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Abstract 
 

We present new stable isotope (δ18Ocalcite and δ13Ccalcite) and diatom data from a 67-m 

sediment core (BAN II) from Lake Banyoles, northeastern Spain. We reassessed the 

chronology of the sequence by correlating stable isotope data with a shorter U-series-dated 

record from the lake, confirming a sedimentological offset between the two cores and 

demonstrating that BAN II spans Marine Isotope Stages (MIS) 3 to 1. Through comparison 

with previous records, the multi-proxy data are used to improve understanding of 

palaeolimnological dynamics and, by inference, western Mediterranean climate and 

environmental change during the past ca. 50,000 years. Three main zones, defined by isotope 

and diatom data, correspond to the MIS. The basal zone (MIS 3) is characterised by 

fluctuating δ18Ocalcite and benthic diatom abundance, indicating a high degree of 

environmental and climate variability, concomitant with large lake-level changes. During the 

full glacial (MIS 2), relatively constant δ18Ocalcite and a poorly preserved planktonic-

dominated diatom assemblage suggest stability, and intermittently, unusually high lake level. 

In MIS 1, δ18Ocalcite and δ13Ccalcite initially transition to lower values, recording a pattern of 

Late Glacial to Holocene change that is similar to other Mediterranean records. This study 

suggests that Lake Banyoles responds limnologically to changes in the North Atlantic ocean-

atmosphere system and provides an important dataset from the Iberian Peninsula, a region in 

need of longer-term records that can be used to correlate between marine and terrestrial 

archives, and between the western and eastern Mediterranean.
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Introduction 

 

The Iberian Peninsula, located west of the Mediterranean Basin, is a key location for 

understanding climate connections between the eastern and western Mediterranean (Roberts 

et al. 2008) and interactions with North Atlantic climate dynamics. The understanding of past 

climate variability across the peninsula itself has improved considerably over the last two 

decades, employing a range of proxy methods and sources, including sequences from 

peatbogs (González-Sampériz et al. 2006), speleothems (Stoll et al. 2013), cave sediment 

(Fernández et al. 2007), and lacustrine sediment (Reed et al. 2001; Valero-Garcés et al. 

2004). Iberian palaeoclimate records show broad similarities, but many do not extend beyond 

the Holocene and the understanding of pre-Late Glacial climate, in particular, is still limited. 

 

Lake Banyoles, a karst lake located northeast of the Iberian Peninsula (Fig. 1), is a 

rare Iberian example of a relatively deep, fresh lake with a long sediment record, and is thus 

an important site for palaeoclimate research in the western Mediterranean. Previous work on 

Lake Banyoles employed palynological, sedimentological and geochemical techniques for 

palaeoclimate reconstruction and to improve understanding of the modern physical 

limnology. In an early palynological study of the lake sediment core, “La Draga” (named 

after an adjacent Early Neolithic site excavation), Pérez-Obiol and Julià (1994) showed 

climatic instability during the Glacial, followed by a rapid transition to the Bølling-Allerød 

interstadial and the Younger Dryas event, suggesting that the lake responds to North Atlantic 

climate forcing. Valero-Garcés et al. (1998) provided the first palaeohydrological proxy data 

from sedimentary facies and stable isotope analysis, generating data on regional arid-phase 

intensity during Heinrich Events (HE; H3-H0) of the last glacial cycle. More recently, Höbig 
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et al. (2012) used geochemistry and optical methods on core “BAN II” to identify the impact 

of HE (H5-H0) in the region.  

 

Study site 

 

Lake Banyoles (42°07’N, 02°45’E; 172 m a.s.l.) is located in the Province of Girona, 

Catalonia, Spain around 25 km from the Mediterranean Sea (Fig. 1). The region has a humid 

Mediterranean-type climate with an average annual rainfall of 810 mm, measured over the 

period 2003-2013 at the nearby town of Banyoles (Fig. 2a; http://www.meteobanyoles.com/). 

Minimum precipitation occurs during summer and winter months (July, 37 mm; January, 43 

mm), and maximum rainfall is during autumn and spring (October, 116 mm; March, 90 mm). 

Relative humidity remains fairly stable throughout the year, ranging from 58% (July) to 70% 

(November). Average monthly temperature ranges from 8°C (January) to 25°C (July), and 

the annual average temperature is 16°C. The oxygen isotope composition of weighted mean 

annual precipitation (δ18Oprecipitation) measured at Girona airport (129 m a.s.l., 25 km south of 

Lake Banyoles) between 2000 and 2006 was –5.7‰ (Fig. 2b; http://www-

naweb.iaea.org/napc/ih/IHS_resources_gnip.html). A correction must be applied to 

incorporate the altitude difference between Girona and Banyoles (–0.6‰/100 m; Fernández-

Chacón et al. 2010); the offset is –0.26‰ for the 43 m altitude increase, which results in a 

predicted weighted mean annual δ18Oprecipitation ≈ –5.9‰ at Banyoles. 

 

According to the Valero-Garcés et al. (2014) classification of Iberian karst lakes, 

Banyoles is a hydrologically open system with complex basin morphology and a large 

watershed. The lake has a maximum length of 2.15 km, a maximum width of 0.78 km and 

covers 1.12 km2 (Moreno-Amich and García-Berthou 1989). The average water depth is 14.8 
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m. The lake can be divided into two (northern and southern) sub-basins separated by a 

shallow sill, which in turn consist of six isolated, subaqueous karstic sinks, which have a 

maximum water depth of 46.4 m (Fig. 1; Höbig et al. 2012). Water input to the lake is 

predominantly through subterranean springs (85%; Serra et al. 2005), where a fault along the 

eastern shore redirects groundwater flow upwards through the base of the sinks (Moreno-

Amich and García-Berthou 1989; Morellón et al. 2014). The underlying confined aquifer is 

recharged by rainfall from two watersheds located in the Alto-Garroxta mountain range 

approximately 40 km northwest of Lake Banyoles (Morellón et al. 2014). Five creeks situated 

on the western shore of the lake supply the remainder of water input (15%; Serra et al. 2005). 

Groundwater inputs are the dominant influence on modern sedimentation in some of the 

active sinkholes (Morellón et al. 2014). 

 

The lake sediment is comprised of up to 98% CaCO3, including inorganic (endogenic) 

and biogenic (gastropods, ostracods and charophytes) components, with minor quantities of 

clays and silt/sand-size particles of mainly quartz and feldspar (Höbig et al. 2012). The lake 

is therefore characterised as a marl lake, which are typical of Mediterranean karst catchments 

(Leng and Marshall 2004; Roberts et al. 2008). Average sediment accumulation rate was 

estimated to be about 1 mm yr-1 throughout the La Draga sequence (Pérez-Obiol and Julià 

1994), although this value is subject to errors inherent in the previous age model. 

 

Here, we aimed to: 1) improve understanding of the chronology, 2) characterise the 

nature of palaeohydrological variability for palaeoclimate reconstruction, and 3) constrain 

periods of lake-level and productivity change in Lake Banyoles. We provide new data from 

sediment core BAN II, including oxygen (δ18O) and carbon (δ13C) isotope data from 

endogenic calcite, to address (1) and (2) (Leng and Marshall 2004), and diatom data to 
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provide an indicator of lake-level and productivity change (3) (Currás et al. 2012). Our 

interpretation is strengthened by multi-proxy comparison with previous work on Lake 

Banyoles (Pérez-Obiol and Julià 1994; Valero-Garcés et al. 1998; Höbig et al. 2012) and with 

palaeoclimate reconstructions from the eastern and western Mediterranean, to improve 

understanding of Late Quaternary variability across this complex region. 

 

Materials and methods 

 

Core recovery and sedimentology 

 

The 67.07-m core, BAN II, was recovered in the early 1990s from the exposed lake bed on 

the eastern shore of Lake Banyoles (Fig. 1), in 10 cm diameter PVC tubes. The core was 

collected as 1.5 m-long sections and since collection has been wrapped and stored in darkness 

at 6°C. In a previous study, the core was dated using Accelerator Mass Spectrometry (AMS 

14C) and U-series (U/Th) techniques, and investigated using Multi-Sensor Core Logger, 

Fourier-Transform Infrared Spectroscopy and X-Ray Fluorescence (XRF) measurements on 

366 equidistant samples (Höbig et al. 2012). Here, we incorporate total inorganic carbon 

(TIC), total organic carbon (TOC), and XRF count data (K, Ca) from this previous work (for 

analytical methods see Höbig et al. 2012). Ten complex facies were recognised (Höbig et al. 

2012), the compositions of which are summarised here to aid multi-proxy interpretation. 

The sedimentology of Lake Banyoles reflects several periods of change in the 

depositional environment (Höbig et al. 2012). The oldest deposits (67.07-41.00 m) are, in 

general, less variable, with more gradual lithological transition and an intercalated phase of a 

few-centimetre to decimetre-thick rhythmites (56.00-53.70 m). A major transition occurs at 

the boundary between facies H and G. The following sediment sequence (41.00-12.00 m) is 
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highly variable. In the upper sequence (above ~ 12.00 m), the sedimentology indicates subtle 

changes in the depositional environment. 

Facies J (67.07-66.10 m) at the base of the sequence comprises alternating dark- and 

light-coloured, laminated carbonaceous sediments. There is a gap in core recovery at the 

transition to facies I (61.20-56.00 m), which shows fining- or coarsening-upward sequences 

(< 1 m) with embedded clay clasts and intercalated layers of plant fragments, as well as 

sharp-bounded coarser layers. The overlying sequence (facies E; 56.00-53.70 m) consists 

mainly of two alternating components (rhythmites), consisting of wavy and/or lenticular, 

laminated carbonates (clay-silt size) that alternate with coarse (coarse-sand-size) calcified 

charophyte remains. Facies H is a large and complex unit (53.70-40.00 m), which consists of 

thick, fining-upward sequences (~ 2 m) dominated at the base by gravel-size Chara remains. 

Further up in the sediment core (facies G; 40.00-33.00 m), thin-bedded silt- and sand-size 

carbonates were deposited, which have subsequently been buried by about 2 m of facies E-

type rhythmites (33.00-31.00 m). The following heterogeneous facies F (31.00-20.00 m) is 

made of a clayey carbonate matrix, with angular carbonaceous clasts containing abundant 

charophytes. This is overlain by about 3 m of facies E-type rhythmites (20.00-17.00 m), 

which have been capped by facies D (17.00-16.00 m). Facies D contains a massive terrestrial 

freshwater carbonate deposit (travertine, calcareous tufa, and sinter) embedded in lacustrine 

carbonates. Following this (facies C; 16.00-10.00 m) the depositional environment reverts to 

lacustrine conditions that have preserved layered carbonate muds with gastropods and plant 

remains, with some evidence for bioturbation. The latter intensifies in the following facies B 

(10.00-7.50 m), after which the drill site became sub-aerial, indicated by palustrine 

carbonates and a peat deposit at the very top of the sequence (3.00-2.00 m) with no core 

recovery between 7.50 and 3.00 m. 
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Mineralogy 

 

Mineralogy of the carbonate species was investigated using X-Ray Diffraction (XRD) on a 

Bruker D8 Advance powder diffractometer equipped with a LynxEye linear position sensitive 

detector and using CuKα radiation over the scan range 4-90°2θ. Phase identification was 

performed using Bruker DIFFRACplus EVA search/match software, interfaced with the 

PDF-4+ database from the International Centre for Diffraction Data (ICDD). 

 

Stable isotope analysis of carbonate  

 

Oxygen and carbon isotope analysis of carbonate (δ18Ocalcite and δ13Ccalcite) was performed at 

the same subsample intervals as those used in Höbig et al. (2012), comprising 10 cm 

resolution from the base of the core to the base of the upper peat layer at 2.70 m. For the 

cross-core correlation, we compared the new isotope data with isotope and palynological data 

from the La Draga sequence (Pérez-Obiol and Julià 1994; Valero-Garcés et al. 1998). 

 

For isotope analysis the samples were reacted with anhydrous phosphoric acid at a 

constant 25°C in a vacuum overnight to evolve the CO2 for analysis. The CO2 was analysed 

using a VG Optima dual inlet mass spectrometer. The mineral-gas fractionation factor used 

for oxygen in calcite was 1.01025, derived from Rosenbaum and Sheppard (1986). δ18O and 

δ13C are reported as per mil (‰) deviations of the isotopic ratios (18O/16O and 13C/12C) 

calculated to the Vienna Pee Dee Belemnite (VPDB) scale. Within-run laboratory standards 

(MCS and CCS) were used, for which analytical reproducibility was <0.1‰ for δ18Ocalcite and 

δ13Ccalcite. 
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A pilot study was carried out using 32 samples selected from throughout the core 

(with TOC between 0.5% and 7.0%) to assess whether reactive organic matter needed to be 

removed prior to isotope analysis. One aliquot was analysed using the method described 

above with no pre-treatment. A second aliquot was disaggregated in 100 ml of 5% sodium 

hypochlorite for 24 hours to oxidise any reactive organic material, rinsed three times in 

deionised water, dried at 40°C, ground and the analysis method was applied. The preliminary 

study showed the two techniques produced similar results (the gradient of treated vs. 

untreated δ18O and δ13C ≈ 1), so processing to remove organic matter was not carried out on 

the remaining samples.  

 

Diatom analysis 

 

Diatom slides were prepared at a resolution of approximately 0.7-1.0 m intervals (53 

subsamples, representing every seventh isotope subsample), using standard techniques 

(Battarbee et al. 2001). Sediment samples of about 0.1 g were heated in 30% H2O2 to oxidise 

organic material and a few drops of concentrated HCl were added to remove carbonates. The 

suspension was then washed with deionised water and centrifuged several times to clean and 

remove clay-size particles. Microscope slides were prepared using Naphrax™. Diatoms were 

counted at x1000 magnification under oil immersion with a Zeiss Axioscop Plus 2 light 

microscope. At least 300 valves were counted where diatoms were well preserved, but fewer 

were enumerated in poorly preserved samples. Diatom identification was based on standard 

texts, with updated nomenclature (Currás et al. 2012). Ryves’ simple F-index (FI), 

comprising the ratio of pristine to partially dissolved diatom valves (Ryves et al. 2001), was 

used to summarise preservation status. Diatom results were displayed using Tilia and 
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TGView, and biostratigraphic zone boundaries were defined using constrained incremental 

sum of squares (CONISS) cluster analysis (Grimm 2011). 

 

Results 

 

Geochemical and isotope analysis 

 

Calcite is the dominant constituent of the BAN II sediment sequence (Fig. 3; average = 

10.1±1.2% as TIC), which was confirmed by XRD and validated by Scanning Electron 

Microscopy and Energy-Dispersive X-ray spectroscopy. Total organic carbon (TOC) is 

generally low, averaging 1.5±0.8%. Three main zones can be defined by eye, based on 

changes in the isotope data. Zone 3 (67.00-38.50 m) has the lowest average δ13Ccalcite (–

0.5±0.8‰), intermediate δ18Ocalcite (–5.4±0.4‰) and lower, but variable TIC (9.9±1.5%). 

Zone 2 (38.50-11.90 m) is defined by higher and less variable δ18Ocalcite (–5.1±0.1‰) and TIC 

(10.6±0.5%). Zone 1 (11.90-7.70 m) shows high, but variable δ13Ccalcite (0.9±1.0‰), the 

lowest average δ18Ocalcite (–6.1±0.4‰) and moderate TIC (10.2±0.2%). The isotope zones 

broadly correlate with the facies defined by Höbig et al. (2012), however individual 

lithological shifts are not generally reflected in the isotope data.  

 

Diatom analysis 

 

A total of 77 diatom taxa were identified, reflecting the diversity of benthic diatom species 

present at low abundance. Diatom concentration is generally low and most samples show 

obvious signs of dissolution in the high-alkalinity lake. No diatoms were preserved above 

27.4 m depth and slides were uncountable at ~53, 50 and 43 m, and at various levels in the 



12 

 

sequence above 40 m depth. This is reflected in very low FI values, particularly in phases of 

almost 100% dominance by dissolved Cyclotella distinguenda Hustedt, where the FI is 

consistently <0.2 because the majority of assemblages show strong signs of dissolution. 

 

Six major diatom assemblage zones, DZ1 to DZ6, were defined using CONISS (Fig. 

4). Overall, the sequence is dominated by planktonic taxa Cyclotella distinguenda Hustedt, an 

alkaliphilous freshwater diatom that can also tolerate slightly brackish water (Reed 1998), 

and Cyclotella ocellata Pantocsek, a taxon that is probably a species complex, with very 

broad ecological preferences, but which is common in Mediterranean karst lakes and 

typically found in shallow to deep, and ultra-oligotrophic to meso-eutrophic water (Reed et 

al. 2010; Jones et al. 2013). The benthic flora is dominated by freshwater species within the 

genera Amphora, Diploneis, Mastogloia, Gomphonema and Cymbella, typical of epiphytic 

and epipelic habitats in the littoral zone of Spanish karst lakes (Currás et al. 2012). 

 

DZ1 (60.7-56.7 m) 

 

Planktonic and benthic taxa are present in similar proportions over much of DZ1, with a peak 

in plankton of >80% in the mid zone corresponding to a minimum in preservation quality. 

Planktonic Cyclotella distinguenda and C. ocellata are co-dominant. The benthos is 

dominated by alkaliphilous Cymbella leptoceros (Ehrenberg) Kützing, Gomphonema 

angustum C.A. Agardh non Kützing nec Brébisson fide Grunow in Van Heurck, Mastogloia 

lacustris (Grunow) Grunow in Van Heurck and Amphora pediculus (Kützing) Grunow ex A. 

Schmidt, with facultative planktonic (FP) taxa present at <3% throughout. The FI average for 

DZ1 is low (0.24). 
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DZ2 (56.7-51.2 m) 

 

The transition to DZ2 is marked by an increase in the relative abundance of plankton (mainly 

>85%), with dominance varying between Cyclotella distinguenda and C. ocellata, and a 

corresponding decrease in benthic abundance (<30%). Minor peaks in Achnanthidium 

minutissimum (Kützing) Czarneki and Sellaphora bacillum (Ehrenberg) Mann in Round et al. 

occur at 56.2 m (7.6%) and 52.4 m (11.3%), respectively. The FI average for DZ2 is low 

(0.18). 

 

DZ3 (51.2-47.3 m) 

 

The relative abundance of benthic taxa drops to <7% in DZ3, with the almost monospecific 

dominance of C. distinguenda (92-100%). Mastogolia lacustris and G. angustum increase in 

the centre of the zone (<6%). Preservation is extremely poor, with an FI average of 0.01. 

 

DZ4 (47.3-44.1 m) 

 

The basal sample of DZ4 is characterised by relatively high abundance of benthic taxa, 

mainly comprising epipelic Amphora spp., a minor increase in FP Pseudostaurosira 

brevistrata (Grunow in Van Heurck) Williams and Round to 7% and a corresponding 

decrease in C. distinguenda to ~30%. Cyclotella ocellata reappears at low abundance (<9%). 

The remainder of DZ4 is poorly preserved and dominated by C. distinguenda, giving an FI 

average of 0.19. 
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DZ5 (44.1-41.0 m) 

 

Zone DZ5 is the most distinct of the sequence, being dominated by the FP and benthic taxa, 

but without a marked shift in the range of taxa. The most notable shift is in FP, with increases 

in Staurosira construens f. venter (Ehrenberg) Bukhtiyarova, P. brevistriata and 

Staurosirella lapponica (Grunow in Van Heurck) Williams and Round amounting to ~50% 

abundance at the upper zone boundary, and in A. pediculus, which reaches peak abundance of 

~30%. Preservation is relatively good, with average FI values of 0.56. 

 

DZ6 (41.0-27.4 m) 

 

Benthic and FP taxa virtually disappear above 40 m depth, in a zone dominated by poorly 

preserved C. distinguenda and a low FI average of 0.07. 

 

Re-assessment of the chronology 

 

The original chronology of BAN II was based on eight Accelerator Mass Spectrometry (AMS 

14C) radiocarbon age estimates and three U/Th radiometric dates (Höbig et al. 2012), with 

further chronological tie points inferred by cross correlation with a previously U/Th-dated 

core from Lake Banyoles (Pérez-Obiol and Julià 1994). A horizon of volcanic glass shards, 

representing a dispersed tephra layer, was geochemically linked to the latest eruptive phase of 

the Olot volcanic field (ca. 11.5 ka; Höbig et al. 2012). The current age model has been 

modified to incorporate a radiocarbon reservoir effect (Morellón et al. 2014), and a 

sedimentological offset between the La Draga and BAN II cores (Fig. 3). The new model 

shows an improved correlation between radiocarbon and U/Th ages from BAN II, and ages 
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from the La Draga record (Fig. 5), though age reversals are still prevalent, highlighting the 

complexity of chronological control. 

 

Radiocarbon dating in karstic lacustrine environments is often subject to lake-water 

reservoir effects. In Lake Banyoles this generates an error of between +3.0 to +5.5 ka for 

central lake sediments (Morellón et al. 2014). U-series dating is considered potentially more 

reliable as there is no reservoir effect and contamination by the secondary migration of U is 

mitigated by a combination of endogenic calcite deposition with low detrital Th content, high 

sedimentation rates, and no evidence for sub-aerial exposure (Pérez-Obiol and Julià 1994).  

 

U/Th dates from bulk sediments in the lower section of the BAN II core (below 43.75 

m) provide ages between 36 and 52 ka, suggesting they were deposited through MIS 3. This 

is inferred from a radiocarbon age (taking into account the potential reservoir effect and age 

limits of the radiocarbon technique) at 61.06 m of ca. 48 ka, and also suggested by pollen 

data, wherein the percentage of mesophilous taxa is higher at the base of the La Draga core 

(Pérez-Obiol and Julià 1994). The subsequent AMS 14C ages show a linear progression 

through the core and, although offset, display a similar trend to U/Th ages. This suggests a 

relatively stable sediment accumulation rate over the past ca. 50 ka, however 14C ages still 

offer poor overall chronological control in the BAN II sequence. The new isotope data 

presented here allow for more precise correlation with the previous core from Lake Banyoles, 

wherein maximum values of both δ18O and δ13C occurred at 6.10 m during the Younger 

Dryas in La Draga (Valero-Garcés et al. 1998). These peaks can be correlated to those at 

11.90 m in BAN II, which suggests a potential 5.80 m offset between the two cores. Sediment 

deposition during the Holocene is indicated by a radiocarbon date taken from a peat layer 

(terrestrial, no reservoir effect) at 2.8 m (5367±66 cal yr BP), and by increasing TOC through 
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Zone I. Our results therefore support the previous argument that core BAN II covers MIS 3-1 

(Höbig et al. 2012), but the age model is now strengthened by isotope correlation between 

cores. The zones (3-1) defined by isotope data broadly correlate to MIS 3-1 based on the 

chronological data available. 

 

Discussion 

 

Modern lake-water isotope composition and controls 

 

Lake Banyoles is fed by a large karst aquifer system, formed in Palaeogene limestone and 

gypsum, with an estimated hydrological throughput of about 1 hectometre3 per day (Pérez-

Obiol and Julià 1994). Although our modern water isotope dataset is small, it can be inferred 

from BAN II data that consistently low δ18Ocalcite with relatively minimal down-core 

variability (–5.4±0.4‰, 1σ, n = 334) reflects a hydrologically open system with a short 

residence time, in which the isotope composition of aquifer and lake water are similar 

(Valero-Garcés et al. 2014). The modern isotope composition of lake water (δ18Olakewater) 

from Lake Banyoles was measured in 2011 and gave a mean δ18Olakewater = –5.4±0.5‰ (1σ, n 

= 11; B. Valero-Garcés, unpublished data), which is generally consistent with the mean 

annual rainfall isotope composition (≈ –5.9‰; Fig. 2). This suggests that, in general, 

δ18Olakewater is not affected by evaporative processes, which is corroborated by low lake-water 

electrical conductivity (Moreno-Amich et al. 2006), indicating a water column that is 

deficient in total dissolved solids (Rosqvist et al. 2007). Hence, for understanding past lake 

water balance, δ18Olakewater variations are thought primarily to reflect changes in δ18Oprecipitation 

(i.e. temperature, source, continentality, altitude, amount, seasonality), rather than internal-

lake processes, such as evaporation (Leng and Marshall 2004).  
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Temperature and precipitation patterns in the North Atlantic region are dominated by 

the North Atlantic Oscillation (NAO; Sánchez Goñi et al. 2002). Complex orography and 

other local geographical factors moderate the influence of North Atlantic atmospheric 

dynamics in some regions (Martin-Vide and Lopez-Bustins 2006), however, and create 

strong regional differences in the seasonal timing of maximum precipitation. The majority of 

water delivered to the Iberian Peninsula originates from two sources: the Atlantic Ocean and 

Mediterranean Sea, which produce a distinct source effect on δ18Oprecipitation received at 

Banyoles (Moreno et al. 2014). The importance of rainfall from each individual source varies 

both regionally and seasonally (Gimeno et al. 2010; Moreno et al. 2014), and the extent of 

influence can be potentially identified using the deuterium excess (d-excess; δD – 8δ18O) of 

meteoric water (Fernández-Chacón et al. 2010).  

 

Following evaporation from an ocean source, d-excess does not significantly change 

during subsequent modification within an evolving air mass, as typically δ18O and δD vary 

proportionately (Sharp 2007). The global average d-excess is 10‰ (Dansgaard 1964) and 

varies spatially because of differences in humidity, wind speed and sea surface temperatures, 

whereby higher humidity results in lower d-excess values (Clark and Fritz 1997). 

Furthermore, seasonal variation is induced by reduced relative humidity over the oceans 

during winter months, and kinetic effects in arid regions under intense evaporation lead to 

greatly enhanced d-excess values (Sharp 2007). In the western Mediterranean Basin d-excess 

is reported as 13.7‰ (Celle-Jeanton et al. 2001), intermediate between the global average and 

that for the eastern Mediterranean (20‰; Dotsika et al. 2010). The isotope composition of 

precipitation falling at Girona (25 km south of Lake Banyoles) was measured between 2000 

and 2006 (http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html), from which 
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monthly values for d-excess were calculated (Fig. 6). The majority of average values are 

either below or approaching the global average d-excess (7.4±3.5‰, 1σ), and a lesser 

percentage of individual monthly values are found to exhibit higher d-excess. The higher 

values may well be associated with convective systems that originate from the Mediterranean 

(Moreno et al. 2014), however in general d-excess values are below or equal to that of the 

global average. This may suggest that most of the water delivered to the Banyoles area, 

during the periods of peak rainfall at least, is derived principally from an Atlantic source. 

 

Oxygen isotope composition of calcite from Lake Banyoles 

 

The oxygen isotope composition of the water in Lake Banyoles (δ18Olakewater) is assumed to be 

captured in δ18Ocalcite produced in the surface waters at a given temperature, and δ18Olakewater 

will dominantly reflect some aspect of δ18Oprecipitation (Leng and Marshall 2004). Variations in 

δ18Oprecipitation are regulated by a number of factors including the condensation temperature, 

source changes, evaporation, ‘amount’ effects and seasonality (Leng and Marshall 2004). 

Assuming the calcite was precipitated in equilibrium, the oxygen isotope composition of 

mean annual precipitation correlates to temperature change in the northern hemisphere by 

approximately +0.6‰/°C (Dansgaard 1964), which is opposed by a mineral-water isotope 

fractionation of –0.24‰/°C. Therefore, δ18Ocalcite correlates to temperature with a gradient of 

roughly +0.36‰/°C (Leng and Marshall 2004). This suggests that if temperature is directly 

driving changes in δ18Ocalcite (i.e. no change in source of precipitation), values should be 

lower during glacial times because of the colder climate, which is true for records from the 

Alpine region and central Europe (Grafenstein et al. 1999; Schwander et al. 2000). However, 

in Lake Banyoles this is not the case as there is a shift from higher δ18Ocalcite in Zone 2 (MIS 

2) to lower δ18Ocalcite in Zones 1 and 3 (MIS 1 and 3). This change to generally lower δ18O 
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values during wetter (and warmer) phases is seen across the majority of Mediterranean lake 

interglacial/interstadial records. On a glacial-interglacial timescale, temperature is considered 

a secondary driver of Mediterranean isotope composition compared to water balance, which 

is lower during cold, but highly arid glacial phases (Roberts et al. 2008). 

 

The configuration of long-term variations in δ18Ocalcite is similar to that recorded in 

Greenland ice cores (NGRIP Members 2004), by planktic foraminifera from the western 

Portuguese margin (de Abreu et al. 2003), the Alborán Sea (Cacho et al. 1999), the Ionian 

Sea (Allen et al. 1999) and by speleothems from Israel (Bar-Matthews et al. 1999) (Fig. 7). 

Congruence with these records means that δ18Ocalcite could be primarily driven by changes 

linked to the Northern Hemisphere ocean-atmosphere system during the last glacial-

interglacial cycle, and suggests that a close association exists between North Atlantic and 

western-eastern Mediterranean climates. Furthermore, this also suggests that North Atlantic 

climate dynamics are most likely the primary control on the isotope composition of 

precipitation at Lake Banyoles, with Mediterranean sources of precipitation only of minor, 

secondary importance. 

 

Carbon isotope composition of calcite from Lake Banyoles 

 

We assume BAN II carbonates capture the δ13C of the lake water in which they precipitated 

(Leng and Marshall 2004), which will generally reflect the isotope composition of total 

dissolved inorganic carbon (δ13CTDIC). This can be approximated to the isotope composition 

of aqueous HCO3
-
 for most lakes. As only a small fractionation occurs during precipitation, 

δ13Ccalcite can indicate past variations in δ13CTDIC and carbon cycle transitions. In lakes, 

δ13CTDIC is mainly influenced by the isotope composition of inflowing waters, and by 
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subsequent modification through kinetic processes (Leng and Marshall 2004). Groundwater 

inflows typically have relatively low δ13CTDIC because of the incorporation of isotopically 

light carbon liberated from the decay of organic matter in soils, which has average δ13C = –30 

to –16‰, for a combination of C3 (δ13C –32 to –20‰) and C4 (δ13C –17 to –9‰) plants 

(Leng et al. 1999). Following decay, light carbon (CO2) enters groundwater by dissolution, is 

hydrated to produce carbonic acid and dissociates to predominantly form bicarbonate (at 

neutral pH), which has a fractionation factor of approximately +10‰ when in equilibrium 

with CO2 (Mook et al. 1974). Thus, δ13CTDIC derived solely from C3 soil-CO2 is predicted to 

have δ13C between –22 to –10‰, and C4 soil-CO2 between –7 to +1‰. Catchment vegetation 

is known to have comprised varying percentages of both arboreal and non-arboreal taxa 

through time (Pérez-Obiol and Julià 1994). Therefore, the estimated values for δ13CTDIC are 

isotopically lower than both the Banyoles modern surface waters (δ13CDIC = –3.3‰, 

measured in 2011; B. Valero-Garcés, unpublished data) and BAN II core data (δ13Ccalcite 

range = –3.4‰ to +2.9‰), suggesting that organic-derived soil-CO2 is potentially a 

component of δ13CTDIC, although in addition there must be an isotopically heavier δ13C 

source. 

 

It is unlikely that high δ13Ccalcite is the product of equilibration with atmospheric CO2, 

which can yield δ13C in excess of +3‰ (Leng and Marshall 2004), a consequence of the short 

lake-water residence time. As the predominant water input to Lake Banyoles is through karst 

aquifers, it is likely that the majority of 13C-enriched HCO3
- is derived through the dissolution 

of aquifer carbonates, as geological sources of carbonate generally have high δ13C values, 

between –3‰ to +3‰ (Leng et al. 1999). In addition, aquatic productivity may act to raise 

δ13CTDIC, as during photosynthesis the preferential uptake of 12C can leave TDIC isotopically 

heavy. In Banyoles this process may take place during restricted intervals (e.g. around 44 m), 
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however commensurate increases in TOC would also be expected, which generally are not 

observed. 

 

Excursions to lower δ13Ccalcite could be ascribed to the release of 12C as a product of 

degradation processes following organic carbon oxidation in bottom waters, which would 

also likely result in low values of TOC. In Lake Banyoles this does not appear to be the case, 

as TOC is generally low throughout the core and shows no correlation with δ13Ccalcite (r = –

0.18). Transitions to lower δ13Ccalcite are more probably driven by enhanced delivery of 12C 

during times of soil development within the catchment, and associated with an increased 

contribution from isotopically light carbon derived from terrestrial C3 plants during warmer 

periods, for example as seen in the early Holocene (Fig. 3; Valero-Garcés et al. 1998). 

 

Variations in δ13Ccalcite are thought to be mainly a product of the balance between the 

contribution from the bicarbonate ion, in addition to the concentration and constitution of soil 

CO2. During times of enhanced soil development within the catchment (e.g. within the 

Holocene), δ13Ccalcite is expected to be lower, as more isotopically light carbon is assumed to 

be incorporated into TDIC. In times of restricted soil development, commensurate with 

increased percentages of steppic C4 taxa, δ13Ccalcite will be higher. 

 

Isotope covariance and facies variability 

 

Carbonates produced in open lakes typically do not show covariance between δ18O and δ13C 

(Talbot 1990), whereas in closed systems the degree of covariance depends on several factors 

such as atmospheric exchange, evaporation rates, and productivity (Li and Ku 1997). Lake 

Banyoles displays no covariance between δ18Ocalcite and δ13Ccalcite over the whole core (r = 
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0.10), which most likely reflects its short lake-water residence time as a throughflow-

dominated system. Covariance increases during certain periods when constrained time zones 

are considered, specifically during the Holocene (r = 0.75) and the δ18Ocalcite maximum 

toward the upper boundary of Zone III (r = 0.88). However, increased covariance does not 

necessarily relate to hydrological closure as, at least for the Holocene, there is a general 

transition to lower δ18Ocalcite and δ13Ccalcite, most likely caused by enhanced freshwater input 

and the development of catchment soils. Furthermore, approaching the upper boundary of 

Zone III, there is a distinct parallel excursion to higher isotope values that occurs alongside a 

peak in TOC and TIC after 44 m. Lower lake level is indicated at that time by the 

preservation of benthic diatom taxa in DZ4, which suggests rapid sedimentation in a littoral 

zone with aquatic plants (increased TOC) during a shallow-water phase. High TIC and TOC 

indicate enhanced productivity at that time, which may be associated with the preferential 

removal of 12C in the epilimnion driving increased δ13Ccalcite. High δ18Ocalcite was probably a 

function of regional climate, related to seasonal temperature changes leading to higher δ18O 

summer precipitation and increased aridity (Leng et al. 1999). 

 

In general, there is little correlation between δ18Ocalcite and facies variability in BAN 

II, suggesting that isotope values are somewhat independent of changes in lake level. This 

perhaps indicates that during times of reduced lake level, assumed to be related to coarser-

grained facies in BAN II (Höbig et al. 2012) and regional aridity, lake water is hydrologically 

buffered against the effects of evaporation and kinetic fractionation. Höbig et al. (2012) 

suggested that four horizons have characteristics potentially attributed to slump-related 

processes (Fig. 3). The tilted nature of the basal horizon (67.07-66.10 m; facies J) suggests 

these sediments are indeed slumped, therefore precluding robust environmental 

reconstruction. However, the overlying horizons do not show the same physical appearance 
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and appear to be undisturbed, which suggests stratigraphic variability could potentially be 

related to lake-level changes. 

 

Lake Banyoles climate and hydrology: MIS 3-1 

 

During the last glacial period there was considerable climatic variability across the North 

Atlantic (Dansgaard et al. 1993), attributed to changes in thermohaline circulation and 

subsequent modification of ocean heat transport (Clark et al. 2002). Mediterranean marine 

and lacustrine records suggest that the region closely reflected the North Atlantic ocean-

atmosphere system (Allen et al. 1999) and that at a millennial scale, climatic fluctuations 

showed a Dansgaard–Oeschger (D-O) pattern of variability (Cacho et al. 1999). During cold 

D-O phases, enhanced northern hemisphere atmospheric circulation is suggested by increased 

Saharan dust transport and incorporation in western Mediterranean Sea sediments (Moreno 

2002), causing higher-intensity wind systems over the Iberian Peninsula, predominantly from 

the west and northwest (Vegas et al. 2010). Oscillations in atmospheric moisture content 

during cold and arid stadial and mild and wet interstadial periods are inferred from the 

Alborán Sea, which shows an alternating steppe to deciduous-evergreen pollen assemblage 

(Sánchez Goñi et al. 2002). This record also suggests that an extreme climate state existed 

during Heinrich Events (HE), which are characterised by aridity and colder conditions in the 

Mediterranean (Sánchez Goñi et al. 2002). Central Spain is thought to have been colder and 

experienced enhanced aridity during these cold events, with widespread growth of 

herbaceous plant steppe taxa, suggesting a near-instantaneous transfer of climate state 

between the northern Atlantic to the Iberian Peninsula (Vegas et al. 2010).  

 



24 

 

In Lake Banyoles, millennial-scale δ18Ocalcite and δ13Ccalcite shifts through MIS 3 (Fig. 

3) may be analogous to enhanced variability observed across the North Atlantic and western 

Mediterranean (Fig. 7; Cacho et al. 1999; de Abreu et al. 2003). Although the chronology 

could be better constrained, a response to abrupt HE has been suggested from previous 

reconstructions from the lake (Valero-Garcés et al. 1998; Höbig et al. 2012) and in the 

surrounding region (González-Sampériz et al. 2006). However, there is evidence neither for 

cold or arid rapid-climate-change events in δ18Ocalcite or δ13Ccalcite data (Fig. 3), which may be 

a consequence of the relative unimportance of evaporative effects on the lake water and the 

short residence time. Other proxies (e.g. K/Ca, Fig. 3) appear to be more sensitive to 

increased aridity and reflect local environmental conditions more closely. The abundance of 

C. ocellata in mid-MIS 3 (DZ1 to DZ2) may indicate higher productivity and, by inference, 

temperature, an association reported from other Mediterranean lakes, such as Lake Ohrid 

(Reed et al. 2010). The return to very poor diatom preservation and dominance by C. 

distinguenda above ~51 m depth correlates with a lithological shift to finer-grain sediment, 

indicative of lake-level increase corresponding to a reduction in TOC, which suggests low, 

temperature-induced productivity associated with reduced evaporation, but without a strong 

associated isotopic signal. Towards the end of MIS 3, diatoms provide strong evidence for a 

shallowing trend in the proportion of benthic and FP taxa, which correlates with increased 

TOC and higher-quality preservation in the more organic littoral zones of Banyoles. The 

concomitant covariant excursion in δ18Ocalcite and δ13Ccalcite to higher values suggests this is a 

response to increasing aridity, and most likely related to the lake volume change indicated by 

the transition to a benthic-dominated diatom assemblage. 

 

Through MIS 2 and surrounding the last glacial maximum, proxies from Lake 

Banyoles (notably TIC and δ18Ocalcite) become less variable and the sedimentology is 
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primarily characterised by fine-grained, clay-rich facies (Valero-Garcés et al. 1998; Höbig et 

al. 2012). Benthic and FP diatom taxa are essentially absent, and poorly preserved C. 

distinguenda becomes dominant, suggesting a low-productivity ‘deep’ lake, which is also 

suggested by low-δ13Ccalcite, representing a decrease in productivity-driven 13C enrichment. 

Thus, diatom data and sedimentology provide strong proxy evidence for increased lake level 

during MIS 2. This must be a function mainly of low evaporative concentration with reduced 

temperature, as the presence of Artemisia steppe vegetation in the catchment (Fig. 3; Pérez-

Obiol and Julià 1994) provides strong proxy evidence for aridity. There is also ample pollen-

based evidence that MIS 2 was extremely arid across the region as a whole (Roucoux et al. 

2005). High lake levels during glacial times are also found in some Mediterranean records 

(Kolodny et al. 2005), but most shallow alkaline lakes are at a low level (Jones et al. 2013). 

Higher lake levels could be caused by a combination of lower temperatures, leading to less 

evaporative concentration, and a reduction in catchment vegetation cover, resulting in lower 

rates of evapotranspiration, which encourages aquifer throughflow and deeper lacustrine 

conditions.  

 

The Late Glacial to Holocene sequence of climate and environmental change from 

Lake Banyoles is consistent with that of the previous studies from the lake (Valero-Garcés et 

al. 1998) and of other Mediterranean lacustrine records (Roberts et al. 2008). There is a shift 

to higher δ18Ocalcite, reaching a maximum at 11.9 m in the core, which can be correlated to a 

similar rise in the previous isotope record at 6.1 m and a significant rise in Artemisia and 

decrease in Pinus, signifying the re-expansion of steppe conditions (Fig. 3; Pérez-Obiol and 

Julià 1994; Valero-Garcés et al. 1998). The interval, dated to 12 ka (Pérez-Obiol and Julià 

1994), therefore likely corresponds to the Younger Dryas event and can be compared to 

similar excursions in both western and eastern Mediterranean records (Fig. 7). The absence of 
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diatoms during the Holocene is consistent with their poor preservation in lake-centre 

sediment during maximum lake-level phases, caused by dissolution in the water column. One 

of the most distinct δ18Ocalcite excursions in Lake Banyoles is through the Late Glacial to 

Holocene transition, with a maximum change of –2‰ (–4.7‰ at 11.9 m, –6.7‰ at 8.5 m). A 

shift to lower δ18Ocalcite is a prominent feature that is common across most Mediterranean 

lakes during that time (Roberts et al. 2008), and is comparable in magnitude to the changes in 

the composition of western Iberian margin and Alborán Sea planktic foraminifera (Cacho et 

al. 1999; de Abreu et al. 2003). The subsequent excursion to higher δ18Ocalcite at 9.3 m may 

correspond to the 8.2 ka event, which is constrained by a U/Th date at 10.8 m (9.7 ka), 

assuming a 5.8-m offset between the BAN II and La Draga cores. 

 

Conclusions  

We presented new stable isotope data (δ18Ocalcite and δ13Ccalcite) from Lake Banyoles, which 

were combined with previous data (TIC, TOC, K/Ca) from the same core (Höbig et al. 2012) 

and compared to a shorter core from the lake that provided isotope and pollen records (Pérez-

Obiol and Julià 1994; Valero-Garcés et al. 1998). The current age model (Höbig et al. 2012) 

has been modified, but we agree the core likely spans MIS 3-1, based on U/Th ages and 

correlation between the two sets of isotope data. U/Th ages provide the best potential age 

control for extended sequences recovered from Lake Banyoles, given the observed 

radiocarbon offset. Lake Banyoles δ18Ocalcite appears to primarily reflect a distinct source 

effect on δ18Oprecipitation and glacial-interglacial changes in the composition of marine source 

waters. Investigation of local precipitation data shows overall low d-excess and suggests that 

the majority of rainfall received by Lake Banyoles probably derives from Atlantic fronts 

rather than Mediterranean origin. The sequence from Lake Banyoles has been divided into 

three main zones that broadly correlate to MIS 3-1 based on the chronological information 
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available, changes in the isotope composition of the sediments, and diatom assemblage data. 

Zone 3 shows a greater number of larger-amplitude excursions in δ18Ocalcite, and δ13Ccalcite, 

which are coincident with considerable millennial-scale climate fluctuations across the North 

Atlantic and surrounding regions. Enhanced variability in TOC and the presence of benthic 

diatoms suggests MIS 3 was characterised by substantial lake level shifts and associated 

productivity changes. A generally more stable climate can be inferred for Zone 2, with 

δ18Ocalcite being higher and, along with TIC and TOC, more consistent. There may have been 

a high-lake-level phase at that time, suggested by a decrease in diatom preservation and a 

sedimentology indicative of deeper water. The transition between Zone 2 and Zone 1 shows a 

distinct change to lower δ18Ocalcite, a pattern that is common amongst Mediterranean lake 

records. This study provides an important extended multi-proxy continuous record for the 

Iberian Peninsula, and offers a new Late Quaternary palaeoclimate archive to correlate 

between terrestrial and marine records from both the western and eastern Mediterranean, thus 

reinforcing hemispheric teleconnections.  
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Figure Captions 

 

Fig. 1 Location of Lake Banyoles on the Iberian Peninsula (inset), and bathymetric map of 

the lake (modified from Moreno-Amich and García-Berthou 1989), showing the northern and 

southern sub-basins comprising several smaller karstic sinks. The drill site, BAN II (this 

study; 42°07’29”N, 2°45’29”E), and a previous core, La Draga, are located on the eastern 

margin of the lake. Based on a present-day digital elevation model from 5 m LIDAR data 

(CNIG; http://centrodedescargas.cnig.es) the possible lake extent has been simulated for a 

lake level rise of 3 m (white dashed line), which would make the terrestrial drill sites 

subaqueous. The city of Banyoles is located SE of the lake 

 

Fig. 2 A) Atmospheric data from Banyoles, Catalonia, Spain (Banyoles Observatory 

42°08’N, 02°45’E, 175 m a.s.l; average 2003-2013), including monthly precipitation amount 

(dark grey bars, P mm), temperature (average = solid line, range = light grey band; T °C) and 

humidity (dashed line; H %) (http://www.meteobanyoles.com). B) Isotope composition (δ18O 

and δD) of long-term weighted mean annual rainfall (square) and monthly mean rainfall 
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(dots; inset: plotted by month) measured at Girona Airport (129 m a.s.l., 25 km south of 

Banyoles; IAEA-GNIP) between 2000 and 2006, corrected for altitude difference (–

0.6‰/100 m; Fernández-Chacón et al. 2010), also shown are the Global Meteoric Water Line 

(GMWL; dashed line; Craig 1961) and the Western Mediterranean Meteoric Water Line 

(WMMWL; solid line; Celle-Jeanton et al. 2004) 

 

Fig. 3 Multi-proxy data from core BAN II, including TIC, TOC, δ13Ccalcite, δ
18Ocalcite. TIC, 

TOC and facies data were previously published (Höbig et al. 2012). The data fall into three 

main zones (3-1; roughly corresponding to MIS 3-1), which are marked. The data from BAN 

II are compared with those of a previous core (selected pollen taxa, Pérez-Obiol and Julià 

1994; δ18Ocalcite and δ13Ccalcite, Valero-Garcés et al. 1998), and corresponding horizons are 

indicated using dashed lines. Radiocarbon and U/Th ages are from Höbig et al. (2012) and 

cross-correlated from Valero-Garcés et al. (1998) 

 

Fig. 4 Lake Banyoles summary percentage diatom diagram showing diatom zones DZ1-DZ6, 

defined using CONISS and the sum total of planktonic, facultative planktonic and benthic 

diatoms (% plankton is taken as an approximate indicator of lake level, although intervening 

samples devoid of diatoms may represent fluctuations not represented in the diatom data). 

The F-index (x 100) is also indicated, ranging from 0 (all dissolving) to 100 (pristine) 

 

Fig. 5 Revised age-depth model for core BAN II based on 8 calibrated AMS 14C dates, 3 U-

series dates, and 1 tephra (Höbig et al. 2012), and 9 cross-correlated U-series dates from the 

La Draga core (Valero-Garcés et al. 1998). A 5 ka reservoir effect was applied to AMS 14C 

ages (after Morellón et al. 2014) and a 5.8 m-offset was assumed for cross-correlation 
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between the BAN II and La Draga cores based on the comparison of isotope data (see Fig. 3 

and text for details) 

 

Fig. 6 Monthly d-excess values calculated from isotope data measured at Girona Airport 

(IAEA-GNIP) between 2000 and 2006, showing the global average d-excess (+10‰, 

GMWL; Dansgaard 1964), and the western (+13.7‰, WMWL; Celle-Jeanton et al. 2001) 

and eastern (+20‰, EMWL; Dotsika et al. 2010) Mediterranean d-excess. Local monthly 

precipitation amount is shown (grey bars; P mm; http://www.meteobanyoles.com) 

 

Fig. 7 Comparison of structural trends between Lake Banyoles BAN II δ18Ocalcite (plotted to 

depth with refined U-series chronological control as described in the text) and other North 

Atlantic and Mediterranean records (plotted to age). NGRIP ice core δ18OV-SMOW (NGRIP 

Members 2004), Portuguese margin MD95-2040 Globigerina bulloides δ18OV-PDB (de Abreu 

et al. 2003), Alborán Sea MD95-2043 Globigerina bulloides δ18OVPDB (Cacho et al. 1999), 

Ionian Sea M25/4-11 Globigerinoides ruber (solid line) and Globigerina bulloides (dashed 

line) δ18OVPDB (Allen et al. 1999) and Soreq Cave, Israel speleothem δ18OVPDB (Bar-Matthews 

et al. 1999). Grey bars indicate the INTIMATE event stratigraphy (Blockley et al. 2012) and 

dashed lines demarcate MIS 3-1
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Fig. 3
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Fig. 7 


