
Mining frequent biological sequences based on bitmap without candidate

sequence generation

Qian Wang a,b,c,* , Darryl N Davis c, Jiadong Ren a,b

a College of Information Science and Engineering, Yanshan University, Qianhuangdao, Hebei, China

b Computer Virtual Technology and System Integration Laboratory of Hebei Province, China

c Department of Computer Science, University of Hull, Hull, UK

Abstract

Biological sequences carry a lot of important genetic information of organisms.

Furthermore, there is an inheritance law related to protein function and structure which is

useful for applications such as disease prediction. Frequent sequence mining is a core

technique for association rule discovery, but existing algorithms suffer from low

efficiency or poor error rate because biological sequences differ from general sequences

with more characteristics. In this paper, an algorithm for mining Frequent Biological

Sequence based on Bitmap, FBSB, is proposed. FBSB uses bitmaps as the simple data

structure and transforms each row into a quicksort list QS-list for sequence growth. For

the continuity and accuracy requirement of biological sequence mining, tested sequences

used during the mining process of FBSB are real ones instead of generated candidates,

and all the frequent sequences can be mined without any errors. Comparing with other

algorithms, the experimental results show that FBSB can achieve a better performance on

both run time and scalability.

Keywords: Biological sequence, frequent pattern, Bitmap, Quicksort list

1. Introduction

* Corresponding author at: College of Information Science and Engineering, Yanshan University,

Qianhuangdao, Hebei, China, 066000. Tel.:+8613731767789.

E-mail addresses:wanqianysu@163.com(Q. Wang)

© 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International http://creativecommons.org/licenses/by-nc-nd/4.0/

Biosequence mining can help people recognize interesting and important relationships

between biological sequences for human genome research. There are usually different

functions in the sequences, some of them are because of a special element, and some of

them are the result of the interaction of a few elements. Biosequence mining is one of the

key technologies to discover the single and mutual functions of the elements or the

sequences. It can give reasonable prediction and guidance for making human nucleic acid,

protein and other biological data. By identifying the protein-coding genes from DNA

sequences, it can be found that some gene combination mode is related to drug allergy or

appears frequently in some disease.

Bioinformatics refers to several subjects such as computer science, information science,

and mathematics. Computer processing is a major part in the analysing of biological

data[1]. Even at the beginning of the biological research and development, many pattern

mining algorithms for biosequence were proposed. Brazma[2] surveyed approaches to

the pattern discovery in biosequences and placed these approaches within a formal

framework that systematises the types for algorithm comparison. It is found that most of

the algorithms face efficiency problems when the pattern space grows rapidly.

Mining frequent patterns is an indispensable component in many data mining tasks such

as association rule mining. These association rule mining algorithms can be partitioned

into different categories. Apriori[3] and FP-growth[4] are two classic algorithms. Apriori

uses candidate generate-test technique and FP-growth is based on a tree structure which

records the sequence paths without candidate generation. The algorithms based on them

can be classified in terms of whether there is candidate generation. Another classic

algorithm is Eclat[5]. It is different because it expresses the dataset vertically. Algorithms

can also be classified by horizontal or vertical dataset expression forms. BitTableFI[6] is

BitTable-based and the BitTable is horizontally and vertically indexed. Although efficient

bit wise operations are used, candidate generation and test ensure that BitTableFI suffers

with high computational costs. Index-BitTableFI[7] is proposed to solve this problem.

Index array and the correlative calculate method are applied in using BitTable

horizontally. A breadth-first search strategy is used for quick identification of the co-

occurrence items and depth-first search is for mining all the frequent itemsets in different

levels. DBV-Miner[8] is presented by Bay et al. and developed for mining frequent closed

itemsets. Dynamic Bit-Vector(DBV) and a lookup table are used, and the support of

itemsets can be quickly computed by the intersection between two DBVs. Bay et al.

presented more algorithms based on various data structures, like lattice-based

algorithms[9-11] and N-list based algorithm[12]. Sequential pattern mining is originally

put forward by Agrawal et al.[13], who also presented three sequential mining algorithms.

Afshar formally defined the maximal frequent sequence and proposed the corresponding

algorithm MaxSequence[14]. MaxSequence needs to generate and test candidate maximal

sequences, and a compressed prefix tree is used to store maximal frequent sequences.

When the database is larger, the overhead for maintaining and storing the prefix tree

compromises the scalability of the algorithm. A highly compressed lattice storage

structure and a breadth-first approach are used by FMMSP[15], and maximal frequent

sequences and closed frequent sequences are mined quickly without candidate generation.

Because of the nature of biology data, the above algorithms are not necessarily suitable

for biological data mining. There are more algorithms designed for biosequences these

days. TRFinder[16] algorithm seeks tandem repeats which can cause human disease and

consist of two or more copies of nucleotide patterns. A probabilistic model and a

statistical criteria collection are used to detect tandem repeats. REPuter[17] is based on a

suffix tree and a sequence alignment technique for detecting various types of repeats in

DNA, it circumscribes the wide scope of repeat analysis, but it is not efficient for mining

frequent repeats. BioPM algorithm[18] was developed for protein sequence mining and

it introduces the concept of multiple supports so as to improve performance and efficiency.

The mMbioPM[19] algorithm optimizes the structure of hash lists to improve the

efficiency of BioPM and reduces the run time. However, the efficiency of the BioPM

algorithm and its improvements are not quite ideal because of the large scale of the

projected database when the minimal support is lower. MSPM[20] is based on the prefix-

tree structure, and it presents the concept of primary pattern which makes the degree of

the prefix tree a constant. By avoiding too many short patterns generations, the scale of

the prefix-tree will not be too large. Its efficiency is much better but it may miss frequent

sequences. An index-based approach[21] proposes an interesting measure for meaningful

biological information. Each leaf node in the tree structure is an array whose length is

variable. The transaction ID and starting position of each sequence are stored in the arrays

for memory reduction. CBFMM[22] mines nucleotide and protein sequence with a variety

of FP-tree-based model definitions. Repetition detection in biological data is required for

potential malfunction and disease identification. DPMine[23] is designed for colossal

sequence discovery from biological dataset. It integrates a DPT+ tree, a doubleton data

matrix and a one-dimensional array to find doubleton patterns which may further generate

colossal sequences. For irrelevant regions in biological sequence evolution such as

mutations, gap constraints need to be considered. DFSG[24] is designed for the sequences

which are not conserved. For biological network analysis, graph simplification

technology is used, aiming to reduce the graph size[25]. An overview is given in [26] to

illustrate how the various frequent pattern mining algorithms can be used for human

bioinformatic applications.

The FBSB algorithm, reported here, is proposed to mine frequent biosequences with a

high efficiency and less memory space requirements. It first calculates the supports of the

items for frequency mining and records the end position value of each 2-sequence to form

a bitmap which is further used for frequent 2-sequence mining and pattern growth. A

quicksort list is created for fast connecting sequences in the same biosequence. Two

sequences in the quicksort with the position values next to each other in an ascending

order can be connected easily by adding the last item of the second sequence to the first

sequence, and the position value of the second sequence is used as the position value of

the new sequence. The bitmap is updated and the storage space is released constantly.

There is no candidate generation and every frequent sequence can be obtained. The

algorithm can satisfy the requirements of biological data mining because of its good

efficiency and high quality results. Experimental results show that FBSB is much better

when compared with other methods.

The remainder of the paper is organized as follows. Section 2 introduces the problem

definition about biological sequences and bitmap formation. Section 3 develops the FBSB

algorithm and gives some examples. Section 4 presents the performance study of FBSB

algorithm. Section 5 contains the concluding remarks.

2. Preliminaries and Problem Definitions

2.1. Problem definition

DNA and protein sequences are two typical types of biosequences. It should be noted that

there are differences between biosequences and general sequences, so some definitions

are given as follows.

Definition 1. Let Ʃ be an alphabet, a sequence S=<s1s2…sm> with si∈Ʃ(i=1,…,m) is

called a DNA sequence if Ʃ={A,C,G,T} consists of four nucleotides, or it is called a

protein sequence if Ʃ consists of the 20 symbols for amino acids. A sequence can be called

a k-sequence if it contains k nucleotides or amino acid symbols.

Example 1. Let Ʃ={a,b,c} and S=<bacaab>, S is a 6-sequence because there are six items

in S.

Definition 2. Let sequence S1=<a1,a2,…,am> and sequence S2=<b1,b2,…,bn> be two

sequences(m<n) on the alphabet Ʃ. S1 is a subsequence of S2 if there exist integers i1,

i2,…,im, such that 1≤i1<i2<…<im≤n and a1=bi1, a2=bi2, …, am=bim. It can also be said that

S2 is a super sequence of S1.

Example 2. Let S1=<bacaab>, S2=<aca>, S3=<bab>. S2 is a subsequence of S1, but S3 is

not a subsequence of S1. This is different from general sequences; as the items of the

subsequence must occur contiguously in the super sequence.

Definition 3. Given a database of biosequences D and a biosequence S. The support of

the biosequence S in D, denoted as sup(S), is the number of the sequences in D which

contains S as its subsequence.

Definition 4. Given a biosequence database D={S1,S2,S3,...,S|D|} and a user-defined

threshold ζ, where |D| is the number of sequences in D. The minimal support min-sup

can be calculated as min-sup=ζ*|D|. If the support of a biosequence S satisfies

sup(S)≥min-sup, S is called a frequent sequence in D. If S is a k-sequence, it can be called

a frequent k-sequence.

Property 1. For a sequence S, if S is an infrequent sequence, then any of its super

sequences are also infrequent.

2.2. Bitmap of the sequence

For efficient mining process, all the position values of the 2-sequence occurrences are

recorded. A bitmap is constructed to store the values and can be updated as the frequent

sequences grow. A sequence may occur several times in the same database transaction,

and all its occurrence positions should be put into a position array.

 Definition 5. A bitmap is a two-dimensional table, where each row represents the ID of

a sequence in the database and each column represents a sequence. A bitmap cell is

denoted as Posi(S), where i is the corresponding row number and S is the corresponding

column sequence. Posi(S) is an array of position values for the occurrences of S in the ith

sequence.

If a subsequence does not occur in a database transaction, its position array is not

established, but here ‘∅’ is used to indicate that no occurrence.

Example 3. Table 1 shows a sequential database and Table 2 is the corresponding bitmap.

 Table 1. Sequential database D

ID S

1 <abcbac>

2 <acbcab>

3 <bcbabc>

4 <acbabc>

Table 2. Bitmap of database D

 S

 ID

ab bc cb ba ac ca

1 2 3 4 5 6 ∅
2 6 4 3 ∅ 2 5

3 5 2,6 3 4 ∅ ∅
4 5 6 3 4 2 ∅

Taking Pos3(bc)={2,6} for example, sequence bc occurs twice in the third database

transaction, and the position values are 2 and 6. Sequence bc occurs in all the 4

transactions, so sup(bc) is 4. If ζ is set to be 50%, the min-sup can be calculated by ζ*|D|,

and min-sup=50%*2=1. Then sequence bc is a frequent 2-sequence.

Definition 6. QS-list is a quicksort list of all the SP-codes for a row of the bitmap. In a

QS-list, SP-codes are arranged in position value ascending order. Each SP-code is

denoted by SP=<seq,pos>, where seq is the sequence name and pos is the position value

of seq. QS-list of a bitmap row is denoted by {SP1,SP2,...,SPn}, and SP1.pos< SP2.pos<

…< SPn.pos.

Property 2 (Ancestor-descendant relationship of SP-codes). Given SPi and SPj are two

SP-codes, SPi is an ancestor of SPj if and only if SPi.pos+1 are equal to SPj.pos.

Example 4. QS-list for the third row of the bitmap in Table 2 is as follows.

<(bc,2)> <(cb,3)> <(ba,4)> <(ab,5)> <(bc,6)>

Fig.1. QS-list of the 2-patterns in the third transaction

There are 5 SP-codes. Pos3(bc)={2,6} can produce two SP-codes as <bc,2> and <bc,6>.

SP[1]=<bc,2>, so SP[1].seq=bc and SP[1].pos=2. All the SP-codes are in a pos ascending

order, SP[1].pos=2<SP[2].pos=3<…<SP[5].pos=6.

SP[1] is the ancestor of SP[2] for SP[1].pos+1=2+1=3 is equal to SP[2].pos=3. And it can

also be said that SP[2] is the descendant of SP[1]. SP[1] is not the ancestor of SP[3] or

others; the descendant must be next to its ancestor.

3. FBSB algorithm

3.1. The process of the FBSB algorithm

To design an effective data structure and mine frequent biological sequences accurately,

the FBSB algorithm can be executed based on the following observations. First, by

scanning the database once, the supports of all the items are calculated, all the position

values of the 2-sequences are put into arrays and the initial bitmap is formed. Frequent

items are mined directly. Second, frequent k-sequences are mined and (k+1)-sequences

are generated by connecting frequent k-sequences in the same transaction with a position

value ascending order. The two k-sequences can be connected only when the position

value of the second sequence is 1 more than the first one, then frequent (k+1)-sequences

are obtained and bitmap is updated. Third, no candidate sequences are generated, all the

sequences really do occur and the precision is 100%.

Algorithm 1. Bitmap initiation and frequent items generation

Input: A sequence database D, threshold ζ

Output: Bitmap Pos and frequent itemset L1

 min-sup=ζ*|D|;

 Pos=null;

 for each database sequence Si

 {G=null;

 for each item ejSi

 {if(ej∉G)

 {creat ej;

 sup(ej)++;}

 if(ejej+1Pos)

 {Posi(ejej+1).add(ej+1.pos);}

 else

 {create ejej+1;

 Posi(ejej+1).add(ej+1.pos)}}}

 for each sup(ej)

 {if(sup(ej)≥min-sup)

 {L1=L1.add(ej);}}

 Output Pos and L1;

Line 1 gives the minimal support min-sup. Line 2 initiates the null bitmap Pos. Lines 3-8

are to calculate the supports of the items, even if an item occurs several time in one

transaction, its support can be added at most 1 for one transaction. Lines 9-13 form the

bitmap for all the 2-sequences, the position value of the last item of a sequence is used as

the position value of the sequence. Lines 14-16 mine frequent items whose supports are

no less than the minimal support min-sup and insert the frequent items into frequent

itemset L1. Line 17 outputs the bitmap Pos and the frequent 1-item set L1.

Algorithm 2. Frequent k-sequence mining and (k+1)-sequence generation

Input: Bitmap Pos for k-sequences, minimal support min-sup

Output: Bitmap NewPos for (k+1)-sequences

 for each sequence Sj in Pos

 {if(sup(Sj)≥min-sup)

 {Lk.add(Sj);}

 else

 {delete Pos(Sj);}}

 for each Posi

 {QS-list=null;

 for each Sj in Pos

 {if(Posi(Sj)!=null)

 {QS-list.add(Sj.SP);}}

 if(QS-list==null || |QS-list|==1)

 {delete Posi;

 continue;}

 else

 {sort QS-list by SP.pos;}

 for each SP in QS-list

 {if(SPm.pos+1==SPm+1.pos)

 {Newseq=SPm.seqSPm+1.seq[k]);

 if(Newseq∈NewPos)

 {NewPosi(Newseq).add(SPm+1.pos);}

 else

 {Create NewPosi(Newseq);

 NewPosi(Newseq).add(SPm+1.pos);}}}}

 Output NewPos and Lk;

Lines 1-5 mine the frequent k-sequences whose support are no less than minimal support

min-sup. Lines 6-15 form the QS-list for the ith row in Pos. If the QS-list is null or its

length |QS-list| is 1, delete the ith row of the Pos and form the QS-list for the next row in

Pos. Lines 16-23 connect frequent k-sequences to generate (k+1)-sequences, the two

sequences can be connected only when the position value of the second sequence is 1

more than the position value of the first sequence. The new connected (k+1)-sequence

Newseq can be generated by adding the last item of the second sequence to the first

sequence. Line 24 outputs the updated bitmap for (k+1)-sequences and the frequent k-

sequence set Lk.

3.2. An illustrative example

The process of mining frequent biosequences from the database D in Table 1 is as follows.

Let ζ=50%, then min-sup=ζ*|D|=50%*4=2.

The initial bitmap for 2-sequences are first formed in Table 2. All the supports of the

items can be calculated. sup(a)=4, sup(b)=4, sup(c)=4. Items a, b, c are all frequent items.

Frequent 2-sequences are mined, as sup(ab)=4, sup(bc)=4, sup(cb)=4, sup(ba)=3,

sup(ac)=3 and sup(ca)=1. 2-sequence ca and Pos(ca) are deleted because Sup(ca) is

smaller than min-sup. Frequent 2-sequences are ab, bc, cb, ba, ac.

Fig.2 shows the QS-list of the frequent 2-sequences in the second transaction(ac has been

removed). 3-sequences are easy to be obtained. Just add the last item of cb to ac, and add

the last item of bc to cb. Then Pos2(acb)=3, Pos2(cbc)=4, ab cannot be connected because

the position value of ab is not next to bc, and connection stops for there are no more

sequences after ab. The new bitmap for 3-sequences are shown in Table 3.

<(ac,2)> <(cb,3)> <(bc,4)> <(ab,6)>

Fig.2. QS-list of the frequent 2-sequences in the second transaction

Table 3. Bitmap for 3-sequences

 S

 ID

abc bcb cba bac acb cbc bab

1 3 4 5 6 ∅ ∅ ∅
2 ∅ ∅ ∅ ∅ 3 4 ∅
3 6 3 4 ∅ ∅ ∅ 5

4 6 ∅ 4 ∅ 3 ∅ 5

sup(abc)=3, sup(bcb)=2, sup(cba)=3, sup(bac)=1, sup(acb)=2, sup(cbc)=1, sup(bab)=2.

Frequent 3-sequences are abc, bcb, cba, acb, bab. The new bitmap for 4-sequences are

shown in Table 4. The final results for all the frequent sequences are in Table 5.

Table 4. Bitmap for 4-sequences

 S

 ID

abcb bcba cbac acbc cbab babc acba

1 4 5 6 ∅ ∅ ∅ ∅
2 ∅ ∅ ∅ 4 ∅ ∅ ∅
3 ∅ 4 ∅ ∅ 5 6 ∅
4 ∅ ∅ ∅ ∅ 5 6 4

Table 5. Final results for all the frequent sequences

Frequent sequence set Patterns

L1 a,b,c

L2 ab,bc,cb,ba,ac

L3 abc,bcb,cba,acb,bab

L4 bcba,cbab,babc

L5 cbabc

4. Experiments and performance evaluation

Experiments are performed on a PC with Intel(R) Core(TM) 3.6 GHz CPU and 16G main

memory, running on Windows 8. We evaluate the run time and scalability of the

algorithm FBSB, and compare it with BioPM[18] and MSPM[20]. There is no

comparison about precision or error rate because FBSB algorithm is always 100%

accurate. To test the algorithms in the same coding environment, all the programs are

written in C++ using Visual Studio 2013.

Dataset used in the experiments has 10 protein families taken from the pfam database[27]

as shown in Table 6. The sequence number and the sequence length are different in

different families.

Table 6. Protein families in pfam as test dataset

4.1. Test of run time

To test the run time performance of the FBSB algorithm, we chose 2747 sequences from

the protein families in the pfam database for the experiment; the average length is 245.50.

The sequences are divided into three sets, each experiment is performed three times for

different sets and the run time is the average value. In order to make the comparison fair

for BioPM and MSPM, each algorithm is tested on the same biological sequence dataset

and with the same minimal support threshold min-sup. The run time starts from inputting

the dataset and ends with the outputted results, including the processing time. Fig.3 shows

the comparison of the average run time of the three algorithms with different minimal

support thresholds.

Protein family pfam accession

number

Number of

sequences

Average

length

Number of

sequences tested

Adh_short PF00106 406662 189.80 195

Lectin_legB PF00139 3428 219.20 249

Glyco_hydro_19 PF00182 5589 160.50 232

G-alpha PF00503 4840 306.10 377

TatC PF00902 16250 205.30 205

Calici_Coat PF00915 14558 130.80 291

SBP_bac_9 PF01297 32759 270.80 252

Metalloenzyme PF01676 28310 423.90 245

Birna VP2 PF01766 2744 236.30 442

Peptidase_S66 PF02016 9457 283.70 259

Fig.3. Comparison of the run time with different minimal supports

Under the same conditions, FBSB usually runs faster than the other two algorithms.

When the minimal support threshold is small, the run time of BioSM and MSPM are

much higher and BioPM seems less stable than MSPM and FBSB. This is because BioPM

needs more time to continuously build projective databases, although MSPM

significantly reduces time in the main mining section, it needs extra time to divide the

original sequences to form primary patterns and the primary pattern tree. Also, after the

main mining process, some of the leaves should be checked for further joining and

sometimes it may miss a few frequent sequences. FBSB uses the QS-list which can ensure

all the tested sequences during the mining process really do occur and all the

subsequences of the growth sequences are frequent. It can avoid doing unnecessary

connections which may generate candidate sequences, and this again saves in testing time.

4.2. Test of scalability

To test the scalability of the three algorithms, we use the same datasets as testing the run

time of FBSB and there are 915 sequences in each datasets. We set the minimal support

threshold as 15% when the sequence number grows from 100 to 600. Fig.4 shows the

comparison of the run time with different number of sequences.

0

4000

8000

12000

16000

20000

0 5 10 15 20 25 30
R

u
n

 t
im

e(
s)

Minmum Support(%)

BioPM

MSPM

FBSB

Fig.4. Comparison of the run time with different number of sequences (min-sup=15%)

It can be observed that the run time of the three algorithms increase when there are more

sequences. MSPM and FBSB are nearly linear increased. This indicates both MSPM and

FBSB have a good scalability, but FBSB always runs faster and its run time increases

more gently. Constructing projective database continuously is again the reason why

BioPM needs more run time. Sometimes the run time increases significantly if there are

more sequences with longer length, so the slope changes more at the point of 200

sequences. MSPM displays superior run time performance with longer sequences,

because it usually uses primary patterns without producing lots of short ones. However,

the more divisions it does, the greater the risk of frequent sequences being missed. FBSB

also mines a lot of short sequences, but all the sequences really do occur and all their

subsequences are frequent sequences. There are no candidate generation or useless

connections. As sequence length grows, the length of the QS-list will become shorter and

the number of QS-list will become smaller. That contributes significantly to the reduction

of run time for FBSBS.

5. Conclusion

Since biosequences are based on an alphabet Ʃ with only 4 or 20 different characters, the

number of items in a biosequence is limited and accuracy becomes a most important issue.

The FBSB algorithm uses bitmaps to record the sequence position value in each

transaction, and a quicksort list QS-list is created for quick sequence connection. They

0

1000

2000

3000

4000

5000

6000

7000

8000

0 100 200 300 400 500 600
R

u
n

 t
im

e(
s)

Number of Sequences

BioPM

MSPM

FBSB

display a compression characteristic and efficient computation during the mining process,

and FBSB will not blindly join the frequent sequences to generate candidate sequences.

All the sequences tested really do occur because FBSB algorithm uses position value to

guide the connection, and it ensures that the subsequences of the tested sequences are

frequent. So less calculating time and memory space are required. After analysing the

experimental results, it is shown that FBSB algorithm is more effective with a good

scalability. It is faster than the comparison algorithms and will not miss any frequent

sequences.

6. Acknowledgment

This work is supported by the National Natural Science Foundation of China under Grant

No. 61572420, No. 61472341 and the Natural Science Foundation of Hebei Province of

China under Grant No. F2013203324, No. F2014203152 and No. F2015203326. It is also

supported by China Scholarship Council. The authors are grateful to valuable comments

and suggestions of the reviewers.

Reference

[1] N.M. Luscombe, D. Greenbaum, M. Gerstein, What is bioinformatics? A proposed

definition and overview of the field, Methods Inf. Med. 40 (2001) 346-358.

doi:10.1053/j.ro.2009.03.010.

[2] A. Brazma, I. Jonassen, I. Eidhammer, D. Gilbert, Approaches to the automatic

discovery of patterns in biosequences., J. Comput. Biol. 5 (1998) 279-305.

doi:10.1089/cmb.1998.5.279.

[3] R. Agrawal, Fast algorithms for mining association rules, Proc. 20th Int. Conf. Very

Large Data Bases. (1994). doi:10.1.1.40.6757.

[4] J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation,

Networks. (n.d.) 1-12.

[5] M.J. Zaki, Scalable algorithms for association mining, IEEE Trans. Knowl. Data Eng.

12 (2000) 372-390. doi:10.1109/69.846291.

[6] J. Dong, M. Han, BitTableFI: An efficient mining frequent itemsets algorithm,

Knowledge-Based Syst. 20 (2007) 329-335. doi:10.1016/j.knosys.2006.08.005.

[7] W. Song, B. Yang, Z. Xu, Index-BitTableFI: An improved algorithm for mining

frequent itemsets, Knowledge-Based Syst. 21 (2008) 507-513.

doi:10.1016/j.knosys.2008.03.011.

[8] B. Vo, T.-P. Hong, B. Le, DBV-Miner: A Dynamic Bit-Vector approach for fast

mining frequent closed itemsets, Expert Syst. Appl. 39 (2012) 7196-7206.

doi:10.1016/j.eswa.2012.01.062.

[9] B. Vo, T.P. Hong, B. Le, A lattice-based approach for mining most generalization

association rules, Knowledge-Based Syst. 45 (2013) 20-30.

doi:10.1016/j.knosys.2013.02.003.

[10] B. Vo, T. Le, T. Hong, B. Le, Maintenance of a frequent-itemset lattice based on

pre-large concept, 245 (2014) 295-305. doi:10.1007/978-3-319-02821-7.

[11] B. Vo, T. Le, T.-P. Hong, B. Le, An effective approach for maintenance of pre-large-

based frequent-itemset lattice in incremental mining, Appl. Intell. 41 (2014) 759-775.

doi:10.1007/s10489-014-0551-z.

[12] B. Vo, T. Le, F. Coenen, T.-P. Hong, Mining frequent itemsets using the N-list and

subsume concepts, Int. J. Mach. Learn. Cybern. (2014). doi:10.1007/s13042-014-0252-2.

[13] R. Agrawal, R. Srikant, Mining sequential patterns, Proc. 11th Int. Conf. Data Eng.

(1995) 3-14. doi:10.1016/j.jbi.2007.05.004.

[14] R. Afshar, Mining frequent max and closed sequential, (2002).

[15] N.P. Lin, W. Hao, H. Chen, Fast mining maximal sequential patterns, (2007) 404-

407.

[16] G. Benson, Tandem repeats finder: a program to analyze DNA sequences., Nucleic

Acids Res. 27 (1999) 573-80. doi:10.1093/nar/27.2.573.

[17] S. Kurtz, J. V Choudhuri, E. Ohlebusch, C. Schleiermacher, J. Stoye, R. Giegerich,

REPuter: the manifold applications of repeat analysis on a genomic scale., Nucleic Acids

Res. 29 (2001) 4633-4642. doi:http://dx.doi.org/10.1093/nar/29.22.4633.

[18] X. Yun, BioPM : An efficient algorithm for protein motif mining, (2007) 394-397.

[19] Q. Zhou, Q. Jiang, S. Li, X. Xie, L. Lin, An efficient algorithm for protein sequence

pattern mining, 2010 5th Int. Conf. Comput. Sci. Educ. (2010) 1876-1881.

doi:10.1109/ICCSE.2010.5593815.

[20] L. Chen, W. Liu, Frequent patterns mining in multiple biological sequences, Comput.

Biol. Med. 43 (2013) 1444-1452. doi:10.1016/j.compbiomed.2013.07.009.

[21] M. Rashid, R. Karim, Efficient mining of Interesting patterns in large biological

sequences, 10 (2012) 44-50.

[22] Ramachandra.V.Pujeri, G.M.Karthik, Frequent periodic cryptic sequence mining in

biological data, J. Comput. Eng. Technol. 1 (2013) 46-60.

[23] K. Prasanna, M. Seetha, Efficient and accurate discovery of colossal pattern

sequences from biological datasets: a Doubleton Pattern Mining Strategy (DPMine),

Procedia Comput. Sci. 54 (2015) 412-421. doi:10.1016/j.procs.2015.06.048.

[24] V. Liao, M.-S. Chen, Efficient mining gapped sequential patterns for motifs in

biological sequences., BMC Syst. Biol. 7 Suppl 4 (2013) S7. doi:10.1186/1752-0509-7-

S4-S7.

[25] S. Singh, An efficient framework for mining biological network, (2015) 387-392.

[26] S. Naulaerts, P. Meysman, W. Bittremieux, T.N. Vu, W. Vanden Berghe, B. Goethals,

et al., A primer to frequent itemset mining for bioinformatics, Brief. Bioinform. 16 (2015)

216-231. doi:10.1093/bib/bbt074.

[27] <http://pfam.sanger.ac.uk/>.

