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Abstract

Linear Parameter Varying (LPV) systems and their control have gained attraction recently

as they approximate nonlinear systems with higher order than ordinary linear systems. On

the other hand, time delay is an inherent part of various real-life applications. A supervisory

control structure is proposed in this paper for LPV systems subject to time delays. In the pro-

posed control structure, a supervisor selects the most suitable controller from a bank of con-

trollers; which desires to enhance the performance of closed-loop system in contrast with

using a single robust controller. The analysis is based on the celebrated Smith predictor for

time delay compensation and we provide a sufficient condition to assure the stability of the

closed-loop switched system in terms of dwell time. Simulations on blood pressure control

of hypertension patients in postoperative scenario are used to exemplify the effectiveness of

the utilized technique. The operating region of the system is partitioned into five smaller

operating regions to construct corresponding robust controllers and perform hysteresis

switching amongst them. Simulation results witnessed that the proposed control scheme

demonstrated a pressure undershoot less than the desired value of 10 mmHg while the

Mean Arterial Pressure (MAP) remains within ±5 mmHg of the desired value.

I Introduction

Time delay appears in various real-world applications such as economics, biology, ecology,

chemical processes, and social sciences. It arises naturally in those physical phenomena which

involve material transportation or information transmission. This ubiquity has made the study

of time delay systems vastly attractive over the past few decades [1–3]. The presence of time

delay in system dynamics is often responsible for instability and performance degradation.

Motivated by the consequences of time delay, a lot of attention has been given to various issues

pertaining to time delay systems, [4, 5]. At the same time, the significance of linear parameter

varying (LPV) systems has been pointed out in numerous contributions, [6–8]. Numerous

real-life phenomena can be modeled using LPV systems that involve nonlinearities and

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0256408 August 20, 2021 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Zahid CN, Salim M, Riaz RA, Iqbal J

(2021) A deterministic approach for design of

supervisory control of LPV systems with delay.

PLoS ONE 16(8): e0256408. https://doi.org/

10.1371/journal.pone.0256408

Editor: Yanzheng Zhu, National Huaqiao University,

CHINA

Received: May 14, 2021

Accepted: August 5, 2021

Published: August 20, 2021

Copyright: © 2021 Zahid et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-4640-8496
https://orcid.org/0000-0002-0795-0282
https://doi.org/10.1371/journal.pone.0256408
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0256408&domain=pdf&date_stamp=2021-08-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0256408&domain=pdf&date_stamp=2021-08-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0256408&domain=pdf&date_stamp=2021-08-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0256408&domain=pdf&date_stamp=2021-08-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0256408&domain=pdf&date_stamp=2021-08-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0256408&domain=pdf&date_stamp=2021-08-20
https://doi.org/10.1371/journal.pone.0256408
https://doi.org/10.1371/journal.pone.0256408
http://creativecommons.org/licenses/by/4.0/


uncertainties, [9–11]. However, it is worth mentioning that various issues pertaining to LPV

framework still remain open with regard to stability analysis and synthesizing control law [12].

The stability analysis of LPV time-delayed systems is intriguing and recently has attracted

significant attention of the control community because, (i) these systems are an overlap inter-

section of two different class of systems and assume difficulties from each of these classes, [13],

(ii) many analysis tools such as projection lemma [14], and dualization lemma, [15], which are

devised for LPV system analysis fall apart when applied to LPV systems with time delay, and

(iii) many results such as frequency domain methods or techniques based upon eigenvalues,

which are targeted for linear time invariant systems (LTI) incorporating time delay are not

applicable for LPV time-delayed systems owing to their time varying identity. A lot of effort

has been made to analyze LPV systems with delay in more novel ways [16–18]. Distinctively

[16], employed a Lyapunov—Krasovskii functional dependent on system parameters in com-

bination with Jensen’s inequality. Their aim was to derive stability results, however, this

approach results in non-linear matrix inequalities and authors have to employ non-trivial

results from literature to form tractable LMIs. Also, literature on control systems reports sev-

eral gain scheduling algorithms. The control strategy mentioned in [19] involves selecting a

reference trajectory with reference to which the operating points are selected. Corresponding

to each of these points, a separate controller is designed after linearizing the system. Research

work in [17] reported a novel condition for sufficient stability of delay-dependent systems; and

the criteria to design gain-scheduling state-feedback control alongwith gain-scheduling static

output-feedback. The approach separated the Lyapunov matrices and the system matrices, so

that stabilizating controllers can be designed in a new way. Similar Lyapunov- Krasovskii func-

tionals based analysis has been presented in [20–22], nevertheless, they yield results that are

computationally expensive and cumbersome to implement. An interesting approach has been

studied in [23] where a model transformation is employed to synthesize a delay-scheduled

state-feedback for LPV time delay systems in “linear fractional transformation (LFT)” form.

Another controller synthesis scheduled by time delay is presented in [24]. The authors have

employed an advanced model transformation on to the time-delayed system, thus turning it

into a LPV system with uncertainty. Later on, this transformation is used to derive a delay-

dependent stability result that relies on full block-procedure. The work in [13], presented the

synthesizing of controllers which were resilient when it came to the uncertainties upon the

implemented delay. These controllers combine both memoryless and exact-memory control-

lers. The work in [25] investigated filtering problem for a certain class of LPV systems, whereas

authors in [26] derived a reduced order model for switched LPV systems. See also [27] which

is dedicated to the study of LPV systems with time delay. Although there is an abundance of

promising results, the challenges relating control and stability analysis of LPV systems with

time delay still remain sporadic, requiring further explorations [13].

In this article, we present a deterministic approach to supervisory control uncertain LPV

time delay systems, whose parameters are scheduled across a measurable trajectory (as an

example blood pressure regulation problem will be discussed later in this paper). The works in

[28–30] can be referred as the motivation for applying switching in control systems. This con-

trol design involves various steps. First, we use the celebrated Smith predictor approach to get

rid of time delay from controller synthesis [31]. Secondly, a family of controllers is constructed

for the LPV time delay system, with each controller ensuring robust stability for a specific

operating range. Then, we carry out hysteresis switching among the robust controllers based

on the switching law that relies on the scheduling variable. This will allow our system to func-

tion over a larger range of LPV system with time delay. A switching robust control scheme is

adopted because in certain scenarios, a single controller would not be sufficient to robustly sta-

bilize LPV system, over the entire range of operation [29, 32, 33]. We provide a sufficient
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condition in terms of bound on the rate of parameter variation to ensure the stability of the

closed-loop switched system. LPV systems with switching control for LPV systems has also

been discussed in [32], and [34]. However, no delay is present in [32] while state feedback con-

trollers are proposed in [34] instead of H1 controllers. As robust controllers minimize the

impact of perturbrations and uncertainty, they are a desired choice over conventional state-

feedback control system.

Novelty: In almost all of aforementioned works; Lyapunov-Kravoskii analysis has been

employed which yields conservatism due to Jensen’s inequality, computationaly expensive,

and results in parameter dependent conrollers which are cumbersome to discretize and imple-

ment in practical applications. Our approach has the following features:

• It doesn’t employ any Lyapunov-Karavoskii functional; hence we get rid of conservatism

• It utilizes LTI smith-predictor based controllers instead of LPV controllers to reduce

complexity

• The controller implementation becomes easier as compared to discretization of LPV con-

trollers [35]

• As there are fewer decision variables for LTI controllers, the computational complexity has

reduced considerably

• In our stability analysis, sufficient condition is provided with respect to bound on the rate of

parameter variation

In this work, we have provided stability analysis for LPV time delay systems. Here, the

delay is incorporated at the input, whereas previous works have considered a time delay in the

states.

The remaining document is structured in the following order. Section II provides the

description of control problem and its preliminaries. Section III focuses on design of switch-

ing robust controllers. Section IV presents the stability result for the overall closed-loop

switched system while section V illustrates the application of our proposed method on a prac-

tical problem of blood pressure regulation. Section VI mentions the algorithm, section VII

shows simulations and results, and section VIII provides conclusion and future directions in

this area.

Standard notation is used where the Euclidean spaces have arbitrary dimensions unless

mentioned otherwise; simplification will be done whenever no confusion would arise. We

denote the set of real numbers, the n-dimensional real vector space, and the set of real n ×m
matrices byR, Rn

, and Rn�m
, respectively. The semi positive definite real space is denoted by

Rþ. A comprehensive list of nomenclature is attached at the end of document.

II Problem formulation and preliminaries

The switching control scheme proposed here is shown in Fig 1. The exogenous input is repre-

sented by wp 2 R
dw , u 2 Rdu shows the control input, the regulated output is shown by

zp 2 R
dz , and the measured output is depicted by y 2 Rdy . The constant h> 0 represents a

delay. The LPV system is dependent on the parameter yðtÞ 2 R which is presumed to be con-

tinuously differentiable. Here, θ 2 Θ, with Θ being a compact set. We build a family of LTI

robust controllers which are formulated at specified operating points θ = θi, i = 1, 2, . . ., l. We

then carry out hysteresis switching between the controllers in compliance to the switching law

which is established on the scheduling parameter θ(t); thus allowing for a larger range of
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operation for the LPV time delayed system. Our prospect controllers belong to a set

K¼4 fKiðsÞ : i ¼ 1; 2; . . . ; lg; here Ki(s) is an LTI robust controller constructed for θ = θi.

By considering an operating range Θi, θi 2 Θi, the LPV time delay system shown in Fig 1

can be represented as F uðGyi ;4yi
Þ, where F u is the upper linear fractional transformation

(LFT),4yi
denotes the time varying part, and Gyi is the LTI part whose nominal value is θi.

The upper LFT characterization of the closed-loop system of Fig 1 is shown in Fig 2 where the

Fig 1. Switching control scheme.

https://doi.org/10.1371/journal.pone.0256408.g001

Fig 2. LPV plant with delay and LTI controller.

https://doi.org/10.1371/journal.pone.0256408.g002
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nominal transfer function Gyi at a specific θi is given by

Gµi(s) =

2
4
A(µi) eA(µi)hB1(µi) B2(µi)
C1(µi) D11(µi) D12(µi)
C2(µi) D21(µi) D22(µi)

3
5

ð1Þ

≜
Gyi

11ðsÞ Gyi
12ðsÞ

Gyi
21ðsÞ Gyi

22ðsÞ

2

4

3

5 ð2Þ

where Gyi
jkðsÞ ¼ CjðyiÞ½sI � AðyiÞ�

� 1BkðyiÞ þ DjkðyiÞ for j, k 2 {1, 2}.

Assumption 1. Gyi
22ðsÞ is stable and D22(θi) = 0.

Under Assumption 1, the controller Ki in Fig 2 can be chosen based on a Smith predictor

[31]. The Smith predictor-based controller consists of a stabilizing compensator Ci and a classi-

cal Smith predictor Pi given by

PiðsÞ ¼ Gyi
22ðsÞ � Gyi

22ðsÞe� sh ð3Þ

REMARK II.1. If Gyi
22ðsÞ is unstable (Gyi

22ðsÞ has both stable and unstable modes) then the controller
Ki in Fig 2 can be chosen as a modified controller based on Smith predictor (unified Smith
predictor-based controller), [36]. For the sake of simplicity, we do not propose these extensions.
D22(θi) = 0 implies that the plant GyiðsÞ is strictly proper.

Now we connect the Smith predictor Pi in parallel, with the input component u to the out-

put y of Gyi
h ðsÞ. Hence, we obtain a new representation of the system in Fig 2, now shown in

Fig 3, where ~y is the new output measurement and Gyi
aug is the generalized augmented plant

Fig 3. New representation of the system in Fig 2 added with Smith predictor-based controller.

https://doi.org/10.1371/journal.pone.0256408.g003
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given by

Gyi
augðsÞ ¼

Gyi
11ðsÞ Gyi

12ðsÞe� sh

Gyi
21ðsÞ Gyi

22ðsÞ

2

4

3

5

REMARK II.2. Ci is a stabilizing controller for Gyi
aug iff Ki ¼ CiðI � PiCiÞ

� 1 is a stabilizing controller

for Gyi
h , [36].

We obtain an analogous depiction of the system in Fig 3 by decomposing Gyi
augðsÞ, [36, Prop-

osition 1], which is shown in Fig 4 where

~Gµi(s) =

2
4
A(µi) eA(µi)hB1(µi) B2(µi)
C1(µi) 0 D12(µi)
C2(µi) D21(µi) 0

3
5

ð4Þ

and

¦µi1 (s) = G
µi
11(s)¡

∙
A(µi) eA(µi)hB1(µi)
C1(µi) 0

¸
(s)e¡sh

The configuration in Fig 4 will be helpful in solving the standard robust control problem in

the next section.

III Design of robust controllers

Consider the system in Fig 4, where we define anL 2 optimization problem to find CiðsÞ for

the LTI system represented by ~GyiðsÞ in such a way that (i) we ensure the asymptotic stability

of the closed-loop system for θ 2 Θi, and (ii) inf {supω6¼0(kzk2/kωk2): where CiðsÞ is satisfying

(i)}� γ for the smallest possible value of γ, where z ¼ ½zT
r ; zT

p �
T

and o ¼ ½oT
r ; o

T
p �

T
. Let k.ki,2

be theL 2-induced norm, and define Myi in Fig 4 as the transfer function from ωr to zr. Here, a

Fig 4. Equivalent representation of the system in Fig 3 by decomposing Gyi
augðsÞ.

https://doi.org/10.1371/journal.pone.0256408.g004
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sufficient condition for robust stability that satisfies (i) is:

kMyik1 �
1

kD
yiki;2

ð5Þ

where

MyiðsÞ ¼ F lð
~GyiðsÞ; CiðsÞÞe� sh þPyi

1
ðsÞ ð6Þ

and

F lð
~GyiðsÞ; CiðsÞÞ ¼

~Gyi
11ðsÞ þ ~Gyi

12ðsÞCiðsÞ½I � ~Gyi
22ðsÞCiðsÞ�

� 1 ~Gyi
21ðsÞ

ð7Þ

REMARK III.1. The robust stability condition in (5) is obtained using small gain theorem reported
in [37].

We deduce that by using (6), the condition (5) is equivalent to

kF lð
~GyiðsÞ; CiðsÞÞe� sh þPyi

1
ðsÞk1 �

1

kD
yiki;2

ð8Þ

REMARK III.2. Note that kDyiki;2 < 1 in (8) can be ensured by suitable selection of y�i ; y
þ

i and βi
> 0 such that,

y 2 Yi ≔ ½y
�

i ; y
þ

i �; j
_yðtÞj < bi

The above treatment leads to robust controller design and the controllers CiðsÞ can be syn-

thesized for ~GyiðsÞ by any standard robust control sysnthesis technique such as mixed sensitiv-

ity synthesis method [38] or loop-shaping procedure [39].

Each candidate controller can be described in state space representation as

Ci(s) =
∙
ACi BCi
CCi DCi

¸
; i = 1; 2; : : : ; l ð9Þ

To cover a larger operating range Θ, a stable switching scheme needs to be developed over

C¼
4
fCiðsÞ : i ¼ 1; 2; . . . ; lg. A necessary condition for stable switching is

Y �
[l

i¼1

Yi ð10Þ

III.I Algorithm for design of robust switching controllers

Here is a brief summary of the design procedure. A summary of the algorithm is shown in

Fig 5

• Step 1: Partition the parameter space Θ into l compact overlapping subsets Θi, i = 1, 2, . . ., l
such that (10) holds true.

• Step 2: For each Θi, select an operating point θi 2 Θi and compute the nominal transfer func-

tion ~GyiðsÞ given in (4).
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• Step 3: Formulate the mixed-sensitivity optimization problem for each ~GyiðsÞ.

• Step 4: Tune the weighting transfer functions according to the performance specifications

and the uncertainty.

• Step 5: Design the controller CiðsÞ for ~GyiðsÞ such that the robust stability criteria (8) is

obeyed, and the performance objective from wp to zp is achieved. Apply switching according

to the hysteresis rule of Fig 6.

• Step 6: If the robust stability condition (8) is not satisfied, then repeat Step 1 to Step 5 with

smaller range of Θi and re-tune the weighting transfer functions.

IV Stability of the closed-loop system

This section provides a sufficient condition for the stability of the closed-loop switched system

in terms of dwell time.

Using (4) and (9), the closed-loop matrix A, is given by Acl 2 {Ai(θ), i = 1, 2, 3, . . ., l}; here

AiðyÞ ¼

AðyÞ þ B2ðyÞDCi
C2ðyÞ B2ðyÞCCi

BCi
C2ðyÞ ACi

2

4

3

5 ð11Þ

Fig 5. Flowchart of algorithm for design of robust switching controllers.

https://doi.org/10.1371/journal.pone.0256408.g005
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Consider the switching LPV system here:

_xðtÞ ¼ Aq½yðtÞ�xðtÞ; t � 0 ð12Þ

here q is a constant signal defined piecewise, whose values belong to set F ≔ f1; 2; . . . ; lg,
which essentially means that qðtÞ ¼ i; i 2 F , for 8t 2 [tj, tj+1). Here tj; j 2 Z

þ [ f0g corre-

sponds to the jth switching time point, and Ai 2 A≔ fAiðyðtÞÞ : i 2 F ; yðtÞ 2 Yg represents

a family of parameter varying matrices.

Assumption 2. It is assumed that there exists a

(i). λi> 0; so that for any θ 2 Θ, the eigenvalues of Ai(θ) have real parts that are not greater
than � 2li; 8i 2 F ;

(ii). Li
A > 0, such that kAiðyÞk � Li

A, 8i 2 F ;

(iii). there exists a Li
D > 0 such that k @AiðyÞ

@y
k � Li

D, 8i 2 F ;

here the Euclidean norm of the time-varying vector(which is pointwise in time), and the corre-
sponding induced norm on the matrices are denoted by k.k.

Consider a family of Lyapunov functions

V ≔ fVi : Viðt; xðtÞÞ≔ x
T
ðtÞQiðtÞxðtÞ; i 2 Fg ð13Þ

where Qi(t) is a well defined, continuously differentiable, and unique positive-definite solution

Fig 6. Hysteresis switching.

https://doi.org/10.1371/journal.pone.0256408.g006
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of

Ai
TðyðtÞÞQiðtÞ þ QiðtÞAiðyðtÞÞ ¼ � 2liQiðtÞ � I; 8i 2 F ð14Þ

There exist positive constants Mi� μi> 0; i 2 F depends only on λi and Li
A such that

mikxðtÞk
2
� Viðt; xðtÞÞ � MikxðtÞk

2
; t � 0 ð15Þ

The reader is refered to [40] for more details. Using Assumption 2 and [40, Lemma 3], we

have

k _QiðtÞk � Li
Qj

_yðtÞj ð16Þ

where Li
Q > 0 is a constant depending only on λi, Li

A, and Li
D.

We are now ready to state a sufficient condition in terms of dwell time for stability of the

switching LPV system given in (12).

PROPOSITION IV.1. To obtain hysteresis switching for the set of controllers C over the operating
rangeΘi satisfying (10), a sufficient condition for Lyapunov stability of the switching LPV system
(12) is

j _yðtÞj < min

(

min
i2F

(
jdi;iþ1j

hD
; bi

)

; bmax

)

ð17Þ

where

bi ¼
1þ 2limi

Li
Q

; ð18Þ

bmax ¼ min
i2F

bi ; ð19Þ

hD ¼ max
i2F

2Mi ln
ffiffiffiffiffiffiffiffiffiffiffiffi
Mi=mi

p

1þ 2limi � Li
Qb

( )

; 0 < b < bmax ; ð20Þ

and di,i+1 = Θi \ Θi+1 is the ith hysteresis interval as depicted in Fig 6.

Proof. Consider any two neighboring controllers CiðsÞ and Ciþ1ðsÞ in the time interval

[tj tj+l], j 2 Zþ [ f0g. From the definition of dwell time, i.e., tj+1 − tj> hD, it follows that the

current controller CiðsÞ should be active for at least hD. Note that the condition j _yj < di;iþ1=hD

is sufficient for stable switching even in the worst case scenario when θ(t) oscillates around the

center of the interval di,i+1; having amplitude |di,i+1|/2 as shown in Fig 6. Considering all possi-

ble controllers, and using Remark 3.2 with j _yðtÞj < bmax yields (17). This concludes the proof.

REMARK IV.1. It must be noted that θ(t) is assumed as a scalar function of time t. When con-
sidering the more general case where yðtÞ 2 Rn is considered to be a vector, we can obtain identi-
cal results using similar arguments. For the sake of simplicity, we have omitted these results.

V Application to blood pressure regulation

In order to demonstrate the efficacy of our results, we consider a practical problem of blood

pressure regulation for post-surgical hypertension patients using infusion of vasoactive drug.

This problem concerns with the people with impaired built-in autonomic regulation. The con-

trol problem deals with regulating mean arterial pressure (MAP) around standard operating

point using infusion of vasoactive drug subject to external stimuli in blood pressure. The
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dynamics of system are parameter-varying due to changes in sensitivity of patients to these

vasoactive drugs. The system has an uncertain transport delay, which makes it a reasonable

choice for evaluating the performance of our proposed control technique. The importance of

this application is highlighted in [41–43]. Note that [29] reports a method to synthesize robust

controllers specifically for LPV time delay system that models change in MAP subject to vaso-

active drug infusion but it omits stability analysis of switching LPV time delay system.

V.I Plant description

The plant considered in this paper is an experimentally verified first order time-delayed

model, [41, 44–46]. This model describes the change in the MAP subject to injection of the

vasoactive drug. The infinite-dimensional transfer function of the setup is given by

GðsÞ ¼
DMðsÞ
IðsÞ

¼
k

tsþ 1
e� hs ð21Þ

where k denotes the sensitivity of the patient to the injected drug given in mmHg(m hr−1)−1, τ
is the time for drug distribution, h is the transport delay, I(s) denotes the Laplace transform of

the infusion rate of drug in ml/hr, and ΔM(s) is the Laplace transform of the relative change in

blood pressure (in mmHg) from the baseline value of M0(’100 mmHg), i.e.

DMðtÞ ¼ MðtÞ � M0 ð22Þ

REMARK V.1. We have neglected the recirculation term α i.e. α’ 0 (in the model of [44]) because
experimental studies indicate that in most of the cases this recirculation term is not evident,
[41, 45].

Taking the inter-patient and intra-patient variability of response to rate of drug infusion

into account, we treat the sensitivity of the patient to the infusion rate as the parameter that

varies with time, [41]. Taking state x(t) = ΔM(t), input u(t) = I(t), time varying parameter

θ(t) = k(t) and output y(t) = M(t), the equivalent LPV state space representation of the system

in (21) can be formulated as

_xðtÞ ¼ �
1

t
xðtÞ þ

yðtÞ
t

uðt � hÞ

yðtÞ ¼ xðtÞ þM0

ð23Þ

In the above state space model, we consider the parameter variation θ(t) 2 [−9.5, −0.25]

mmHg(m hr−1)−1, [46].

REMARK V.2. We consider θ(t) to be an online measurable parameter and it can be measured
online by deploying an extended Kalman filter (EKF) algorithm [47].

For controller synthesis, we consider the drug distribution time τ and the transport delay h
in (23) to be uncertain with known ranges. The nominal value of τ is τ0 = 35 sec with an uncer-

tainty range of [10, 60], and the nominal value of h is h0 = 40 sec with an uncertainty range of

[20, 60] as mentioned in [46].

V.II Performance specifications

The aim of the controller is to reduce blood pressure of the patient from a starting value of the

150 mmHg to 100 mmHg in the presence of time varying parameter θ(t), uncertainties in h and

τ. The closed-loop control of MAP should fulfill the following performance specifications, [44,

46].

1. The settling time needs to be less than 10 minutes.
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2. The pressure undershoot; in other words the peak hop below the desired level, must be less

than 10 mmHg.

3. The MAP should be inside ±5 mmHg of the desired set-point during the steady state.

4. Unstable modes and oscillatory response are unacceptable at any time.

5. Vasoactive drug infusion rate should be bounded as 0< I(t) < 180 ml hr−1 (for Sodium

Nitroprusside) to avoid the side effects.

V.III Controller synthesis

For the synthesis of ith controller, we consider the following uncertain plant

GiðsÞ ¼
ðyi þ DiÞeð� h0þDhÞs

ðt0 þ DtÞsþ 1
; for i ¼ 1; 2; . . . ; l ð24Þ

where Di ¼ jy
þ

i � y
�

i j, Δh = 20, and Δτ = 25. The uncertain plant can be modeled as

GiðsÞ ¼ G0i
ðsÞ þ GDi

ðsÞ, for i ¼ 1; 2; . . . ; l where G0i
ðsÞ is a nominal version of the plant in

(23) evaluated at θ = θi and a bound on GDi
ðsÞ can be chosen as

jGDi
ðsÞj � jDij þ jyijðje� Dhs � 1jþ

jDt s
t0sþ1
jÞ � jDij þ 2:715� jyij

ð25Þ

for i = 1, 2, . . ., l.
To satisfy the robust stability condition (8) and to fulfill performance specifications listed in

Section V.II, we partition the operating region of the plant in (23) into five smaller operating

regions (l = 5) given below.

Y1 ¼ ½y
�

1
; y

þ

1
� ¼ ½� 9:50; � 5:80� for controller C1;

Y2 ¼ ½y
�

2
; y

þ

2
� ¼ ½� 5:80; � 3:03� for controller C2;

Y3 ¼ ½y
�

3
; y

þ

3
� ¼ ½� 3:03; � 1:42� for controller C3;

Y4 ¼ ½y
�

4
; y

þ

4
� ¼ ½� 1:42; � 0:60� for controller C4;

Y5 ¼ ½y
�

5
; y

þ

5
� ¼ ½� 0:60; � 0:25� for controller C5:

REMARK V.3. A single controller cannot satisfy the robust stability condition (8) and the perfor-
mance specifications listed in Section V.II due to large range of uncertainty in the system 23.

A family of five robust controllers is constructed with each controller corresponding to a

single operating range mentioned above. The LTI controllers fCiðsÞ : i ¼ 1; 2; . . . ; 5g are

designed for specific operating points, i.e., for corresponding values of θ as: θ = θ1 = −7.65, θ =

θ2 = −4.415, θ = θ3 = −2.225, θ = θ4 = −1.01, and θ = θ5 = −0.425, respectively. To avoid chatter-

ing, hysteresis switching as shown in Fig 6 is employed among the family of five controllers.

The hysteresis based supervisory controller switching logic is given in Table 1. The table pro-

vides the thresholds on the values of parameter on which the controllers will be switching.

We use the standard two-block mixed sensitivity synthesis method to design the LTI robust

controller Ci following the treatment developed in previous sections. Sensitivity and control

sensitivity weighing functions have been incorporated for the controller design. For reference

tracking, an additional constraint on Ci i.e., lims!0CiðI þPiCiÞ
� 1
¼ 1, is considered. For

PLOS ONE Switched LPV systems with time delay

PLOS ONE | https://doi.org/10.1371/journal.pone.0256408 August 20, 2021 12 / 19

https://doi.org/10.1371/journal.pone.0256408


instance, the sensitivity weight Ws1
and the control sensitivity weight Wk1

corresponding to

the operating range Y1 ¼ ½� 9:5; � 5:80� to fulfill the performance specifications are selected

as

WsðsÞ ¼ exp � h
t0

� �
�

sþ 0:055

10sþ 5:5� 10� 4

Wk ¼ exp � h
t0

� �
� ðjD1j þ 2:715� jy1jÞ ¼ 7:2118

ð26Þ

Then we solve the standard two block mixed sensitivity synthesis problem using MATLAB for

the operating range Θ1 = [-9.5, -5.80] which satisfies the robust stability condition (8) with γ =

0.9443. A similar procedure is adopted for the synthesis of the controllers C2 through C5. We

have separately simulated the response for C3 (referred as single controller) for performance

comparison of switching and non-switching control.

VI Results and discussions

This section includes the simulation results and discussion for the closed-loop switching LPV

system formulated previously. The simulations were carried out using MATLAB 2016a on a

Lenovo ThinkPad Machine X220i, which has an Intel Core i3 processor with a RAM of 8 GB.

The simulation results are shown in Figs 7–10. The parameter trajectory θ(t) is shown in Fig 7

whose range was descibed in [46]. As seen in the plot, θ(t) rises during time intervals [0, 400]

and [1100, 1400]; while it remains constant during the interval [400, 1100] and for

time� 1400 seconds. θ(t) is the signal used by the supervisory controller for switching in

between the controllers. The parameter trajectory includes the entire operating range of LPV

system, and this choice is made solely to validate the performance of our proposed method in

the worst-case scenarios.

The absolute rate of parameter variation j _yðtÞj is shown in Fig 8. Using Proposition IV.I,

we have βmax = 0.0279 and hD = 472.71. From Fig 8, we have

sup8tj _yðtÞj ¼ 0:0085 < bmax ¼ 0:0279; which ensures Lyapunov stability in the presence of

both uncertainity, and delay under the parameter trajectory given in Fig 7.

We have used constant Lyapunov matrix and solved the LMIs from Eq (14) on the vertices

of the polytope for each operating region. The closed-loop system is simulated using the family

of five switching robust controllers, fCiðsÞ : i ¼ 1; 2; . . . ; 5g. Bump-less transfer is pre-condi-

tioning ensured for all the controllers before the simulation. For implementation of the Smith-

predictor structure, an FIR filter has been used as in [29]. Fig 9 compares the response of MAP
under parametric variations and admissible switching scheme with a single conroller. As seen

Table 1. Hysteresis based supervisory controller logic.

Switching Logic @ Value of θ(t)

Switch: C1 ! C2 @ θ = −5.60

Switch: C1  C2 @ θ = −6.00

Switch: C2 ! C3 @ θ = −2.83

Switch: C2  C3 @ θ = −3.23

Switch: C3 ! C4 @ θ = −1.22

Switch: C3  C4 @ θ = −1.62

Switch: C4 ! C5 @ θ = −0.40

Switch: C4  C5 @ θ = −0.80

https://doi.org/10.1371/journal.pone.0256408.t001
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Fig 7. Time varying parameter, θ(t).

https://doi.org/10.1371/journal.pone.0256408.g007

Fig 8. Rate of parameter variation, j _yðtÞj.

https://doi.org/10.1371/journal.pone.0256408.g008
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Fig 9. Curve of mean arterial pressure, ΔM(t).

https://doi.org/10.1371/journal.pone.0256408.g009

Fig 10. Curve of drug infusion rate, I(t).

https://doi.org/10.1371/journal.pone.0256408.g010
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in 9, the supervisory approach satisfies all the required performance specifications simulta-

neously, i.e., (i) settling time is less than 10 minutes, (ii) pressure undershoot was maintained

less than 10 mmHg, and (iii) Mean Arterial Pressure (MAP) is within ±5 mmHg of the desired

set-point. In comparison, a single controller fails to secure these specifications simultaneously.

However, the infusion rate I(t) is within the desired limits of 0< I(t) < 180 ml hr−1 for both

controller structures as evident from Fig 10.

Our technique circumvents Padé approximation and as shown in the simulations above, it

yields satisfactory performance for larger range of parameter variation and uncertainty as

compared to [41]. Hence, the simulation results show that the control structure designed here

conforms with our derivations from the previous sections.

VII Conclusion

A deterministic approach is proposed in this paper for supervisory control of LPV time delay

systems. A family of Smith predictor based robust controllers is synthesized where each con-

troller ensures robust stability in the neighborhood of pre-selected operating points in the

presence of delay. Under hysteresis switching, we provided a sufficient condition for Lyapunov

stability of the closed-loop LPV system in terms of bound on the rate of parametric variations.

The approach is quite effective for LPV time delay systems with slow variations in parameters.

Moreover, the operating range for the system is stretched by utilizing this approach. The

approach doesn’t consider Lyapunov-Krasovskii functionals which makes it more tractable,

less conservative and computationally cheap. The resulting controller are easy to implement in

practical applications. The efficacy of the switching robust control scheme is illustrated by

applying it to blood pressure regulation of postsurgical hypertension patients.

Some future extensions include finding stability conditions for LPV systems with time-

varying delays and derivation for less conservative bound on parameter variation to allow

faster switching.
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