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Abstract 

Objective 

The aim of this study was to investigate how HNSCC tissue biopsies maintained in a 

pseudo in vivo environment within a bespoke microfluidic device, respond to 

radiation treatment. 

 

Study Design 

Feasibility study. 

 

Setting 

Tertiary referral centre. 

 

Subjects and Methods 

35 patients with HNSCC were recruited, in addition liver tissue from 5 Wistar rats. A 

microfluidic device was used to maintain the tissue biopsy samples in a viable state. 

Rat liver was used to optimise the methodology. HNSCC was obtained from patients 

with T1-T3 laryngeal or oropharyngeal SCC; N1-N2 metastatic cervical lymph nodes 

were also obtained. Irradiation consisted of single doses of between 2Gy and 40Gy 

and a fractionated course of 5x2Gy. Cell death was assessed in the tissue effluent 

using the soluble markers LDH and cytochrome c, and in the tissue by 

immunohistochemical detection of cleaved cytokeratin18 (M30 antibody). 

 

Results 

A significant surge in LDH release was demonstrated in the rat liver after a single 

dose of 20Gy; in HNSCC it was seen after 40Gy compared to the control. There was 

no significant difference in cytochrome c release after 5Gy or 10Gy. M30 

demonstrated a dose-dependent increase in apoptotic index for a given increase in 

single dose radiotherapy. There was a significant increase in apoptotic index between 

1x2Gy and 5x2Gy. 

 

Conclusion 

M30 is a superior method compared to soluble markers in detecting low-dose 

radiation-induced cell death. 

This microfluidic technique can be used to assess radiation-induced cell death in 

HNSCC and therefore has the potential to be used to predict radiation response. 
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Introduction 

Head and neck squamous cell carcinoma (HNSCC) accounted for 2.8/100,000 of all 

cancers in the UK in 2011 and represents the seventh most common cancer in   

Europe 1.  Globally, it is the sixth commonest form of cancer with an incidence of 

700,000 cases per year 2. 

Radiotherapy is used as a single modality treatment for early stage laryngeal cancer 

(T1 and T2) and in conjunction with chemotherapy in T3 laryngeal and oropharyngeal 

SCC. However, up to 25% of early stage laryngeal SCC are radioresistant 3. The 

ability to predict radioresistance would prevent patients undergoing a potentially 

unnecessary treatment with its significant associated morbidity. The only curative 

option after radiotherapy failure is salvage surgery, which is associated with a poorer 

functional outcome and a prolonged hospital stay 4 adding to the significant time and 

cost implications to the health service. 

There are three modes of radiation-induced cell death, all of which are secondary to 

DNA damage: apoptosis, mitotic catastrophe, which leads to caspase-dependent 

(apoptotic) or caspase-independent (necrotic) cell death 5, and senescence, a form of 

proliferative stasis 6. In HNSCC, it has been shown that radiotherapy induces all three 

modes of cell death, with the majority of cells undergoing mitotic catastrophe and 

senescence, although apoptosis plays a major role 7. Apoptosis can be measured using 

a range of in vitro techniques, including soluble and tissue markers. The soluble 

markers used in this study to determine the effects of radiation treatment on HNSCC 

tissue maintained in a microfluidic device were lactate dehydrogenase (LDH), an 

intracellular enzyme, and cytochrome c, which is stored in the mitochondria and is 

responsible for the stimulation of caspases as part of the apoptotic cascade; both of 

these factors are released from membrane compromised cells. Immunohistochemistry 



 4 

was used to detect caspase-3 cleaved cytokeratin 18 using the M30 antibody, which is 

a tissue marker of apoptosis.  

Microfluidic devices provide a simple, reproducible and highly versatile system for 

maintaining tissue biopsies, allowing the tissue to remain viable and functional by 

preserving the three-dimensional architecture and its in vivo microenvironment 8,9,10. 

This microenvironment enables cell-cell and cell-matrix interactions to be   

maintained 11, which govern the behaviour of tumour cells. These interactions include 

subcellular signalling, chemotaxis, proliferation, differentiation and death 12, essential 

processes in determining the cellular response to radiotherapy.  

The aim was to use a simple microfluidic device to detect the radiation-induced cell 

death of HNSCC biopsy samples, with the ultimate goal being the development of a 

tool capable of predicting the response of a patient’s HNSCC to radiotherapy on an 

individual basis prior to the commencement of treatment. 
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Methods 

The microfluidic device 

The microfluidic device used in this feasibility study was fabricated from two layers 

of glass, thermally bonded together. The upper layer had one inflow and two outflow 

holes, which corresponded to channels etched into the lower layer. The tissue was 

accommodated in a central well over which a microport (Anachem, UK) was bonded. 

An English-threaded adaptor (Anachem, UK), filled with poly-dimethylsiloxane 

(PDMS; Dow Corning, UK) was screwed into the microport to seal the chamber and 

to allow gaseous exchange 13. 

 

The microfluidic system 

A 20ml syringe filled with Dulbecco’s Modified Eagles Medium (DMEM; 10% (w/v) 

FBS, 3% (w/v) HEPES (PAA, UK), 1% penicillin/streptomycin (Sigma, UK), 1% 

(w/v) NEAA (PAA, UK) and 1% (w/v) glutamine) was placed into a Harvard PhD 

2000 syringe pump (Harvard, UK) and connected to the microfluidic device using a 

three-part adaptor (Upchurch Scientific, WA, USA) and TFE Teflon® tubing 

(Anachem, UK). A 0.22μm filter (Millipore, UK) was fitted in-line to prevent 

bacterial contamination and minimise bubble formation. Trimmed 200μl pipette tips 

(Sarstedt, UK) connected the tubing to the device. The device and tubing were 

maintained at 37oC inside an incubator. Medium was flowed over the tissue at a rate 

of 2μl min-1 and the effluent was collected at 2-hourly intervals and stored at 4oC for 

use in subsequent assays. 
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Tissue preparation 

Rat liver was used to optimise the methodology, as it was homogeneous, highly 

metabolically active and moderately radiosensitive, similar to HNSCC [1]. The liver 

was harvested from 5 Wistar rats that were fed and watered ad libitum until 

anaesthetized (10ml kg-1 of 10mM sodium thiopentone, intraperitoneal) and killed 

under a Schedule 1 procedure by a trained animal technician. 

Samples of HNSCC were provided in accordance with Local Research Ethics 

Committee (LREC-10/H1304/6;AM01) and NHS Trust R&D approval (R0987) from 

a cohort of 35 patients undergoing surgery at Castle Hill Hospital, Hull with no 

history of previous treatment, with either laryngeal or oropharyngeal SCC tumours 

staged at T1-T3; metastatic lymph nodes staged at N1-N2 were also collected. It took 

approximately 30-40 min to place the tissue in the device after resection. 

Tissues were transported to the laboratory in DMEM at 4oC and were either 

immediately divided into approximately 3mm3 sections, each weighing 5-10mg and 

placed into the device or snap frozen in liquid nitrogen and stored at -80oC for future 

use. 

During each experiment two controls were used consisting of HNSCC or rat liver 

tissue from the same sample: tissue not incubated in the device and tissue that was not 

irradiated, but was incubated in the device for the same duration as the irradiated 

sample. Both fresh and frozen tissue samples were used, as a previous study had 

demonstrated no significant difference in the tissue response between the two groups 

following interrogation in the microfluidic device 13. 
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Radiotherapy treatment 

Irradiation was performed using a 6 MV photon beam from a Varian Linear 

Accelerator. To ensure delivery of an accurate and uniform dose, the microfluidic 

device was housed inside a perspex phantom (Figure 1). CT planning calculated that 

at gantry angles of 90 and 270 with a 5cm x 5cm field, each beam delivered 114 

MU, which produced a dose of 2Gy to the centre of the tissue, increased as necessary 

to achieve the required dose. 

Radiotherapy was administered to the tissue after at least 24 h incubation in the 

microfluidic device. A single dose of 20Gy was administered to the rat liver. Single 

doses of between 2Gy and 40Gy, and a fractioned course of 5x2Gy over a 5-day 

period, which reflected a clinical weeklong radiotherapy course, were administered to 

the HNSCC tissue.  

 

Lactate dehydrogenase and cytochrome c assays 

LDH and cytochrome c were measured in the effluent collected from the microfluidic 

device using the LDH cytotoxicity kit plus (Roche Diagnostics, UK) and the 

Quantikine® human cytochrome c immunoassay kit (R&D Systems, UK) 

respectively; both used according to the manufacturer’s protocol. A lysis agent (10% 

v/v Triton-X (Cytotoxicity Detection Kit (LDH), Roche, UK) was added in certain 

experiments prior to the end of the experiment to indicate if live tissue still remained.  
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Immunohistochemistry 

The tissue was removed from the device 72 h after irradiation for the single dose 

regimens and 4 h after the final dose in the fractionated course. Once the tissue was 

removed, it was fixed with Tissue-Tek (Sakura, UK), and snap frozen in liquid 

nitrogen-cooled 2-methyl-butane (Sigma, UK) and stored at -20oC. The tissue was 

subsequently cut into 8-10µM sections using a cryostat and mounted onto poly-L-

lysine coated slides (SLS, UK). 

M30 CytoDEATH™ (Peviva, UK) is a monoclonal antibody, which detects caspase-3 

cleaved cytokeratin-18 as a specific marker of apoptosis. Tissue sections were fixed in 

methanol before washing in Tris-buffered saline. Endogenous peroxidase activity was 

blocked with 3% H2O2 in methanol for 15 minutes. The Vectastain Elite Universal 

horseradish peroxidase Kit (Vector, UK) was used as directed. Non-specific avidin-

biotin binding was blocked by incubating with Avidin D followed by Biotin (Vector 

Laboratories, UK) for 15 minutes each. The M30 CytoDEATH™ (Peviva, UK) 

antibody was used at a dilution of 1:100 for 1 hour at room temperature. The location 

of antibody was detected using diaminobenzidine (Sigma, UK), before the sections 

were counterstained with hematoxylin, dehydrated through graded alcohols (70%, 

90%, 100%) and histoclear and mounted in Histomount (National Diagnostics, UK).  

 

Calculation of the Apoptotic Index 

The apoptotic index (AI) was calculated by counting the number of cells that stained 

positive for M30 in ten randomly chosen high-power fields; only fields that contained 

positive cells were selected. The number of M30-positive cells was expressed as a 

percentage of the total number of cells in that field. A total of approximately 3000 

cells were counted in ten fields 14. 
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Statistical Analysis 

Statistical analysis was performed using SPSS (IBM, USA). The unpaired t-test was 

used to determine the statistical significance between treatments. P-values <0.05 were 

considered significant. 

  



 10 

Results 

LDH and Cytochrome c release 

LDH was measureable in the effluent from the microfluidic device as a result of cell 

death. Figure 2 shows the levels of LDH released from rat liver (n=3), maintained in 

the microfluidic device without radiation treatment over a period of 341 hours (15 

days); the same trend was observed in the HNSCC tissue (n=3, data not shown). The 

initial elevated LDH levels decreased to minimally detectable levels 24-28 hours after 

placement of the tissue into the microfluidic device. LDH levels remained low until 

lysis agent was added to the culture medium at 333 hours, which induced a 

subsequent rise in LDH release 2-8 h after its addition.  

Administration of a single dose of 20Gy to the rat liver (n=3), 24 h after the tissue 

was placed in the device caused a significant increase in LDH release during the 2 h 

post-irradiation period compared to the non-irradiated control (Figure 3). The LDH 

levels subsequently dropped until the lysis agent was added at 70 h to the irradiated 

and control tissue, after which a significant (p=0.02) rise in LDH was demonstrated; 

the LDH levels being lower in the irradiated group compared to the control. 

Following on from the rat liver experiments, single doses of radiation were 

administered to the HNSCC tissue (n=3 for each dose). A significant increase in LDH 

(p=0.01) release 2 h after irradiation was detected after the tissue (T1N2b tonsil, 

T3N2b larynx and T2N2b tonsil metastases) was treated with a single dose of 40Gy at 

52 h, whereas treatment with 10Gy at 52 h (T1N2b tonsil, T0N2a metastases and T3 

larynx primary) or 5Gy (same HNSCC tissue as 10Gy) and 20Gy at 28 h (same 

HNSCC tissue as 40Gy) produced no significant increase (Figure 4a & 4b).  

In order to determine whether apoptosis could be detected in the effluent following 

the administration of a lower, more clinically relevant dose of radiotherapy (5 and     
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10 Gy), the apoptotic-specific marker cytochrome c was measured. The pattern of 

release was similar to that of LDH with initial high levels decreasing after 22 h (data 

not shown). No statistically significant increase in cytochrome c was observed in the 

group treated with 5Gy (n=2; T2N2; oropharyngeal metastases) or 10Gy (n=2; T2N2 

oropharyngeal metatastases) compared with the control measured for at least 72 h 

following irradiation (p=0.971; data not shown). 

 

Detection of cleaved cytokeratin 18 

The AI was calculated using M30, an apoptotic-specific antibody, which detects 

caspase-3-cleaved cytokeratin 18, for the HNSCC tissue following the administration 

of single doses of 5Gy, 10Gy, 20Gy and 40Gy (n=3 for each dose) and the 

fractionated radiotherapy course (single dose of 2Gy cf 5x2Gy).  

The AI of the HNSCC tissue which had not been maintained in the device and that of 

the incubated, untreated tissue was below 2% with no significant difference between 

them (Figure 5a & 5b; p=0.29). The AI of the irradiated group was significantly 

higher compared to the non-irradiated tissue incubated in the microfluidic device at 

all doses (p=0.006) and a dose-dependent relationship was observed between the dose 

of radiotherapy administered and the AI with an increase in radiotherapy dose 

resulting in an increase in apoptosis. 

A significant increase in the AI was observed between the non-irradiated and the 

irradiated tissue following both the single 2Gy dose (n=3; T1N2c tonsil, T0N2b and 

T2N2b tonsil metastases) and the fractionated radiotherapy course (5x2Gy; n=3; same 

HNSCC tissue as single dose of 2Gy; p=0.002) and also between the single 2Gy dose 

and the fractionated (5x2Gy) dose (Figure 6a & 6b; p=0.01).  
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Discussion 

This proof of concept study used rat liver to optimise the technique and then analysed 

a series of 35 HNSCC samples to generate data on patient tissue from which 

appropriately-powered studies can subsequently be devised. The microfluidic device 

used in this study proved to be an excellent platform for maintaining both rat liver and 

HNSCC tissue in a pseudo in vivo environment over a number of days to allow the 

effects of radiotherapy to be investigated. Microfluidic techniques have been used 

previously to maintain HNSCC cells and tissue 13,15,16,17,18,19,20,21 as well as other 

tumour types. However, this is the first time that it has been used to study the effects 

of radiotherapy.  

The tissue used in these experiments all proved to be sensitive to radiation. Both rat 

liver and HNSCC tissue released increased levels of LDH over the first 24 h of 

incubation caused by tissue handling and dissection during the preparation stage, 

which has been demonstrated previously 10,13. LDH levels in the effluent subsequently 

decreased to minimally detectable levels at 24-28 h, until the lysis agent was added to 

the medium, which caused a subsequent LDH increase. The lysis agent caused 

maximal cell membrane rupture, releasing LDH from any remaining live cells, 

indicating intact, viable cells within the tissue following maintenance in the 

microfluidic device for up to 15 days. This is almost double the length of time that 

tissue has previously been maintained in this device 10,13, demonstrating its potential 

for assessing tissue response to radiation and other tissue interrogation methods over a 

prolonged time period.  

LDH is a marker of both apoptotic and necrotic cell death 22 and is an established 

marker of radiation-induced cytotoxicity 23,24,25. Hattersley et al 13 demonstrated the 

detection of chemotherapy-induced cytotoxicity using both LDH and cytochrome c 
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release from HNSCC tissue, which was cultured in an identical microfluidic device to 

that used in this study. However, this is the first study to demonstrate that LDH 

measured in the effluent could be used as a marker of radiation-induced cytotoxicity. 

The administration of a single dose of 20Gy to the rat liver induced a significant level 

of cell death. The increase in LDH release observed after the addition of the lysis 

agent indicated the presence of viable cells within the irradiated tissue. The reduced 

LDH levels in the irradiated tissue compared to the non-irradiated confirmed that a 

proportion of the cells had perished following irradiation. Although not significant, 

the reduced LDH levels in the irradiated tissue would indicate that there were fewer 

remaining viable cells compared to the control.  

Several devices were used to assess the effects of different doses of radiation in the 

HNSCC tissue. The devices were essentially identical up to 28 h; any differences in 

LDH release represented inter-sample variation. After 52h, a second set of previously 

untreated devices were irradiated with either 10Gy or 40Gy. Unfortunately, some of 

the devices following irradiation (20Gy in Figure 4) did not maintain tissue 

throughout the full incubation period, as demonstrated by the decrease in LDH levels. 

In contrast, HNSCC tissue treated with 5Gy at 28 h continued to produce minimally 

detectable levels of LDH throughout the experiment.  

Over the timescales of the experiments in which the HNSCC tissue was irradiated 

with single doses of radiation (10Gy or 40Gy), no change in the viability of the 

HNSCC tissue at later time-points was observed. A total of forty experiments were 

performed on rat liver and HNSCC tissue (data not shown), which demonstrated the 

maintenance of tissue viability. The higher radiation doses were administered at later 

time-points simply due to the logistics of obtaining access to the irradiation source 
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when fresh HNSCC tissue was available and to provide some degree of 

standardisation. 

Although LDH release could be detected following irradiation of HNSCC tissue, a 

dose of 40Gy was required to achieve a significant release. The increased dose 

required in the HNSCC tissue to achieve a significant level of cell death could have 

been due to a difference in the innate radiosensitivity of these two tissues. After 

40Gy, the LDH release could have been detecting a high level of apoptosis or, 

alternatively, necrosis. Cai et al 25 concluded similarly in their study of the effects of 

radiotherapy on central nervous system cells after they demonstrated a significant 

increase in LDH release only after 60Gy.  

In this study, both tissues consistently demonstrated a significant surge in LDH 

release in the 2 h post-irradiation period followed by a sharp decrease. Rao et al 26 

demonstrated the same trend after treating HeLa cells with doses of between 1Gy and 

4Gy. 

Although apoptosis has been identified in microfluidic tissue effluents following the 

administration of chemotherapeutic agents using cytochrome c 13, it has not been used 

to detect radiation-induced cell death in vitro. Cytochrome c could not be detected 

following the administration of clinically relevant doses of radiation (5Gy and 10Gy). 

These results, together with the LDH results, indicated that soluble markers were not 

the best method of detecting radiation-induced cytotoxicity in HNSCC at clinically 

relevant radiotherapy doses. 

The M30 antibody detects an early apoptotic marker and was able to detect radiation-

induced cell death after the administration of only 2Gy, the dose of a single fraction 

used in HNSCC treatment.  It could be proposed that M30 also detected those cells 

undergoing caspase-dependent death as a consequence of mitotic catastrophe. The AI 
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increased with increasing single doses of radiotherapy and also with an increase in the 

number of fractions of radiotherapy, providing evidence that this microfluidic 

technique can be used to investigate the radiosensitivity of HNSCC. 

Previous studies using HeLa-Hep2 adenocarcinoma cells have demonstrated the use 

of M30 as a marker of radiation-induced apoptosis after low-dose radiotherapy. 

Mirzaie-Joniani et al 27 used it in their study which showed a significant increase in 

apoptosis after 2Gy with approximately 20% of the remaining population displaying 

apoptotic staining at 24 h, whilst Eriksson et al 28 used it to demonstrate increased 

apoptotic cell death after the combination of low-dose radiation and 

radioimmunotherapy. Only Skoda et al 29 have used it in HNSCC, using it with the 

cell line SCC9 to demonstrate an increased cytotoxicity when Mcl-1 antisense 

oligonucleotide was used in conjunction with paclitaxel, cetuximab and gemcitabine. 

This study has successfully demonstrated that this microfluidic technique can be used 

to study the effect of radiation on HNSCC tissue. The device was capable of 

maintaining the HNSCC tissue in a viable state, without it undergoing significant 

apoptosis and can be used to demonstrate the relationship between radiotherapy dose 

and radiation-induced cell death using tissue-based markers of apoptosis. The next 

stage will be to correlate the in vitro results with the clinical response of patients to 

radiotherapy; the ultimate aim being to produce a device that can predict a patient’s 

response to radiotherapy prior to commencement of treatment.  
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Figure 1a. Schematic diagram demonstrating how the tissue was irradiated whilst 

being incubated in the microfluidic device. 

Figure 1b. Photograph demonstrating how the tissue was irradiated whilst being 

incubated in the microfluidic device. 
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Figure 2. Absorbance measurements following LDH assays on effluent from rat liver 

maintained in a microfluidic device for 341 h, standardised per mg of tissue (Mean of 

three experiments + SD). Lysis agent added at 333 h.  
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Figure 3. Absorbance measurements following LDH assays on effluent from rat liver 

standardised per mg of tissue (Mean of three experiments + SD). Single dose of 20Gy 

administered at 24 h. Lysis agent was added at 70 h. Significant LDH surge 

demonstrated after the administration of 20Gy compared to the control p=0.02* 

unpaired t-test. 
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Figure 4a & 4b. Absorbance measurements following LDH assays on effluent from 

HNSCC tissue standardised per mg of tissue (Mean of three separate experiments + 

SD). Single doses of 20Gy at 28 h, 40Gy at 52 h (Figure 4a); 5Gy at 28 h, 10Gy at 52 

h (Figure 4b). No radiotherapy to control. No lysis agent. Significant LDH surge 

demonstrated after administration of 40Gy cf. control t-test p=0.01*. 
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Figure 5a. Immunohistochemical staining of caspase cleaved cytokeratin with M30 

(1:100 dilution) in HNSCC. Blue hematoxylin counterstain. Left to right: No 

radiotherapy (200x magnification), single fraction of 10Gy (200x magnification) and 

single fraction of 40Gy (400x magnification).  

Figure 5b. AI for different treatment regimens in HNSCC treated with single doses of 

radiotherapy (Mean of three separate experiments + SD). ‘Pre-MF’: tissue not 

incubated in the microfluidic device or treated with radiotherapy; ‘No RT’: tissue that 

was incubated in the device for the same duration as the treated tissue, but did not 

receive radiotherapy treatment. There was no significant difference between the AI of 

the ‘Pre-MF’ and ‘No RT’ p=0.29*, but there was a significant difference between the 

AI of the irradiated and non-irradiated tissues p=0.006+ unpaired t-test. 
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Figure 6a. Immunohistochemical staining of HNSCC with M30 Cytodeath antibody 

(1:100 dilution) Blue hematoxylin counterstain. Left to right: No RT (200x), single 

fraction of 2Gy (400x) and 5x2Gy (400x).  

Figure 6b. AI for different treatment regimens of HNSCC treated with a single 2Gy 

dose and a fractionated course (5x2Gy) (Mean of three separate experiments + SD). 

‘Pre-MF’ as Figure 5b; ‘No RT’ as Figure 5b. Significant differences in AI between 

‘No RT’ and 2Gy p=0.002* and between 2Gy and 5x2Gy p=0.01† unpaired t-test.  
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