals around one
boundary component of F × {0} some number of times before ending
on this component of ∂(F ×{0}). Consider the final section of γ′′, from
where it last leaves A0 to where it reaches ∂(F × {0}). This cuts off a
disk from F ′0, the remainder of whose boundary consists of a single sub-
arc of A0∩F ′0 and a single sub-arc of ∂(F ×{0})rA0. This contradicts
Lemma 3.14. It is therefore not possible that β∗∗ is an extra arc.

Thus, we conclude that there are no arcs of type II in D ∩ E ′.

3.5. Arcs of type I. Since we now know there are no arcs of types
0 or II, if there are arcs of type I then one of them is outermost in
E ′. Again, call one of these arcs δ, and call the subdisk of E ′ that it
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Figure 11. If β∗∗ is an extra arc then |∂F | = 2 and γ′′

spirals around one component of ∂F .

cuts off E. Let γ = ∂E r δ. Then γ consists of two sub-arcs. Let
γ0 = γ ∩ (F × {0}), and γ∂ = γ ∩ (∂F × I). Observe that γ0 has
one endpoint on a τ0–arc of ∂D and the other end on ∂F r A0, given
Lemma 3.13. Note that, since γ0 is disjoint on its interior from ∂D,
Lemma 3.13 also tells us that γ0 ∩ A0 is a single sub-arc of γ0.

As before, boundary compressing D along E results in two disks,
D∗ and D∗∗, at least one of which is essential. Again let D∗ be the
one that contains α in its boundary. Let β∗ and β∗∗ be the sub-arcs
of ∂D∗ and ∂D∗∗ respectively that contain copies of γ0. As previously,
|D∗ ∩E ′| < |D∩E ′|, neither ∂D∗ nor ∂D∗∗ contains any bad arcs, and
∂D∗∗ contains at most one special arc. Now |∂D∗∩(F×{0, 1})|+|∂D∗∗∩
(F×{0, 1})| = |∂D∩(F×{0, 1})|+1. In addition, |∂D∗∩(F×{0, 1})| ≥
2 while |∂D∗∗ ∩ (F × {0, 1})| ≥ 1. Therefore |∂D∗ ∩ (F × {0, 1})| ≤
|∂D ∩ (F × {0, 1})| and |∂D∗∗ ∩ (F × {0, 1})| < |∂D ∩ (F × {0, 1})|.

From Lemma 3.14, we know that neither β∗ nor β∗∗ is an extra arc.
If D∗∗ is essential then it is a special disk with smaller size than D,
which is a contradiction. Suppose otherwise. Then D∗ is essential.
Additionally, by Lemma 3.6, β∗∗ is either a τ0–arc or a τ2–arc.

If β∗∗ is a τ2–arc then β∗ is a τ0–arc. Thus D∗ is a special disk that
is smaller than D, a contradiction.

If β∗∗ is a τ0–arc then, as β∗∗ is disjoint from a copy of τ0 in A0,
together these arcs bound a disk in F . If τ is incident to a single
boundary component of F , the presence of this disk tells us that the
endpoints of β∗∗ do not interleave on ∂F with those of τ0. Therefore
the disk contains β∗ and β∗ is an extra arc, a contradiction.
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It remains only to consider the case that τ has its endpoints on
distinct components of ∂F , as does β∗∗. Again, if the disk between β∗∗

and τ0 contains β∗ then β∗ is an extra arc, a contradiction. Accordingly,
the disk does not contain β∗, and β∗ is a τ2–arc, cutting off from F ′0
a disk F ∗. Let γ′0 = (∂E ′ ∩ (F × {0})) r γ0. This is an arc with one
endpoint on a τ0–arc of ∂D, where it meets γ0, and the other endpoint
on ∂(F × {0}) r A0. Given the definition of E ′, this endpoint lies on
the opposite component of ∂(F × {0}) to the other endpoint of γ0.
That is, γ′0 does not meet the same component of ∂(F × {0}) as β∗

does. See Figure 12. Consider the path of γ′0 from where it meets γ0.
It first runs through A0, and passes through A0 ∩ F ′0 into the disk F ∗.
As we continue to follow its path, it can either end on ∂(F × {0}) or
else return to A0 ∩ F ′0 (necessarily on the other side, by Lemma 3.14).
We see, that, like the arc γ′′ above, γ′0 spirals around one boundary
component of F × {0} some number of times before ending on the
same component of ∂(F × {0}). Consider the final section of γ′0, from
where it last leaves A0 to where it reaches ∂(F × {0}). This cuts off a
disk from F ′0, the remainder of whose boundary consists of a single sub-
arc of A0∩F ′0 and a single sub-arc of ∂(F ×{0})rA0. This contradicts
Lemma 3.14.

Figure 12. If β∗∗ is a τ0–arc and |∂F | = 2 then γ′0
spirals around one component of ∂F .

Thus, there are no arcs of type I. This completes the proof of Theo-
rem 1.1. �
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By Proposition 2.13, we know that an unknotting tunnel τ for a
fibered, tunnel number one link K in a manifold M can be isotoped to
lie in a fiber F . We can now prove the following:

Theorem 1.2. Suppose K is a tunnel number one, fibered link in a
3-manifold M , with fiber F , monodromy h, and a properly embedded
arc τ in F that is an unknotting tunnel for K. Then there exists a
properly embedded arc β ⊂ F , freely ambient isotopic in F to h(τ), so
that τ∩β = ∅. In particular, up to isotopy rel ∂F , there exists a regular
neighborhood of ∂F outside of which τ and h(τ) do not intersect.

Proof. Recall that (Mrn(K)) is a surface bundle, that h is a particular
monodromy for the bundle, and that by definition of unknotting tunnel,
(M r n(K)) r n(τ) is a genus two handlebody. So, the hypotheses of
Theorem 1.1 apply, and the statement follows. �

4. Boundary Twisting and Fractional Dehn Twists

In this section, we will discuss why the free isotopy mentioned in
Theorem 1.2 is necessary, why a stronger claim about unknotting tun-
nels being clean cannot be made in general, and some remaining open
questions.

4.1. Full twisting. We first consider full twists around boundary com-
ponents of the fiber surface.

Example 4.1. First, consider a surface bundle M = (F × I)/h as in
Theorem 1.1, and suppose M is tunnel number one (i.e. that there is
an arc τ ⊂ F such that M r n(τ) is a genus two handlebody). Let T∂
be a Dehn twist along a curve in F that is parallel to a component of
∂F . Then for all n ∈ Z, the maps h and T n

∂ ◦ h are freely isotopic, so
that (F ×I)/h ∼= (F ×I)/(T n

∂ ◦h). In fact, τ ⊂ F is still an unknotting
tunnel for (F×I)/(T n

∂ ◦h). However, even if τ is clean with respect to h,
there will be intersections between τ and (T n

∂ ◦h)(τ) in a neighborhood
of ∂F for all sufficiently high values of |n|. These intersections can be
removed by freely isotoping (T n

∂ ◦h)(τ) independently of τ , but then the
arc does not correspond to the image of τ under the map (T n

∂ ◦h). If we
consider the surface bundle as the exterior of a link in some 3-manifold,
then these twists can be thought to affect the meridian(s) of the link,
and can be viewed as changing the ambient 3-manifold in which the
fibered link sits. So generically, weak cleanliness of unknotting tunnels
is the best that can be hoped for.

One might hope that this type of indeterminacy would improve if we
restrict our attention to knots and links in S3, as this would specify the
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representative monodromy map by determining the meridian(s). We
next, therefore, consider an example in S3, suggested to the authors by
Ken Baker.

Example 4.2. Suppose τ is the upper (or lower) tunnel for a fibered
2-bridge knot K in S3 (see [23]), sitting in a fiber surface F as a clean
arc such that h(τ) 6= τ . Now, perform a Hopf plumbing along an
arc that is parallel into ∂F , but has endpoints interleaved on K with
those of τ . The result is K#L ⊂ S3, where L is a Hopf link, and has
a monodromy map h′ that is a composition of h with a Dehn twist
around the core curve of the Hopf band. The choice of sign for the
Hopf band determines the orientation on the link, as well as the sign
of the Dehn twist. Either way, τ is an unknotting tunnel of K#L,
since τ together with the unknotted component of the link is actually
equivalent to one of the dual upper tunnels for K (see [23]). Although
one choice results in a monodromy under which τ is still clean, the
other results in a monodromy under which it is not, since the extra
twist forces an intersection between τ and h′(τ) in a neighborhood of
the boundary of the fiber. See Figure 13.

Figure 13. One choice of Hopf plumbing gives a clean
tunnel while the other does not.

In fact, it is not only in the case of a connected sum with a Hopf
link that this complication with boundary twisting arises. Kai Ishihara
pointed out to the authors that if L is a tunnel number one, fibered,
two-component link in S3 with one trivial component, K, and linking
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number ±2 or 0, then modifying the monodromy by n Dehn twists
(n = ∓1 or n arbitrary, respectively) along a curve in the fiber parallel
to K corresponds to performing Stallings twists, and produces tunnel
number one, fibered links in S3. Each of these links has an unknotting
tunnel that intersects its image (several times) in a neighborhood of
the boundary of the fiber, precisely because the twisting was performed
around a curve parallel (in the fiber) to a boundary component of the
fiber.

Example 4.3. One such example is the Whitehead link, which has
linking number zero, and is also hyperbolic. Figure 14 (left) shows the
link resulting from twisting n = 3 times around one of the components
of the Whitehead link, along with an unknotting tunnel, τ , for this link.
One can check that the surface illustrated is a fiber (since it is genus
one, i.e. minimal genus), and that τ is an unknotting tunnel for the
link. The arc τ is not clean, as the image of τ under the monodromy
is indicated. Alternatively, one can see that τ cannot be clean because
cutting the fiber surface along the tunnel arc produces a surface whose
boundary is the 52 knot. If τ were clean and alternating, then it would
correspond to a plumbed Hopf band, the de-plumbing of which would
result in a genus one fiber surface with a connected boundary, so the
boundary would be a trefoil or figure-eight knot. On the other hand,
if τ were clean and non-alternating, then cutting along τ would result
in a pre-fiber surface (see [22]), which itself would be a (genus one)
compressible surface, implying that the boundary was the unknot.

Twisting the same component of the Whitehead link an arbitrary n
times also results in a new tunnel number one, fibered link. In Figure
14 (right), the light gray arc still indicates an unknotting tunnel, and
the black train track with weights determines the arc that is the image
of this tunnel under the monodromy for this surface.

In spite of the examples discussed above, it remains possible that the
following question has an affirmative answer:

Question 1. If a tunnel number one, fibered link of two components in
S3 has an unclean unknotting tunnel, then must one of the components
be unknotted?

We will see that this kind of full twisting around the boundary cannot
occur for (nontrivial) tunnel number one, fibered knots in S3. However,
fractional twisting remains possible.

4.2. Fractional Dehn twists. We next consider partial twisting around
boundary components of the fiber surface.
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Figure 14. A hyperbolic, tunnel number one, fibered
link in S3 with an unclean tunnel obtained by twisting
the Whitehead link around an unknotted component n =
3 (left) or n ≥ 1 (right) times.

Thurston classified automorphisms of a (hyperbolic) surface. Every

automorphism f : F → F is freely isotopic to one, f̃ , that is either
(1) reducible, (2) periodic, or (3) pseudo-Anosov (see [37] and [4]). In

all cases, f̃ is called the Thurston representative of f . (We follow the
convention of referring to a map as reducible only if it is not periodic.)

By Thurston’s Hyperbolization Theorem a surface bundle over S1

is hyperbolic if and only if the (Thurston representative of the) mon-
odromy map is pseudo-Anosov (see [36], [27] or [28]). Since the White-
head link is hyperbolic, the Thurston representative of its monodromy
is correspondingly pseudo-Anosov. Observe that this means the fam-
ily of examples given in Figure 14 are all hyperbolic, since all of their
respective monodromies are freely isotopic to the monodromy of the
Whitehead link.

The fractional Dehn twist coefficient of a surface automorhpism h at
a boundary component of the surface measures the amount of twisting
around that boundary component necessary to freely isotope h to its
Thurston representative. While the details differ slightly between the
cases of the different Thurston types, the fractional Dehn twist coeffi-
cient is a rational number p/q, (with p and q relatively prime), which
corresponds to a 2pπ/q rotation around a boundary component of the
surface.
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The relevance of fractional Dehn twist coefficients for the question of
clean arcs in fibers of fibered links is as follows. Suppose h is the mon-
odromy of a fibered link complement with fiber F , α is an arc properly
embedded in a fiber surface with both endpoints on the same compo-

nent of ∂F , and h̃ is the Thurston representative of h (with respect to a
fixed hyperbolic structure on the fiber). Take α to be the geodesic arc

freely isotopic to α, and h(α) to be the geodesic arc freely isotopic to

h(α), which will also be freely isotopic to h̃(α). As these are geodesic
arcs, they intersect minimally among their free isotopy representatives.
Let A be a small annular neighborood of the boundary component to
which α is incident. Since h has the property that h|∂F = Id, the arc

h(α) can be realized by replacing h(α) ∩ A with arcs that monotoni-
cally spiral around A with rotation 2pπ/q, where h has fractional Dehn
twist coefficient of p/q at the relevant boundary component. This spi-
ralling may necessarily result in intersections between α and h(α) in
their interiors, as indicated in the statement of Theorem 1.2.

When the surface bundle is a knot complement in S3, work of Gabai
[13] and Kazez and Roberts [21] have shown that the fractional Dehn
twist coefficient is either 0 or 1/n for some integer n, |n| ≥ 2. In
particular, this means that if we orient an arc α in a fiber surface for a
knot in S3, then an initial sub-arc of α and an initial sub-arc of h(α)
will not have any intersections in a neighborhood of the boundary of the
fiber owing to fractional Dehn twisting. Thus, the only intersections
that could be introduced by fractional Dehn twisting will be between
an initial sub-arc of α and a terminal sub-arc of h(α), or vice versa. In
fact, if the fractional Dehn twist coefficient is 1/n with |n| > 2, then
only one of these two can occur. For an unknotting tunnel sitting as
an arc in the fiber, these are the only intersections that occur at all, so
we get the following slight refinement of Theorem 1.2:

Theorem 4.4. Suppose K is a tunnel number one, fibered knot in
S3, with fiber F , monodromy h, and a properly embedded arc τ in F
that is an unknotting tunnel for K. Then τ and h(τ) can be ambi-
ent isotoped in F rel ∂F so that |int(τ) ∩ int(h(τ))| ≤ 2, and any
such intersections occur in a regular neighborhood of ∂F ; moreover, if
|int(τ) ∩ int(h(τ))| = 2, then h has a fractional Dehn twist coefficient
of ±1/2.

We ask the following optimistic question:

Question 2. Is the unknotting tunnel of a tunnel number one, fibered
knot in S3 always clean?
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While Theorem 4.4 does not rule out a negative answer, the authors
know of no examples demonstrating so.

Should the answers to both Questions 1 and 2 turn out to be ‘yes’,
might all tunnel number one, fibered links in S3 be obtainable by a
sequence of operations like twisting around unknotted boundary com-
ponents, plus Hopf plumbing, de-plumbing, and Stallings twisting re-
stricted to locations determined by unknotting tunnels?

5. An Application to Hyperbolic Cusps

In [10], Futer and Schleimer study the hyperbolic structure on a
hyperbolic surface bundle M . Each boundary component of M is a
cusp in the hyperbolic structure. If we pick one boundary component,
expanding a regular neighborhood of the corresponding cusp until it
‘bumps into itself’ gives a well-defined ‘maximal cusp’. The geometric
properties of the bounding torus of this neighborhood are invariants
of the manifold M . Futer and Schleimer relate this geometry to the
action of the (pseudo-Anosov) monodromy on the arc complex of the
fiber surface.

Given a compact, connected surface F with boundary, the arc com-
plex A(F ) is a simplicial complex. The vertices of the complex are
free isotopy classes of essential arcs properly embedded in F . Distinct
vertices span a simplex exactly when the free isotopy classes of arcs can
be simultaneously realized disjointly in F . (Note that sometimes A(F )
is also used to denote the complex whose vertices are essential arcs up
to isotopy rel ∂, though this is not the usage here.) A homeomorphism
h of F induces a homeomorphism h∗ of A(F ). The translation distance
dA(h) of h is

dA(h) = min
v∈A(0)(F )

d(v, h∗(v)).

Here the distance d is measured in the 1–skeleton A(1)(F ), where each
edge has length 1. The stable translation distance d̄A(h) is given by

d̄A(h) = lim
n→∞

d(v, hn∗ (v))

n
,

where v is any vertex of A(F ). The triangle inequality implies that
d̄A(h) ≤ dA(h).

We claim that a pseudo-Anosov homeomorphism cannot fix an es-
sential arc in the surface. Assume F is not a disk or an annulus, as
there are no pseudo-Anosov homeomorphisms on disks or annuli. Also,
assume that F is not a pair of pants, as a homeomorphism fixing an
essential arc in a pair of pants must be isotopic either to the identity
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or a rotation of order 2, neither of which are pseudo-Anosov homeo-
morphisms. Let γ be an essential arc in F . Suppose that h′ : F → F
is a map isotopic to h with h′(γ) = γ.

First suppose that γ has its endpoints on the same component of
∂F . The endpoints of γ divide the boundary component of F into two
arcs. Let γ1, γ2 be the simple closed curves given by combining each of
these two arcs with a copy of γ. At least one of γ1 or γ2 must be an
essential curve in F , for otherwise, they are both isotopic to boundary
components of F , and F would be a pair of pants. Then, since at least
one of γ1 or γ2 is essential, either h′ fixes γ1 and γ2, and we have an
essential curve fixed by h′, or h′ exchanges them, in which case γ1 ∪ γ2
is an essential multi-curve fixed by h′.

On the other hand, suppose γ has its endpoints on distinct compo-
nents of ∂F . Let γ′ be a simple closed curve that runs parallel to γ,
around one boundary component of ∂F on which γ has an endpoint,
back parallel to γ and around the other boundary component. Then,
up to isotopy, h′(γ′) = γ′. The curve γ′ must be essential, else F would
be a pair of pants, and h′, again, fixes an essential curve.

Thus, since a pseudo-Anosov homeomorphism cannot fix an essential
multi-curve, it cannot fix an essential arc.

Written in this language, Theorem 1.1 says the following.

Corollary 5.1. If the surface bundle (F×I)/h has tunnel number one,
then dA(h) ≤ 1. If h is pseudo-Anosov, then dA(h) = 1.

Given this, [10] Theorem 1.5 yields the following result.

Theorem 5.2. If the surface bundle (F ×I)/h has tunnel number one,
|∂F | = 1, and h is pseudo-Anosov, then the area of the maximal cusp
is bounded above by 9χ(F )2, and the height of the cusp is strictly less
than −3χ(F ).

Here the height of the cusp torus is its area divided by the length of
the longitude.

We remark that [10] Theorem 1.5 also gives lower bounds on these
quantities in terms of d̄A(h). In [14], Gadre and Tsai study the analo-
gous distance in the curve complex, giving an explicit lower bound. It
seems plausible that such a bound could likewise be obtained for the
arc complex.

David Futer pointed out to the authors the following corollary of
Corollary 5.1.

Corollary 5.3. There exists a family of fibered knots Kn, each having
monodromy with translation distance 1, such that the cusp area grows
linearly with the knot genus.
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Proof. For n ≥ 1, let Kn be the (6n + 1)−crossing knot with diagram
Dn formed from the blocks in Figure 15, taking one of each of the outer
two blocks and n of the inner one. In addition, let Rn be the Seifert

Figure 15. We build the knot Kn by combining n
copies of the middle block with one copy of each of the
outer blocks.

surface for Kn constructed by combining the pieces of surface shown in
Figure 15. As Dn is alternating, this surface has minimal genus. Note
that χ(Rn) = 1− 4n, so Kn has genus 2n.

For m ∈ N, let fm denote the mth term of the Fibonacci sequence
(so f1 = f2 = 1, f3 = 2, f4 = 3, f5 = 5, etc.). Then Kn is the rational
knot corresponding to the fraction f6n+1/f6n+2. A rational knot with
fraction 1/q for some q is a torus knot, and all other rational knots
are hyperbolic (see, for example, [3]). Two fractions p1/q1 and p2/q2
(with pi coprime to qi) correspond to the same rational knot if and
only if p1 = p2 and either q1 ∼= q2 mod p1 or q1q2 ∼= 1 mod p1. Since
f6n+1 6= 1 for n ≥ 1, this shows that Kn is hyperbolic for each n.

That Rn is a fiber surface can be checked directly by product disk
decompositions (see [12]) — 2n product disk decompositions can be
used to remove the ‘trefoil pattern’ in the center of each of the n middle
blocks, leaving a checkerboard surface; further product decompositions
can be used to reduce the surface to a disk (by removing the white
bigons in the remaining diagram).

Being rational knots, each Kn has tunnel number one, with a tunnel
given by the dotted arc in Figure 15. Therefore Corollary 5.1 applies,
and the monodromy of Kn has translation distance 1.

In a link diagram, a twist region is a maximal collection of crossings
connected in a line by bigons. Each diagram Dn is twist-reduced, and
has 6n− 1 twist regions. Thus [9] Theorem 4.8 gives that, for the knot
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Kn, the area an of the maximal cusp satisfies

1

12
(6n− 2) ≤ an <

40

3
(6n− 2). �

Corollary 5.3 shows that the dependence on Euler characteristic in
the area bound in [10] Theorem 1.5 and in Theorem 5.2 is necessary.
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Sūrikaisekikenkyūsho Kōkyūroku, pages 58–70, 1996.

[32] Makoto Sakuma. The topology, geometry and algebra of unknotting tunnels.
Chaos, Solitons and Fractals, 9(4-5):739–748, 1998. Knot Theory and Its Ap-
plications: Expository Articles on Current Research.

[33] Martin Scharlemann. Tunnel number one knots satisfy the Poenaru conjecture.
Topology Appl., 18(2-3):235–258, 1984.

[34] Martin Scharlemann and Abigail Thompson. Unknotting tunnels and Seifert
surfaces. Proc. London Math. Soc. (3), 87(2):523–544, 2003.

[35] John R. Stallings. Constructions of fibred knots and links. In Algebraic and geo-
metric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif.,
1976), Part 2, Proc. Sympos. Pure Math., XXXII, pages 55–60. Amer. Math.
Soc., Providence, R.I., 1978.



32 JESSICA E. BANKS AND MATT RATHBUN

[36] Dennis Sullivan. Travaux de Thurston sur les groupes quasi-fuchsiens et les
variétés hyperboliques de dimension 3 fibrées sur S1. In Bourbaki Seminar,
Vol. 1979/80, volume 842 of Lecture Notes in Math., pages 196–214. Springer,
Berlin, 1981.

[37] William P. Thurston. On the geometry and dynamics of diffeomorphisms of
surfaces. Bull. Amer. Math. Soc. (N.S.), 19(2):417–431, 1988.

[38] Ryosuke Yamamoto. Stallings twists which can be realized by plumbing and
deplumbing Hopf bands. J. Knot Theory Ramifications, 12(6):867–876, 2003.

University of Hull
Hull, UK, HU6 7RX
jessica.banks[at]lmh.oxon.org
j.banks[at]hull.ac.uk

California State University, Fullerton
800 N. State College Blvd.
Fullerton, CA, 92831

mrathbun[at]fullerton.edu


	1. Introduction
	2. Definitions and Background
	3. Analyzing a Tunnel in a Fiber
	3.1. Special Arcs
	3.2. Special Disks
	3.3. Arcs of type 0
	3.4. Arcs of type II
	3.5. Arcs of type I

	4. Boundary Twisting and Fractional Dehn Twists
	4.1. Full twisting
	4.2. Fractional Dehn twists

	5. An Application to Hyperbolic Cusps
	References

