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This paper presents an accurate solution of finite-time Cartesian trajectory tracking control problem of a quadrotor system by
designing and implementing a novel robust flight-control algorithm. The quadrotor is subject to nonlinearities, unmodeled
dynamics, parameters’ uncertainties, and external time-varying disturbances. To reject the disturbances and enhance the control
system’s robustness, a terminal sliding mode-based active antidisturbance control (TSMBAADC) approach is proposed for
rotational and translational subsystems. To improve the tracking performance, a nonlinear continuous terminal sliding manifold
and a fast reaching law are proposed in this work to quickly drive the systems’ states to the equilibrium point even in the
presence of lumped disturbances. The convergence time of the states can be pretuned based on the parameters of the sliding
manifold and the reaching law. Lyapunov theorem is used to provide a rigorous stability proof for the feedback control system.
Numerical simulations and processor-in-the-loop (PIL) experiments are conducted to validate and implement the designed
flight control algorithm on real autopilot hardware. The novelty of the proposed research lies in hardware implementation of a
sophisticated version of modern control technique that exhibits a multitude of distinguishing features including but not limited
to (i) finite-time tracking stability featuring fast convergence is ensured, (ii) chattering and singularity problems in sliding mode
control (SMC) are avoided, and (iii) null steady-state error is achieved along with enhanced robustness. Finally, the proposed
control law is compared with two recently reported research works. Results of performance comparison in term of the integral
of square error (ISE) and the absolute value of the derivative of the input uðtÞ (IADU) dictate that the proposed technique
overperforms by precision and chattering alleviation.

1. Introduction

1.1. Context and Motivations. Nowadays, quadrotor aircraft
have gained enormous interest due to their numerous merits
such as low-cost manufacturability and vertical take-off and
landing capability [1–3]. These interesting aircraft have been
widely used in many fields to solve practical and complex
missions [4–8]. However, despite their advantages, quadro-
tors have some critical drawbacks that are related to flight
control. The quadrotor is a nonlinear multioutput multi-

input system with underactuated six degrees of freedom (6-
DoF) dynamics [9]. Moreover, the quadrotor’s dynamics
are strongly coupled and inevitably affected by multiple dis-
turbances [10, 11]. Meanwhile, the quadrotor is intended to
operate in a challenging flight environment where it may per-
form aggressive maneuvers. Thus, its stabilization and con-
trol in such flight conditions is not trivial but a challenging
and complex task. The robust trajectory tracking control dur-
ing flight missions is one of the persistent control problems.
This problem has become an important topic that should
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be carefully addressed by the control community. Particu-
larly, fast convergence, strong robustness, and accuracy are
considered important features of a flight control algorithm
to safely and effectively drive the quadrotor during the mis-
sion. Therefore, a reliable flight control system essentially
relying on a modern control technique is required to achieve
good tracking performance. Hence, this paper focuses on the
design of a new flight-control system to deal with the robust
Cartesian trajectory tracking control problem for the quadro-
tor system.

1.2. Literature Review and Contributions. Recently, a large
and growing body of literature has been focused on the Car-
tesian trajectory tracking control problem of the quadrotor
system using finite-time control, as stated in [12, 13]. In con-
trast to classical asymptotically stable controllers, finite-time
stable control systems ensure fast convergence of the system’s
trajectories to the origin along with higher accuracy and
enhanced robustness. Motivated by the mentioned works,
the finite-time tracking control problem for the quadrotor
system is investigated in this study.

Multiple works have been reported on the trajectory
tracking control problem of the quadrotor helicopter. Linear
control such as proportional-integral-derivative (PID) [14–
16] and linear quadratic regulator (LQR) [17, 18] have been
initially used to design flight control systems for the quadro-
tor. However, linear control can only ensure good perfor-
mance around a specific equilibrium point of the linearized
model of the quadrotor. In practice, the quadrotor is
intended to operate in a challenging flight environment and
may exhibit aggressive maneuvers leading to strong nonlin-
ear behavior. Therefore, the linear control seems to be unable
to ensure the required flight performance during the mission.
Hence, to design an adequate flight control system that can
ensure a safe flight for the quadrotor, nonlinear control is
considered a reliable tool that can overcome the shortcoming
of classical linear control.

Backstepping (BS) is Lyapunov’s theory-based recursive
and flexible nonlinear control design methodology that can
be used to deal with the control problem of high-order non-
linear systems such as the quadrotor aircraft [19]. For
instance, the work reported in [20] employs a nonlinear
adaptive BS method for a trajectory tracking control of the
quadrotor. A robust adaptive BS is designed for the position
loop in [21]. However, the BS design technique suffers from
three main issues: the “explosion of complexity”, lack of
robustness against disturbances, and only asymptotic stabil-
ity in infinite-time is guaranteed, as reported in [22, 23].
Unfortunately, many reported works, e.g., [21, 24] do not
address these issues. In practice, the implementation of a
control law with such issues could lead to system instability
and mission failure. The present research is aimed at solving
the problem inherently present in classical BS control design
so as to further improve its performance. In particular, (a) a
sliding-mode-based filter (SMBF) is introduced in the recur-
sive BS design to restore the derivative of the virtual control
to avoid the “explosion of complexity” problem. (b) Terminal
sliding mode control (TSMC) is combined with the BS tech-
nique to ensure finite-time stability featuring fast transient

response. (c) A disturbance observer is designed to enhance
the disturbance rejection capability of the compounded
controller.

SMC control has been effectively applied for control
design and stabilization of a variety of nonlinear dynamical
systems such as the underactuated quadrotor system. This
is motivated by its robustness against uncertainties and dis-
turbances and simplicity of control design [25–28]. The
design procedure of the SMC control systems mainly consists
of two steps: the choice of a sliding surface with desirable
dynamic characteristics and the design of the SMC control-
ler. The controller is designed such that the system’s states
reach and remain on the sliding manifold and consequently
converge to the origin. Recently, many works are concerned
with the robust control of the quadrotor system subjected
to disturbances using SMC theory. As an example of sliding
mode combination with BS, the work in [29] presents an
integral backstepping sliding mode control (IBSMC) method
for a perturbated quadrotor system. In [30], a regular SMC is
combined with the BS technique to design a robust nonlinear
controller. Nevertheless, all these methods are based on lin-
ear sliding mode control (LSMC). The most serious disad-
vantage of this control approach is that the switching
manifold is linear. Thus, only asymptotic convergence can
be achieved. Also, LSMC inevitably suffers from the chatter-
ing problem. The chattering impact is reflected by the pres-
ence of disrupting high switching frequencies in the control
input of the system [31]. Such a control signal will cause
low control accuracy and degrade the control performance
[26]. Furthermore, it can also damage the actuators of the
quadrotor (the brushless motors). To deal with the issues of
LSMC, this study proposes to use advanced continuous-
SMC techniques. The proposed terminal sliding manifold
in our work allows that tracking errors are stabilized to the
origin in fast finite-time by contrast to the linear switching
manifold that can only guarantee asymptotic convergence
in an infinite time. Moreover, the control law designed based
on our terminal sliding surface is continuous; hence, the
chattering problem inherent in SMC and switching control
methods can be effectively mitigated, which makes the con-
troller applicable in practice.

In order to ensure better tracking control performance,
finite-time control is considered in many works. For
instance, in the interesting work [32], Mobayen and Ma have
innovatively proposed a robust finite-time composite nonlin-
ear feedback control for synchronization of uncertain chaotic
systems with nonlinearity and time delay. The same authors
have investigated a novel nonsingular fast terminal sliding-
mode control method for the stabilization of the uncertain
time-varying and nonlinear third-order systems in [25]. A
recursive singularity-free fast terminal sliding mode control
is used in [33] to design a finite-time tracker for nonholo-
nomic systems including a wheeled mobile robot and an
underactuated surface vessel. In [34], by designing an LMI-
based sliding mode controller, the state trajectories of a class
of underactuated systems are shown to be directed toward
the sliding manifold in a finite-time with exponential policy
and thereafter remained on it. Although the above studies
have interesting and promising results from theoretical and
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practical aspects, they have not been applied specifically to
solve the trajectory tracking problem quadrotor system,
which motivates us to further investigate the finite-time con-
trol of quadrotor aircraft.

In our recently published study [27], a finite-time
observer-based robust continuous twisting control is pro-
posed for an uncertain quadrotor system subjected to distur-
bances. Another work reported in [35] comes up with a
modified super twisting algorithm that can ensure robustness
and finite-time convergence for the quadrotor helicopter. In
the work [36], the tracking errors are driven to zero in
finite-time by employing a fractional-order controller based
on nonsingular control law. However, these studies are lim-
ited to the finite-time control of the 3-DoF attitude dynamics,
and they did not address the finite-time control of the full 6-
DoF dynamics of the quadrotor. Also, the attitude dynamics
are fully actuated with three inputs and three outputs which
makes the control design much easier. Our study includes
finite-time control for the 6-DoF dynamics, i.e., attitude
and position subsystems, where the underactuated problem
inherent in the quadrotor dynamics has been addressed.

To address the finite-time control of attitude and position
of the quadrotor, a modified super twisting fast nonlinear
sliding mode controller is proposed to stabilize a quadrotor
system under time-varying disturbances in [37], in finite-
time. Also, a finite-time trajectory tracking control for a
quadrotor aircraft with unknown external disturbances is
investigated in [38]. However, together with [21], the works
[37, 38] have presented the design of the control laws by con-
sidering a perfect model with precise knowledge of the model
parameters. In practice, it is difficult to identify and estimate
the exact parameters of the quadrotor system, notably, the
aerodynamic coefficients. Besides, model uncertainties are
inevitably present in the dynamic model of the quadrotor.
Therefore, unlike these works, model uncertainties are also
considered in our study besides external time-varying distur-
bances, which is more realistic in practice. Some reported
works on finite-time control have considered the model
imperfection and uncertainties in the control design; how-
ever, they have not provided an upper bound on the set-
tling-time, e.g., [37, 39]. It is well-known that one of the
most interesting features of finite-time stability is that an
upper bound on the settling-time can be provided and tuned
in the function of the control parameters. Therefore, in con-
trast to [37, 39], we have established a clear estimation of the
settling-time during the sliding motion which allows tuning
the convergence-time by adjusting the parameters of the slid-
ing surface and the reaching law.

In [40], a nonsingular terminal sliding mode control law
with finite-time convergence is designed for the quadrotor.
In [41], a finite-time convergent nonsingular terminal sliding
mode control for a quadrotor with a total rotor failure is pro-
posed. In [42], finite-time adaptive integral backstepping fast
terminal sliding mode control is applied for the tracking of
the attitude and position of the quadrotor. Although [21,
40–42] provide an estimation of the settling-time, the sign ð
·Þ function appears explicitly in the control law, which may
cause the chattering and thus making the controller inappli-
cable in practice. To reduce the chattering effect, the authors

have replaced the sign ð·Þ function with smooth approximat-
ing functions. However, this may degrade the robustness of
the controller leading to a chattering-robustness tradeoff.
By contrast to that, no smooth functions are required to
approximate the sign ð·Þ function in our control law. Hence,
the robustness of the sliding mode is well preserved along
with a chattering-free control.

Overall, the abovementioned finite-time control methods
are limited in terms of performance and their application
since full-state measurements are required. The signals pro-
vided by the gyroscope and accelerometer sensors for the
velocity measurement are affected by noise. This issue may
lead to degrading the performance of full-state feedback-
based controllers. Also, the sensors are exposed to faults that
inevitably compromise the stability of the quadrotor leading
to mission failure [43]. To deal with this practical shortcom-
ing of full-state feedback-based finite-time controllers, we
propose in our study to design an output-feedback control
method (velocity-free control) that contributes to enhancing
the quadrotor’s robustness and in estimating the unmeasur-
able states (velocities) at the same time within an active dis-
turbance rejection control (ADRC) framework. Our
approach shows its effectiveness and superiority over classi-
cal passive antidisturbance control laws that fail to deal with
strong disturbances leading to the degradation of the nomi-
nal control’s performance which may threaten the system’s
stability, as mentioned in [44, 45].

Moreover, most of the reported works on finite-time con-
trol of the quadrotor aircraft may look very promising as evi-
denced by simulation results. However, owing to lack of
practical implementation, their real-world significance may
be a valid concern. In contrast, the present paper presents
design, simulation, and hardware realization of modern
robust finite-time control laws. The physical implementation
in autopilot hardware while attempting to address the above-
mentioned problems essentially attributes to the scientific
contribution of our work.

Motivated by the previously reported studies and
inspired by the works developed in [46, 47], this paper
focuses on addressing all the issues discussed above by
designing a new robust flight-control system to deal with
the Cartesian trajectory tracking control problem of a
quadrotor system subject to lumped disturbances. To solve
the underactuation problem, a hierarchical control struc-
ture with a position-attitude loop is adopted. To reject the
disturbances and enhance the control system robustness, a
TSMBAADC approach is employed in each loop. In this
context, a disturbance observer-based control (DOBC) law
is designed for the attitude loop while the position loop is
controlled by an innovatively designed ADRC scheme.
The compounded DOBC control structure integrates a
finite-time observer (FTO) and a continuous nonsingular
terminal sliding mode control (CNTSMC). In practice, it
is more reliable to use the technique of differentiators in
the implementation process of the control algorithm. Thus,
a tracking differentiator is designed to supply the estimates
of desired attitude signals. The ADRC control is designed
within an output-feedback scheme to ensure a velocity-
free control. It combines a fixed-time extended state
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observer (FXESO) and a backstepping integral terminal
sliding mode control (BSITSMC). To avoid the “explosion
of complexity” problem inherent in the classic BS design,
a sliding-mode-based filter (SMBF) is introduced in the
recursive BS design to restore the derivative of the virtual
control. By designing nonlinear continuous terminal sliding
surfaces, fast finite-time convergence of the tracking errors
is ensured for both rotational and translational subsystems.
Lyapunov theorem is used to analyze the stability of the
feedback control system. Numerical simulations and PIL
experiments are conducted to validate and implement the
designed flight control algorithm in real autopilot hard-
ware. Compared with relevant reported works, the sug-
gested control strategy has the overall superiority in
practice because (i) null steady-state error is achieved along
with enhanced robustness, (ii) chattering and singularity
problems of SMC and switching control are avoided, and
(iii) proposed sliding manifolds and reaching law allows
finite-time tracking stability featuring fast convergence.

The remaining manuscript is arranged in four sections
detailed here. Section 2 presents fundamentals mathematical
formulation. Section 3 details the design of the proposed
flight control system. Rigorous stability analysis of the feed-
back loop system is also discussed. Section 4 illustrates imple-
mentation results to investigate the theoretical findings. The
paper is concluded in Section 5 with possible future research
directions.

2. Preliminaries and Problem Formulation

This section presents some relevant mathematical definitions
and lemmas employed in the control design and finite-time
stability proof. The control problem of our study is also for-
mulated in this section.

2.1. Preliminaries

Definition 1 (see [48]) (finite-time stability). Consider the fol-
lowing autonomous system:

_x = f xð Þ, x 0ð Þ = x0, ð1Þ

where x ∈ℝn, and the nonlinear function f : D→ℝn is con-
tinuous on an open neighborhood D ⊆ℝn of the origin. The
origin x = 0 is an equilibrium point of system (1). x = 0 is a
globally finite-time convergent, if it is globally asymptotically
stable, and there are an open neighborhood U ⊆D of the ori-
gin and a function Tx : U \ f0g→ ð0,∞Þ such that every
solution xðt, x0Þ of system (1) that starts from the initial con-
dition x0 ∈U \ f0g is well-defined for t ∈ ½0, Txðx0ÞÞ, and
lim

t→Txðx0Þ
xðt, x0Þ = 0. Here, Txðx0Þ is called the settling-time

function, i.e., convergence-time, (w.r.t x0). x = 0 is said to
be a finite-time stable equilibrium if it is finite-time conver-
gent and Lyapunov stable. If U =D =ℝn, the origin is said
to be a globally finite-time stable equilibrium.

Lemma 2 (see [49]). Consider the following system:

_σ0 = −ρ0L
1/ n+1ð Þ
d σ0j j1/ n+1ð Þ sign σ0ð Þ + σ1,

_σ1 = −ρ1L
1/n
d σ1 − _σ0j j n−1ð Þ/n sign σ1 − _σ0ð Þ + σ2,

⋮

_σn−1 = −ρn−1L
1/2
d σn−1 − _σn−2j j1/2 sign σn−1 − _σn−2ð Þ + σn,

_σn∈−ρnLd sign σn − _σn−1ð Þ + −Ld , Ld½ �: ð2Þ

If the constants Ld , ρi satisfy Ld > 0 and ρi > 0, i = 0, n, it
results that the above system is finite-time stable.

Lemma 3 (see [50]). If the positive constants kj > 0, ðj = 1, nÞ
make the n-order polynomials sn + kns

n−1 +⋯ + k2s + k1 and
sn + 3kns

n−1 +⋯ + 3k2s + 3k1 be Hurwitz in terms of the
Laplace operator s, i.e., all their roots are in the left-half plane,
the origin of the following system

_xi = xi+1, i = 1, n − 1,

_xn = −〠
n

j=1
kj xj
� �α1, j + xj

� �
+ xj
� �α2, j� �

,

8>><>>: ð3Þ

is finite-time stable equilibrium with uniform settling-time,
where α1,j and α2,j are determined according to the bi-limit
homogeneity reasoning as follows: α1,n−k = α/ðkð1 − �αÞ + 1Þ
and α2,n−k = ð2 − �αÞ/ðkð�α − 1Þ + 1Þ, where �α ∈ ðϵ, 1Þ, ϵ ∈ ðn −
2/n − 1, 1Þ, and k = 0, n − 1.

Lemma 4 (see [48]). Suppose that there is a continuous and
positive-definite Lyapunov function VðxðtÞÞ: ℝn →ℝ, and
its derivative satisfies

_V x tð Þð Þ ≤ −λVα − μVγ, ð4Þ

where λ, μ > 0, α > 1, and γ < 1 are some positive constants,
then, the origin of system (1) is fixed-time stable. The
settling-time function T0 is bounded by T⋆ as

T0 ≤ T⋆ ≔
1

λ α − 1ð Þ + 1
μ 1 − γð Þ : ð5Þ

Lemma 5 (see [51]). Consider the following system:

_σ1 = σ2 − ρ1 σ0d ca1 − �ρ1 σ0d cb1 ,
_σ2 = σ3 − ρ2 σ0d ca2 − �ρ2 σ0d cb2 ,
⋮

_σn−1 = σn − ρn−1 σ0d can−1 − �ρn−1 σ0d cbn−1 ,
_σn∈−ρn σ0d can − �ρn σ0d cbn + −Ld , Ld½ �,

8>>>>>>>><>>>>>>>>:
ð6Þ

where ai ∈ ð0, 1Þ, bi > 1, ði = 1, nÞ, and Ld > 0 are constants.
Also, if the nonnegative constants ρi, �ρi, ði = 1, nÞ are assigned
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to ensure the following A1, A2 matrices are Hurwitz, i.e., every
eigenvalue of the matrices has a strictly negative real part:

A1 =
−ρ1 1 0

−ρ2 0 1

−ρ3 0 0

2664
3775, A2 =

−�ρ1 1 0

−�ρ2 0 1

−�ρ3 0 0

2664
3775: ð7Þ

Then, the system (6) is fixed-time stable, i.e., uniform
settling-time w.r.t. initial condition.

Lemma 6 (see [52]). Consider system (1). If there exist C1

Lyapunov functionVðxÞ: ⅅ→ℝ+ and some real constants 0
< c <∞ and 0 < α < 1, such that

_V xð Þ ≤ −cV xð Þα, ð8Þ

then, system (1) is finite-time stable for any given xðt0Þ ∈D0
⊆D, in which the finite settling time T∗ satisfies

T∗ ≤
V xð Þ1−α
c 1 − αð Þ : ð9Þ

2.2. Problem Formulation. The motion of the quadrotor in
space can be described by a B-frame and an E-frame (see
Figure 1). The vehicle moves and changes its attitude by vir-
tue of an appropriate set of angular speeds of the rotors. The
rotors generate the lift force denoted by f i ∈ℝ+, ði = 1, 4Þ.

The E-frame is used to define the translational motion
by P≔ ½x, y, z�T ∈ℝ3. The B-frame indicates the rotational
motion, i.e., Euler angles η≔ ½Φ, θ, ψ�T ∈ℝ3. The 6-DoF
acceleration dynamics corresponding to the rotation and
translation motions of the quadrotor in the presence of dis-
turbances can be written as [48]

€Φ = J−1xx Jyy − Jzz
� � _θ _ψ − cΦ

_Φ
2 − Jr�ω _θ + uΦ + dextΦ

� �
,

€θ = J−1yy Jzz − Jxxð Þ _Φ _ψ − cθ
_θ
2 + Jr�ω _Φ + uθ + dextθ

� �
,

€ψ = J−1zz Jxx − Jyy
� �

_Φ _θ − cψ _ψ
2 + uψ + dextψ

� �
,

8>>>>><>>>>>:
ð10Þ

€x = −m−1 cΦsθcψ + sΦsψð Þuz − kx _x + dextx

� �
,

€y = −m−1 cΦsθsψ − sΦcψð Þuz − ky _y + dexty

� �
,

€z = −m−1 cΦcθð Þuz − kz _z + dextz

� �
+ g:

8>>><>>>: ð11Þ

Since the flight of the quadcopter is driven by four propel-
lers, the angular speeds of the four propellers Ωi, ði = 1, 4Þ
determine the total lift force (thrust control input) uz and
the torques uη. The quadrotor’s actuators (rotors) produce a
total lift force defined as [53]

uz ≔ 〠
4

j=1
f i = ct 〠

4

j=1
Ω2

i : ð12Þ

The control torques uη developed by the quadrotor’s actu-
ators are defined as [54]

uη ≔

uΦ

uθ

uψ

2664
3775 =

l −f1 + f2 + f3 − f4ð Þ
l f1 − f2 + f3 − f4ð Þ

cd −Ω2
1 −Ω

2
2 +Ω2

3 +Ω2
4

� �
2664

3775: ð13Þ

Besides, the rotating velocities of the four propellers, i.e.,
Ωi,i = 1, 4, are related to uη (the torques) and uz (the total lift
force) by the means of a constant invertible matrix as [55]

uz

uη

" #
≔

uz

uΦ
uθ

uψ

266664
377775 =

ct ct ct ct

−lct lct lct −lct

lct −lct lct −lct

−cd −cd cd cd

2666664

3777775
Ω2

1

Ω2
2

Ω2
3

Ω2
4

2666664

3777775:
ð14Þ

Remark 7. In practice, it is difficult to identify and to estimate
the exact parameters of the quadrotor system, notably, the
aerodynamic coefficients. Besides, model uncertainties are
inevitably present in the dynamic model of the quadrotor.
Therefore, in contrast to several reported works, e.g., [21, 37,
38] that consider a perfect model with precise knowledge of
the model parameters, both model uncertainties and external
time-varying disturbances are considered in the present study.
Hence, the following assumption is introduced for the quadro-
tor dynamics given in (10) and (11).

Assumption 8.We assume in our study that the model uncer-
tainties, i.e., internal unmodeled dynamics, are the aerody-
namic and gyroscopic effect moments denoted by τa and τg
, i.e.,

duncη ≔

duncΦ

duncθ

duncψ

2664
3775 = τa + τg =

−cΦ
_Φ
2 − Jr�ω _θ

−cθ
_θ
2 + Jr�ω _Φ

−cψ _ψ
2

26664
37775: ð15Þ

Since it is difficult to identify the aerodynamic coefficients
Ka = diag ðkx, ky, kzÞ in practice, the unmodeled dynamics,
for the translational subsystem, are the drag force Fa. These
disturbances are defined as

duncP ≔

duncx

duncy

duncz

2664
3775 = Fa =

−kxvx/m
−kyvy/m
−kzvz/m

2664
3775: ð16Þ

Thus, the unmodeled dynamics for the quadrotor system
are viewed as disturbances by the control law.
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Remark 9. Since the internal unmodeled dynamics and
uncertainties are considered as a part of the total distur-
bances, Assumption 8 will not affect the system stability
and control performance. Therefore, the model uncertainties
duncη , duncP can be dealt with by the FTO and the FXESO,
respectively. Thus, the simplifications of the mathematical
model adopted in Assumption 8 are reasonable and can be
accepted within the proposed TSMBAADC strategy.

Finally, by choosing χ≔ ½x, _x, y, _y, z, _z,Φ, _Φ,θ, _θ,ψ, _ψ� ∈
ℝ12 as a state vector, the following state-space model for
the 6-DoF quadrotor dynamics is obtained:

 

_χ1 = χ2,
_χ2 = −m−1 cχ7csχ9 + sχ7sψð Þuz + dx½ �,
_χ3 = χ4,
_χ4 = −m−1 cχ7sχ11sχ9 − cχ11sχ7ð Þuz + dy

� 	
,

_χ5 = χ6,
_χ6 = −m−1 cχ7cχ9ð Þuz + dz½ � + g,
_χ7 = χ8,
_χ8 = J−1xx Jyy − Jzz

� �
χ10χ12 + uΦ + dΦ

� 	
,

_χ9 = χ10,
_χ10 = J−1yy Jzz − Jxxð Þχ8χ12 + uθ + dθ½ �,
_χ11 = χ12,
_χ12 = J−1zz Jxx − Jyy

� �
χ8χ10 + uψ + dψ

� 	
:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð17Þ

The control problem of our study is formulated mathe-
matically in the following definition.

Definition 10. (Robust finite-time trajectory tracking control
problem).

The considered control problem of our study consists of
designing robust finite-time TSM control laws uηðtÞ =
½uΦ, uθ, uψ�T and uzðtÞ for both attitude and position subsys-
tems affected by perturbations in (17), such that

(i) The attitude and position tracking errors tend to the
origin in a fast finite-time, i.e., for ∀eηðtÞ≔ ηðtÞ − ηd
ðtÞ, ∀ePðtÞ≔ PðtÞ − PdðtÞ, there exist two constants
T1, T3, such that

lim
t→T1

eη tð Þ = 0,∀t > T1,

lim
t→T3

eP tð Þ = 0,∀t > T3,

8><>: ð18Þ

where ηdðtÞ and PdðtÞ are the desired reference signals for the
attitude and position subsystems, respectively.

(i) The controller must ensure good robustness against
lumped disturbances (model uncertainties, parame-
ter variation, and external time-varying wind
disturbances)

(ii) The control signal is nonsingular, continuous, and
chattering-free

3. Flight Control System Design

The control system design is aimed at realizing a robust
Cartesian trajectory tracking for the quadrotor system sub-
jected to lumped disturbances. This can be attained
through a robust tracking of the position and attitude
references.

The quadrotor system (17) is a nonlinear system with
underactuated dynamics. This system has six output vari-
ables ðx, y, z,Φ, θ, ψÞ but only four control inputs are avail-
able ðuz , uΦ, uθ, uψÞ. Notably, the translational movements
of the vehicle are directly achieved by the rotational
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PIL implementation
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Figure 1: PIL experiment setup: quadrotor model with x-configuration represented in E-frame and B-frame.
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motions. To deal with this problem, the hierarchical con-
trol structure is adopted as depicted in Figure 2. In the
context of the hierarchical control scheme, the flight con-
trol of the quadrotor system is divided into two control
loops: an inner loop for the rotational subsystem and an
outer loop for the translational subsystem. The inner loop
corresponds to the CNTSMC that ensures attitude stability of
the quadrotor by controlling the angular variables. The input
of this control loop is the reference angles ðΦd , θd , ψdÞ, and
the output is the appropriate roll, pitch, and yaw torques ðuΦ,
uθ, uψÞ. A BSITSMC is synthesized for the outer loop to achieve
robust position tracking. This loop takes the desired position
signals ðxd , yd , zdÞ as input and generates the reference angles
ðΦd , θdÞ for the inner loop and also the total thrust force control
uz.

3.1. Attitude Control Design. In this subsection, a tracking
differentiator (TD) is introduced to estimate the desired atti-
tude target signals and their first and second derivatives. Sub-
sequently, the DOBC structure is designed for the rotational
subsystem so that the target signals are tracked in finite time.

3.1.1. Tracking Differentiator. In practice, it is more reliable
to use the technique of differentiators in the implementa-
tion process of the control algorithm. Thus, a TD is
designed to supply the estimates of ðΦd , θdÞ, ð _Φd , _θdÞ,
and ð€Φd , €θdÞ for the controller. To this end, a robust exact
differentiator-based TD (REDBTD) is adopted [56], which
is defined as

_bϰd,0 = k0 ϰd − ϰ∧d,0
� �2/3 + bϰd,1,

_bϰd,1 = k1 ϰd − ϰ∧d,0
� �1/3 + bϰd,2,

_bϰd,2 = k2 sign ϰd − bϰd,0ð Þ,

8>>><>>>: ð19Þ

where ϰd is the signal to be differentiated and ϰd = fΦd ,
θdg. Then, bϰd,0, bϰd,1 and bϰd,2 are the finite-time estimates

of ϰd , _ϰd and €ϰd , respectively, i.e., bϰd,0 → ϰd , bϰd,1 → _ϰd ,
and bϰd,2 → €ϰd .

3.1.2. Disturbance Observer Design for the Attitude Loop. A
convenient model is established to facilitate the design of
the controller and disturbance observer. Therefore, from
the quadrotor model given in (17), the following attitude
dynamic model can be established:

_X1 tð Þ = X2 tð Þ,
_X2 tð Þ = f η X2, tð Þ + gη tð Þ uη tð Þ + dη tð Þ� �

,
Y1 tð Þ = X1 tð Þ:

8>><>>: ð20Þ

Here, Xη ≔ ½X1, X2�T ∈ℝ3×2 is the states vector, where X1

≔ η = ½χ7, χ9, χ11�T = ½Φ, θ, ψ�T ∈ℝ3, X2 ≔ _η = ½ _Φ, _θ, _ψ�T =
½χ8, χ10, χ12�T ∈ℝ3, uη ≔ ½uΦ, uθ, uψ�T ∈ℝ3 is the control

inputs vector,Y1 ≔ ½Φ, θ, ψ�T ∈ℝ3is the controlled outputs
vector, and the uncertain function dη ≔ duncη + dextη stands for
the total disturbances. The external disturbances are modeled
as sinusoidal signals with different frequencies. Thus, they are
considered Lipschitz continuous matched disturbances with
bounded derivatives [57]. Hence, the unknown disturbances
dη behave as a sufficiently smooth uncertain function with

its first-time derivative satisfying k _dηk ≤ lη, where lη is a non-
negative bounded constant, i.e., 0 < lη <∞ [51, 58]. The func-
tions f ηðX2, tÞ, gηðtÞ are defined as

f η ≔

f Φ

f θ

f ψ

2664
3775 =

J−1xx Jyy − Jzz
� �

χ10χ12

J−1yy Jzz − Jxxð Þχ8χ12
J−1zz Jxx − Jyy
� �

χ8χ10

26664
37775,

gη ≔ gΦgθgψ

h iT
= J−1xx J

−1
yy J

−1
zz

h iT
: ð21Þ
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Figure 2: Block diagram of the quadrotor aircraft depicting the proposed flight control structure.
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The model that we have established in (20) is a general
description of the attitude system with nonlinear second-
order dynamics associated with roll, pitch, and yaw motions
in the presence of disturbances.

Theorem 11. Given the attitude dynamic model described
in the presence of disturbances (20), an FTO observer is
designed as

_Γ
η
0 = ?0 + f η + gηuη,

?0 = −ρη1l
1/3
η Γ

η
0 − _η



 

2/3 sign Γ
η
0 − _η

� �
+ Γη1,

_Γ
η
1 = ?1,

?1 = −ρη2l
1/2
η Γ

η
1 − ?0



 

1/2 sign Γ
η
1 − ?0

� �
+ Γη2,

_Γ
η
2 = −ρη3lη sign Γ

η
2 − ?1

� �
,

8>>>>>>>>>><>>>>>>>>>>:
ð22Þ

where Γ
η
2 is the estimate of dη. Then, the disturbance dη

can be precisely identified within a finite-time T0, i.e., dη
≡ d̂η.

Proof. Let us define the observation errors as

ℓη1 ≔ Γ
η
0 − _η,

ℓη2 ≔ Γ
η
1 − dη,

ℓη3 ≔ Γ
η
2 − _dη:

8>><>>: ð23Þ

By differentiating these errors w.r.t time and substituting
€η, _Γη0, _Γ

η
1, _Γ

η
2 by their expressions, the corresponding error

dynamics can be written as

_ℓ
η
1 = −ρη1l

1/3
η Γη0 − _η


 

2/3 sign Γη0 − _η

� �
+ Γη1 − dη,

_ℓ
η
2 = −ρη2l

1/2
η Γ

η
1 − ?0



 

1/2 sign Γ
η
1 − ?0

� �
+ Γη2 − _dη

_ℓ
η
3 = −ρη3lη sign Γ

η
2 − ?1

� �
− €dη:

8>>><>>>: ð24Þ

Then, by substituting ʌ0, ʌ1 by their expressions, and
after some manipulations, we get

_ℓ
η
1 = −ρη1l

1/3
η ℓη1


 

2/3 sign ℓη1

� �
+ ℓη2,

_ℓ
η
2 = −ρη2l

1/2
η ℓη2 − _ℓ

η
1




 


1/2 sign ℓη2 − _ℓ
η
1

� �
+ ℓη3,

_ℓ
η
3 = −ρη3lη sign ℓη3 − _ℓ

η
2

� �
− €dη:

8>>>>><>>>>>:
ð25Þ

Based on Lemma 2, the observation errors ðℓη1, ℓη2, ℓη3Þ are
finite-time convergent to the origin within the time T0, i.e.,
Γ
η
1 ≡ d̂η.

3.1.3. Finite-Time Continuous Nonsingular Terminal Sliding
Mode Control Design. Let X1d ≔ ηd = ½χd7 , χd9 , χd11�

T =
½Φd , θd , ψd�T ∈ℝ3 be the reference attitude and X1 be the
actual attitude. Let us define the attitude tracking errors as

eη ≔ X1 − X1d ,

ϱη ≔ _X1 − _X1d ,

(
ð26Þ

where eη ≔ ½eχ7 , eχ9 , eχ11 �
T , ϱη ≔ _eη = ½ϱχ7 , ϱχ9 , ϱχ11 �

T . The
tracking errors dynamics is given as

_eη = ϱη,

_ϱη = €X1 − €X1d:

(
ð27Þ

The control objective for the attitude system is to make
the X1 states track the desired reference X1d by designing a
continuous-SMC law uη = ½uΦ, uθ, uψ�T . Then, the tracking

errors vector can be stabilized to zero, i.e., eη ≡ 0. Let eη1 ≔ eη
and eη2 ≔ _eη. To ensure fast convergence of attitude variables
to their reference signals, the following CNTSM surface is
proposed for the rotational system (19)

sη ≔€eη2 + 〠
n

j=1
kηj eηj
l kα1, j + eηj

l k
+ eηj
l kα2, j� �

, ð28Þ

where the nonnegative parameters kηj , α1,j, and α2,j are cho-
sen based on Remark 13 which is drawn hereafter. The con-
trol action is applied to establish the reaching phase of the
sliding surface sη, and the sliding motion on sη = 0 is deter-
mined as follows [59]:

uη ≔ ueqη + g−1η urη : ð29Þ

This control structure consists of two parts; the term ueqη
is the equivalent control part, which maintains the variables
on the sliding surface, and urη is the reaching control part,

which ensures faster convergence. On the one hand, the
ueqη control can be obtained from the sliding motion sη = 0.
Thus, when sη = 0, we get

€eη2 + 〠
n

j=1
kηj eηj
l kα1, j + eηj

l k
+ eηj
l kα2, j� �

= 0, ð30Þ

where €eη ≔ €X1 − €X1d . Substituting €X1 by its expression from
(20) into (30), and after some manipulations, the equivalent
control can be obtained as
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ueqη = g−1η −f η −€e
η
2 + 〠

n

j=1
kηj eηj
l kα1, j�"

+ eηj
l k

+ eηj
l kα2, j�

− d̂η + €ηd�,
ð31Þ

where €ηd = €X1d , d̂η is estimated by the FTO observer given by
(22). On the other hand, the urη control is chosen to ensure

the finite-time reaching of the sliding surface, and it is pro-
posed as

_unη ≔ −λη sη
� �ξ − μη sη

� �ε
: ð32Þ

Therefore, using (31) and (32), the final attitude control is
given as

uη = g−1
η −f η − €e

η
2 + 〠

n

j=1
kηj eηj
l kα1, j�"

+ eηj
l k

+ eηj
l kα2, j�

− d̂η + €ηd + unη �:
ð33Þ

Finally, by replacing η with ðΦ, θ, ψÞ, the corresponding
roll, pitch, and yaw control laws can be deduced.

Remark 12. In contrast to many reported control laws suffer-
ing from the singularity problem, our control law is designed
to be singularity-free. It is worth mentioning that since the
derivatives of the terms deηj cα1, j , dsηcε with fractional power
ðα1,j, ε < 1Þ are not required in the expression of the control
law (33), it results that the singularity problem is avoided, i.e.,
the magnitude of the control signal does not tend to the infin-
ity. The singularity problem may occur when there exists a
term with a negative power in the control signal. For exam-
ple, the singularity will happen if the derivative of deηj cα1, j
exists in the control, that is, lim

eηj→0
ddeηj cα1, j /dt ≔ lim

eηj→0
α1,j

jeηj jα1, j−1 _eηi,j =∞, since α1,j − 1 < 0.

Remark 13. In this study, rigorous conditions are established
for the choice of the control parameters. On one hand, the
exponents α1,j, α2,j, ðj = 1, 2Þ are chosen based on homogene-
ity theory as follows [50]: α1,n−k = �α/ðkð1 − �αÞ + 1Þ and
α2,n−k = ð2 − �αÞ/ðkð�α − 1Þ + 1Þ, where �α ∈ ðϵ, 1Þ, ϵ ∈ ðn − 2/n
− 1, 1Þ and k = 0, n − 1. To ensure the finite-time conver-
gence feature, α1,j, α2,j, ðj = 1, 2Þ should satisfy α1,1, α1,2 < 1,
and α2,1, α2,2 > 1. On the other hand, the positive constants
kηj > 0, ðj = 1, nÞ should be selected to make the n-order poly-
nomials sn + kns

n−1 +⋯ + k2s + k1 and sn + 3knsn−1 +⋯ + 3
k2s + 3k1 be Hurwitz in terms of the Laplace operator s.
Besides, the positive constants λη, μη > 0, ξ > 1 and ε < 1 are
chosen to preadjust a settling-time for the reaching phase of
the sliding mode as it is shown in Lemma 4. In addition,
the positive parameters of the observer ρ

η
i > 0, ði = 1, 3Þ

should be selected to satisfy the following condition ρ
η
1 > ρ

η
2

> ρη3. The parameter lη is the upper bound of the total distur-
bances. It is a bounded constant 0 < lη <∞.

3.1.4. Stability Analysis for the Attitude Closed-Loop System

Theorem 14. For the nonlinear perturbated attitude system
given by (20), if the control law uη is designed by (33), and
employing disturbance observer (22), then, the attitude system
is finite-time stable within a bounded time T1, i.e., eηðtÞ ≡ 0,
∀t ≥ T1.

Proof. The proof of the theorem is based on two consecutive
steps. First, we prove that the sliding manifold is reached in
finite time. Second, we show that the tracking errors of the
attitude system tend to zero along with the sliding manifold
in finite-time.

Step 1: By substituting €η from (20) into the sliding surface
sη (28), we get

sη = f η + gη uη + dη
� �

− €ηd + 〠
n

j=1
kηj eηj
l kα1, j + eηj

l k
+ eηj
l kα2, j� �

:

ð34Þ

Then, by substituting the designed control law uη (33)
into sη given in (34), the sliding surface dynamics becomes as

sη = urη + dη − d̂η: ð35Þ

By Theorem 11, we have dη ≡ d̂η for all t ≥ T0. Hence, we
get

sη = urη : ð36Þ

By differentiating (36) and substituting (32), it yields

_sη = _urη = −λη sη
� �ξ − μη sη

� �ε
: ð37Þ

Subsequently, let us define the following positive-definite
Lyapunov function:

Vη sη
� �

≔
s2η
2 , ð38Þ

By differentiating Vη and substituting (37), it yields

_Vη sη
� �

= sη _sη = sη −λη sη
� �ξ − μη sη

� �ε� �
, = −ληsη sη

� �ξ − μηsη sη
� �ε

:

ð39Þ

By using sη = dsηc and dsηcdsηcξ = jsηjjsηjξ, we get

_Vη sη
� �

≤ −λη sη


 

ξ+1 − μη sη

 

ε+1, ≤ −ληV

ξ+1ð Þ/2
η − μηV

ε+1ð Þ/2
η :

ð40Þ
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By considering that ξ > 1, ε ∈ ð0, 1Þ, it yields ðξ + 1Þ/2 > 1
and ðε + 1Þ/2 < 1. According to Lemma 4, the finite-time
reaching of sliding surface sη = 0 is guaranteed within the fol-
lowing bounded reaching-time Tr ≤ T⋆ ≔ 1/ληðððξ + 1Þ/2Þ
− 1Þ + 1/μηð1 − ððε + 1Þ/2ÞÞ.

Step 2: Recalling the errors dynamics for the angular sig-
nals given in (27)

_eη = ϱη,
_ϱη = €η − €ηd:

(
ð41Þ

We define �x1 ≔ eη = eη1, �x2 ≔ _eη = ϱη = eη2 and �x≔ ½�x1, �x2�T .
Consequently, the closed-loop dynamics (41) can be rewrit-
ten as

_�x1 = �x2,
_�x2 = €η − €ηd:

(
ð42Þ

When sη = 0, from (28) and considering �x1 = eη, �x2 = ϱη,
we have

€η = €ηd − kη1 �x1d cα1,1 + �x1d c + �x1d cα2,1ð Þ − kη2 �x2d cα1,2 + �x2d c + �x2d cα2,2ð Þ:
ð43Þ

Substituting (43) into error dynamics expressions (42),
we get

_�x1 = �x2,
_�x2 = −kη1 �x1d cα1,1 + �x1d c + �x1d cα2,1ð Þ − kη2 �x2d cα1,2 + �x2d c + �x2d cα2,2ð Þ:

(
ð44Þ

According to Lemma 3, we can deduce that the tracking
error dynamics (44) can be stabilized to zero during the slid-
ing motion sη = 0 within a finite bounded time. Thus, there
exists a constant Ts such that eη → 0 and ϱη → 0 for all t ≥
T1 ≔ T0 + Tr + Ts. This completes the proof.

3.2. Position Control Design. The synthesis of the position
controller is divided into two steps. In the first step, the dis-
turbance observer is addressed; while in the second step,
the robust backstepping sliding mode controller is developed.

3.2.1. FXESO Observer Design for the Position Loop. The
quadrotor translational system is divided into three second-
order subsystems, the altitude z, and the horizontal position
x, y. Thus, the following translational system subjected to dis-
turbances can be obtained from (17) as

_X3 tð Þ = X4 tð Þ,
_X4 tð Þ = f P X4, tð Þ + FP X1, tð Þ + dP tð Þ,
Y2 tð Þ = X4 tð Þ:

8>><>>: ð45Þ

Here, XP ≔ ½X3, X4�T ∈ℝ3×2 is the states vector, where X3
≔ P = ½χ1, χ3, χ5�T = ½x, y, z�T ∈ℝ3, X4 ≔ _P = Y = ½ _x, _y, _z�T =

½χ2, χ6, χ8�T ∈ℝ3,Y2 ≔ ½x, y, z�T is the controlled outputs
vector, and the uncertain function dPðtÞ≔ duncP + dextP sum-
marizes the total lumped disturbances including model
uncertainty effects, parameters’ uncertainties, and external
disturbances, where k _dPðtÞk ≤ lP and 0 < lP <∞. The func-
tions f PðX4, tÞ, FPðX1, tÞ are defined as

f P X4, tð Þ≔ Fa = KaX4, ð46Þ

FP ≔

Fx

Fy

Fz

2664
3775 =

−uzm
−1 cχd7cχd11sχd9 + sχd7sχd11
� �

−uzm
−1 cχd7sχd11sχd9 − cχd11sχd7
� �

−uzm
−1 cχd11cχd9
� �

+ g

2666664

3777775:
ð47Þ

Given the disturbed position dynamic model described in
(45), the FXESO observer is designed as

_Γ
P
1 = ΓP

2 + ρP1 ℓP1
� �a1 + �ρP1 ℓP1

� �b1 ,
_Γ
P
2 = ΓP

3 +FP + ρP2 ℓP1
� �a2 + �ρP2 ℓP1

� �b2 ,
_Γ
P
3 = ρP3 ℓP1

� �a3 + �ρP3 ℓP1
� �b3 + lP sign ℓP1

� �
:

8>>>><>>>>:
ð48Þ

Then, the disturbances and the velocities can be esti-
mated within a fixed bounded time T2 as in (52); hereafter,
i.e., ΓP

3 ≔ d̂P ≡ dP and ΓP
2 ≔ Ŷ ≡ Y . The exponents ai, bi are

selected as follows: ai ∈ ð0, 1Þ, i = 1, 3 satisfy the recurrent
relations ai = i�a − ði − 1Þ, i = 2, 3, and a1 = �a where �a ∈ ð1 −
ε1, 1Þ for a sufficiently small ε1 > 0. Also, bi > 1, i = 1, 3, and
bi = i�b − ði − 1Þ, i = 2, 3, and b = �b where �b ∈ ð1, 1 + ε2Þ for a
sufficiently small ε2 > 0. Besides, ℓP1 ≔ P − P̂ is the observation
error and FP ≔ f P + FP.

In (48), the terms dℓP1cai and dℓP1cbi are continuous and
differentiable. However, the term sign ðℓP1 Þ is discontinuous.
Thus, to avoid the chattering effect and to realize the observer
in practice, the following sigmoid function is used:

sgmf ℓP1
� �

≔

2
1 + exp −hℓP1

� � !
− 1, ℓP1



 

 ≤ δ,
sign ℓP1

� �
, ℓP1



 

 > δ,
8>><>>: ð49Þ

where h is a constant that is inversely proportional to δ,
i.e., δ = 1/h.

Theorem 15. The FXESO observer designed in (48) can pre-
cisely estimate the disturbance and the velocities within a fixed
bounded time T2, i.e., Γ

P
3 ≔ d̂P ≡ dP and ΓP

2 ≔ Ŷ ≡ Y .
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Proof. Let us define the observation errors as

ℓP1 ≔ P − P̂,
ℓP2 ≔ Y − Ŷ ,
ℓP3 ≔ dP − d̂P:

8>><>>: ð50Þ

By differentiating these errors w.r.t time, it yields

_ℓ
P
1 = ℓP2 − ρ

P
1 ℓP1
� �a1 − �ρP1 ℓP1

� �b1 ,
_ℓ
P
2 = ℓP3 − ρ

P
2 ℓP1
� �a2 − �ρP2 ℓP1

� �b2 ,
_ℓ
P
3 = _dP − ρ

P
3 ℓP1
� �a3 − �ρP3 ℓP1

� �b3 − lPsgmf ℓP1
� �

:

8>>>><>>>>:
ð51Þ

Based on Lemma 5, the observation errors ðℓP1 , ℓP2 , ℓP3Þ are
guaranteed to converge to the origin in fixed-time bounded
as

T2 ≤
λΛmax P1ð Þ
Ξ1Λ

+ 1
Ξ2σ�ϖ

σ , ð52Þ

where Ξ1 = λminðQ1Þ/λmaxðP1Þ, Ξ2 = λminðQ2Þ/λmaxðP2Þ, Λ
= 1 − �a, σ = �b − 1, and ϖ ≤ λminðP2Þ. Q1,Q2, P1 and P2 are
nonsingular, symmetric, and positive-definite matrices and
satisfy P1A1 + AT

1 =Q1, P2A2 + AT
2 =Q2.

3.2.2. Backstepping Integral Terminal Sliding Mode Control
Design. The control law is designed for the position x here.
Without loss of generality, the appropriate control laws for
the y and z positions can be derived similarly.

Let xd be the desired trajectory of the position x. The
tracking error is defined as

ex ≔ x − xd: ð53Þ

To ensure fast finite-time convergence to the desired ref-
erence signal and to simultaneously ensure null steady-state
error, the following integral terminal sliding surface is
designed:

sx,1 ≔ kx,1ex + kx,2

ð
exj jα sign exð Þdt: ð54Þ

Let us define the following Lyapunov function:

Vex
≔

e2x
2 : ð55Þ

The time derivative of Vex
is given as

_Vex
= ex _ex: ð56Þ

In (56), the term _ex can be calculated from the sliding
motion _sx,1 = 0 as

_ex = −
kx,2
kx,1

exj jα sign exð Þ: ð57Þ

Therefore, _Vex
becomes

_Vex
= −

kx,2
kx,1

exj jα sign exð Þex ≤ −
kx,2
kx,1

exj j α+1ð Þ,

≤ −
kx,2
kx,1

e2x
� �α+1/2 = −

2α+1/2kx,2
kx,1

e2x
2

� �α+1/2
,

= −
2α+1/2kx,2

kx,1
Vex

� �α+1/2 ≤ 0:

ð58Þ

Let us define ς and ϑ, respectively, as follows: ς≔ 2α+1/2
kx,2/kx,1 and ϑ≔ α + 1/2. Then, we can get

_Vex
≤ −ςVϑ

ex
: ð59Þ

It follows from Lemma 6 that the convergence of the
tracking errors for the position x can be achieved within a
finite-time T3, bounded as

T3 ≤
V1−ϑ

ex,0

ς 1 − ϑð Þ , ð60Þ

where Vϑ
ex,0

is the initial value of the Lyapunov function (55).

The first time derivative of the sliding surface (54) is given as

_sx,1 = kx,1 _ex + kx,2 exj jα sign exð Þ: ð61Þ

Subsequently, the time derivative of (61) is calculated as

€sx,1 = kx,1€ex −
αk2x,2
kx,1

exj j2α−1 sign exð Þ: ð62Þ

Putting (61) and (62) together, the following second-
order system is established [46]:

_sx,1 = sx,2,

_sx,2 = kx,1€ex −
αk2x,2
kx,1

exj j2α−1 sign exð Þ:

8><>: ð63Þ

Let us define wx,1 as

wx,1 ≔
ð
sx,1dt: ð64Þ

To investigate the stability of the sliding surface sx,1, the
following Lyapunov function is defined as

V1 ≔
1
2 s

2
x,1 +

λx,1
2 w2

x,1: ð65Þ
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Then, the time derivative of V1 can be obtained as

_V1 = sx,1_sx,1 + λx,1wx,1 _wx,1, = sx,1sx,2 + λx,1wx,1sx,1: ð66Þ

The desired sx,2, i.e., s
d
x,2, should be chosen to make _V1

negative. Thus, from (66), the sdx,2 is given as

sdx,2 ≔−ξx,1sx,1 − λx,1wx,1, ð67Þ

where φx,1 ≔ sdx,2 is the virtual variable. The derivative of the
virtual control signalφx,1, i.e., _φx,1, is required for the control-
ler. Therefore, the problem of “explosion of complexity”
should be addressed. For this reason, the following SMBF is
employed to estimate _φx,1:

_z−1 = −Θ2L
1/3 z−1d c2/3 +z0 − φx,1,

_z0 = −Θ1L
2/3 z−1d c1/3 +z1,

_z1 = −Θ0L z−1d c0,

8>><>>: ð68Þ

where z0,z1 are the estimates of φx,1 and _φx,1, respectively.
Then, the derivative _φx,1 can be accurately restored in a finite
time. Hence, z0 ≡ φx,1 and z1 ≡ _φx,1.

Let us define the error between sx,2 and sdx,2 as

ϵx,1 ≔ sx,2 − sdx,2: ð69Þ

Then, equation (69) can be written as

sx,2 = sdx,2 + ϵx,1 = −ξx,1sx,1 − λx,1wx,1 + ϵx,1: ð70Þ

Substituting (70) into (66), the time derivative of Lyapu-
nov function V1 becomes

_V1 = sx,1 −ξx,1sx,1 − λx,1wx,1 + ϵx,1ð Þ + λx,1wx,1sx,1,
= −ξx,1s

2
x,1 + sx,1ϵx,1:

ð71Þ

Next, we define the integral of the error variable ϵx,1 as

wx,2 ≔
ð
ϵx,1dt: ð72Þ

To make both the error ϵx,1 and its integration wx,2 con-
verge to zero, the following Lyapunov function candidate is
chosen:

V2 ≔V1 +
1
2 ϵ

2
x,1 +

λx,2
2 w2

x,2, ð73Þ

where λx,2 ∈ℝ+. The time derivative of V2 is given as

_V2 = _V1 + ϵx,1 _ϵx,1 + λx,2wx,2 _wx,2: ð74Þ

Using (71) and (72) into (74), it yields

_V2 = −ξx,1s
2
x,1 + sx,1ϵx,1 + λx,2wx,2ϵx,1 + ϵx,1 _ϵx,1

= −ξx,1s
2
x,1 + sx,1ϵx,1 + λx,2wx,2ϵx,1

+ ϵx,1 kx,1€ex −
αk2x,2
kx,1

exj j2α−1 sign exð Þ − _φx,1

" #
:

ð75Þ

Considering €ex ≔ €x − €xd in (75), it becomes

_V2 = −ξx,1s
2
x,1 + sx,1ϵx,1 + λx,2wx,2ϵx,1

+ ϵx,1 kx,1 f x + Fx + d̂x − €xd
� �h

−
αk2x,2
kx,1

exj j2α−1 sign exð Þ − _φx,1�:
ð76Þ

Then, using (76) and taking Assumption 8 into consider-
ation, i.e., f x = 0, the desired virtual controls Fd

x that can sta-
bilize the system is designed as

Fd
x ≔ − d̂x − €xd

� �
+ 1
kx,1

αk2x,2
kx,1

exj j2α−1 sign exð Þ
 

+ _φx,1 − ξx,2ϵx,1 − sx,1 − λx,2wx,2
�
:

ð77Þ

Remark 16. Many reported works on finite-time control do
not provide an estimation of the settling-time. In contrast,
we have established rigorous proofs to show that the tracking
error dynamics can be stabilized to the origin within a finite
bounded time where the upper bound of the convergence
time is provided.

Remark 17. In contrast to some reported works on finite-time
control, no discontinuous terms appear in the control law
(77). The term jexj2α−1 sign ðexÞ in the control law is contin-
uous; hence the chattering effect is avoided in the control
input. Moreover, to avoid the singularity problem, the frac-
tional exponent 2α − 1 should be tuned to be greater than 0,
i.e., 2α − 1 > 0. Hence, the parameter α should be chosen to
be greater than 0.5, i.e., α > 0:5.

Theorem 18. Given the disturbed translational dynamic
model described in (45), the control law designed by (77) can
guarantee that the position tracking error ex is finite-time
stable.

Proof. By substituting the control law designed in (77) into
(76), one gets

_V2 < −ξx,1s
2
x,1 − ξx,2ϵ

2
x,1 ≤ 0: ð78Þ

Hence, _V2 is negative definite, which implies that sx,1 and
ϵx,1 will converge to zero equilibrium. Therefore, when the
states are confined on the sliding manifold after the reaching
phase, it turns that the position error ex to approach the
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origin in a finite time during the sliding phase, i.e., when
sx,1 → 0 and _sx,1 → 0. This completes the proof.

Remark 19. In the previously reported studies on finite-time
control, the sign ð·Þ function appears explicitly in the control
law which may cause the chattering and thus making the
controller inapplicable in practice. To reduce the chattering
effect, some works adopted approximating functions, i.e.,
satð·Þ and tanh ð·Þ functions, to replace the sign ð·Þ function.
However, this may degrade and threaten the robustness of
the control law leading to a chattering-robustness tradeoff.
In contrast to that, no smooth functions are required to
approximate the sign ð·Þ function in our control law. Hence,
the robustness of the sliding mode is well preserved along
with a chattering-free control.

3.2.3. Thrust Force Control and Desired Attitude
Computation. The thrust force uz and the desired attitude
angles Φd , θd are defined in functions of the designed force

control Fd
P ≔ ½Fd

x , Fd
y , Fd

z �
T
for the translational subsystem.

The physical meaning of the control vector Fd
P is that it cor-

responds to the desired forces that make the quadrotor mov-
ing along the directions x, y, and z. The thrust force uz
constitutes the magnitude of these forces, whereas their cor-
responding orientations are determined by the desired atti-
tude ðχd7 =Φd , χd9 = θd , χd11 = ψdÞ, where Φd , θd , and ψd are
the desired roll, pitch, and yaw angles, respectively.

Recalling the expressions of FP = ½Fx, Fy, Fz�T from (47)

and combining them with Fd
P = ½Fd

x , Fd
y , Fd

z �
T
, we get

Fx = −uzm
−1 cχd7cχ

d
11sχ

d
9 + sχd7sχ

d
11

� �
≔ Fd

x ,

Fy = −uzm
−1 cχd7sχ

d
11sχ

d
9 − cχd11sχ

d
7

� �
≔ Fd

y ,

Fz = −uzm
−1 cχd11cχ

d
9

� �
+ g≔ Fd

z :

8>>>>><>>>>>:
ð79Þ

Therefore, after some algebraic manipulations of the
above expressions, the thrust force uz and the desired roll
and pitch angles ðχd7 =Φd , χd9 = θdÞ for the attitude subsys-
tem can be, respectively, written as

uz ≔m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fd
x

� �2 + Fd
y

� �2
+ Fd

z − g
� �2r

,

Φd ≔ arcsin −
m
uz

Fd
xsψd − Fd

ycψd

� �� �
,

θd ≔ arctan 1
Fd
z − g

Fd
xcψd + Fd

y sψd

� �� �
:

8>>>>>>>>><>>>>>>>>>:
ð80Þ

4. Results and Discussions

To verify the effectiveness of our proposed flight control sys-
tem, numerical simulations, as well as hardware implementa-
tion on a real autopilot, have been conducted. In addition, a
comparative study has been carried out. In the following,
the software and hardware setup for simulation and imple-
mentation is explained.

Control inputs generated by
Pixhawk® autopilot (uz, u𝜂)

Controller
selection switch

Generated & loaded
C++ code

P, 𝜂

P, 𝜂 uz, u𝜂 P, 𝜂, 𝛺i

PI
L 

va
lid

at
io

n
Si

m
ul

at
io

n 
en

vi
ro

nm
en

t MATLAB®/Simulink® 

FlightGear flight simulator

Quadrotor
model

Position &
attitude controller

Pixhawk® autopilot hardware

Figure 3: Block diagram of the implementation process from the simulation phase to the real autopilot hardware following an MBD
procedure.

Table 1: Physical parameters of the quadrotor aircraft.

Parameter Value Unit

m 1.72 kg
l 0.225 m
g 9.81 m/s2

Jxx 0.0232 kg:m2

Jyy 0.0249 kg:m2

Jzz 0.0342 kg:m2
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4.1. Software and Hardware Configuration. The procedure
that we have followed to verify and implement the proposed
control algorithm is known as the model-based design
(MBD) framework (see Figure 3) [48]. This procedure is
accomplished in two steps. First, the control algorithm is
simulated in MATLAB®/Simulink®. Second, the control
algorithm is simulated as a C++ code in the real autopilot
hardware (PIL simulation). To facilitate the implementation
process and conduct the PIL experiment, a specific
MATLAB® toolbox called “UAV Toolbox Support Package
for PX4® Autopilots” is used. This toolbox allows to automat-
ically generate C++ code for the controller from the
MATLAB® code and also to deploy the generated code to
the autopilot. This toolbox also allows the communication
between the autopilot and Simulink® for data visualization
and monitoring by using a USB wire. The control inputs
computed by the Pixhawk flight control board are sent back
to Simulink® to control the quadrotor model. The hardware
set up for the PIL experiment is shown in Figure 1. In both
simulation steps (Simulink®, PIL), the position and orienta-
tion of the quadrotor are sent to the FlightGear® flight simu-
lator to visualize the flight of the quadrotor in a realistic
environment. MATLAB® code and C++ code of the control
algorithm are represented by two different blocks in Simu-
link®. We can switch the choice between these two blocks
as can be seen in Figure 3.

The Pixhawk® autopilot includes a main 32-bit
STM32F427 system-on-chip, 180MHz, ARM® Cortex® M4
CPU, 2MB flash, and 256KB SRAM with L1 cache. More-
over, STM32F100 value line microcontroller with ARM®
Cortex® M3 CPU running on 24MHz and an SRAM of
8KB is also included. The processor is running NuttX real-
time operating system (RTOS). Besides, the autopilot board
includes the following sensors: inertial measurement unit
(IMU), Invensense MPU 6000 3-axis accelerometer/gyro-
scope, ST Micro L3GD20H 16-bit gyroscope, MEAS
MS5611 barometer, and ST Micro LSM303D 14-bit
accelerometer/magnetometer.

Remark 20.Most of the reported works on finite-time control
of the quadrotor aircraft may look very promising as evi-
denced by simulation results. However, owing to lack of
practical implementation, their real-world significance may
be a valid concern. In contrast, our work presents design,
simulation, and hardware realization of modern robust
finite-time control laws. The physical implementation in
autopilot hardware while attempting to address the above-
mentioned problems essentially attributes to the scientific
contribution of our work.

4.2. Trajectory Tracking Results and Robustness Test. The
numerical simulations and PIL experiments are conducted
by using the Euler integration method with a fixed integra-
tion step equal to 4 × 10−2 s. The parameters of the quadrotor
model are based on a real experimental platform where we
have identified them experimentally. These parameters are
summarized in Table 1.

We have estimated the moments of inertia ðJxx, Jyy, JzzÞ
by the bifilar pendulum experiment as shown in Figure 4.
The moment of inertia is calculated by (81) as

JPP ≔mgd2wT2
oscil/16π2lw kg:m2� �

, ð81Þ

where JPP = fJxx, Jyy, Jzzg, lw is the length of the two sus-
pending wires (filars) in meters, dw is the distance between

dw

lw

(a) (b)

Figure 4: Bifilar pendulum setup for the estimation of the moments of inertia of the quadrotor: (a) Jxx estimation and (b) Jzz estimation.

Table 2: Flight control systems compared for the Cartesian
trajectory tracking.

Flight control system Position controller Attitude controller

FCS 1 (Pixhawk®) PID PID

FCS 2 [53] ANFTSMC ANFTSMC

FCS 3 [29] IBSMC IBSMC

FCS 4 (proposed) BSITSMC-FXESO CNTSMC-FTO
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the two wires in meters, and Toscil is the period of one oscil-
lation in seconds. The period of 10 oscillations is measured
using a stopwatch for 5 trials with an initial swing angle equal
to 10 degrees. The average value was then used to calculate
Toscil.

The parameters of the CNTSMC controller are chosen as
kΦ1 = kΦ2 = 10, kθ1 = kθ2 = 10, kψ1 = kψ2 = 15, λη = 3:5, μη = 12.
The exponents of the attitude controller are tuned by consid-
ering �α = 0:85 and ξ = 1:5, ε = 0:001. The parameters of the
FTO observer are set to be ρ

η
1 = 20, ρη2 = 15, ρη3 = 2, lη = 3.

The parameters of the BSITSMC controller are chosen to
be ξi,1 = 0:5, kx,1 = 0:25, ξi,2 = 1:2, ky,1 = 0:6; ;λi,1 = 0:012, kz,1
= 0:71, kx,2 = 0:15; ;α = 0:8, ky,2 = 0:12, λi,2 = 0:01, kz,2 = 0:2.
The parameters of SMBF are Θ0 = 1:2,Θ1 = 1:6,Θ2 = 2:5, L
= 1:5, r = 3. Whereas the FXESO observer gains are selected
to be ε1 = 0:26, �a = 0:74, ε2 = 0:2, �b = 1:2, ρxi = �ρxi = ρΦi = �ρΦi
= 5, ρyi = �ρyi = ρθi = �ρθi = ρzi = 10, �ρzi = ρ

ψ
i = �ρ

ψ
i = 12, lP = 5.

To highlight the improvement attained with the pro-
posed control strategy, a comparative study is conducted
among four different flight control systems (FCS) (see
Table 2). FCS 1 is the default control system of the Pix-
hawk® autopilot which is based on the PID controller,
FCS 2 is based on an adaptive nonsingular fast terminal
sliding mode control (ANFTSMC), FCS 3 is based on
IBSMC, and FCS 4 is our proposed flight control system.

To better evaluate the FCSs, two different flight scenarios
for the Cartesian trajectory tracking are performed. To test
the robustness and disturbance rejection capabilities of the
FCSs, Cartesian trajectory tracking control has been con-
ducted under the influence of parameter variation and inter-
nal model uncertainties as well as external time-varying wind
disturbances. This approach is more realistic in practice since
all these disturbances and uncertainties are simultaneously
present in the dynamic model of the quadrotor. The overall
objective is to test the control system in the most complex sit-
uation that could be encountered in a real scenario. The total
disturbances are given as follows:

(i) External disturbances

Wind disturbances are applied at t = 15 s. The distur-
bances in the position dynamics are generated by the Dryden
wind. Their component dextP along each axis P ∈ fx, y, zg is
expressed as [60]

dextP tð Þ≔ −kd,P vP − vw,Pð Þ2 sign vP − vw,Pð Þ, ð82Þ

and the disturbances on the attitude dynamics are defined by
the following expressions:

dextΦ tð Þ = 0:5 cos 0:4tð Þ, dextθ tð Þ = 0:5 sin 0:5tð Þ, dextψ tð Þ = 0:5 sin 0:7tð Þ:
ð83Þ

(ii) Model uncertainties

Considering the simplifications in the Assumption 8
model uncertainties (unmodeled dynamics) are also present
as disturbances.

(iii) Parameters’ uncertainties
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Figure 5: 3D Cartesian flight trajectory tracking for different flight control systems: flight scenario 1.
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Uncertainties of +50% and+30% are introduced in the
nominal values of the moments of inertia Jxx, Jyy , Jzz , and
the total mass m, respectively.

Furthermore, to make the scenario closer to reality so as
to adequately evaluate the control algorithm performance,
the measurement noise effects are included while considering
the gyroscope sensor data. Also, the measurement errors are
added to the data corresponding to GPS and barometer sen-
sors as follows:

(i) Measurement noise

The output of the gyroscope sensor is modeled as

ζ tð Þ = ~ζ tð Þ + βζ +N tð Þ rad/sð Þ, ð84Þ

where ζ = ½p, q, r�T rad/s is the final signal used in control, ~ζ is
the true measurement in rad/s, βζ is the measurement bias in
rad/s, andNðtÞ is a random noise with the standard deviation
σp in rad/s and the mean 0, i.e., N = σp rand ð·Þ, where rand
ð·Þ is a MATLAB® function that generates a random number
in the interval (0,1).
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(ii) Position error

The GPS and barometer signals are obtained as

P tð Þ = ~P tð Þ + rand ·ð ÞPe mð Þ, ð85Þ

where ~P is the true measurement and Pe is the position error.

4.2.1. Flight Scenario 1. For this trajectory tracking scenario,
we consider a practical and more realistic example. The
quadrotor is required to accomplish a flight mission by fol-
lowing a set of waypoints listed in the form of ðxwp, ywp, zwp
Þ triples as follows: (0,0,0), (0,0,1), (0,0,1), (10,0,5),
(20,20,5), (25,35,5), (25,60,5), (20,80,10), (5,90,15),
(-10,90,15), (-17,70,15), (-20,40,15), (-15,10,1), (0,0,1),
(0,0,1). In practice, these waypoints can be set manually or
can be generated by a specific path planning algorithm such

as the well-known rapidly exploring random tree (RRT) algo-
rithm [8] or A∗ Algorithm [61]. The B-spline polynomial
algorithm is used to generate a dynamically feasible and
smooth Cartesian trajectory that passes through the given
waypoints. The initial conditions of the quadrotor’s states
are P0 = ½x0, y0, z0�T = ½0, 0, 0�T m, η0 = ½Φ0, θ0, ψ0�T =
½0, 0, 0�T deg.

The results of the PIL simulation for the trajectory track-
ing are presented in Figures 5–16. The way in which the air-
craft follows the reference flight trajectory for the different
control methods is presented in the 3D space in Figure 5.
The evolution of the quadrotor’s trajectory in the x − y plane
is presented in Figure 6. The first observation from Figures 5
and 6 is that all the controllers can track the reference trajec-
tory. However, it is clear that the PID controller is affected by
the disturbances. The position tracking errors are displayed
in Figure 7, whereas the actual and desired positions are
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shown in Figure 8. It can be seen from Figure 7 that all the
controllers successfully converged the translational variables
to the required set-points in the presence of the abruptly
changing reference. However, a closer inspection of the
tracking errors in Figure 7 shows that the proposed control
method is more accurate regarding the reference trajectory
tracking on the x, y, and z axes as compared to the other con-
trollers. It can be seen that the tracking errors converge to the
origin and continue staying in the vicinity of the origin. All
the controllers are affected by the wind gust at t = 20s for
the position x and at t = 22s for the position y except our pro-
posed controller, which exhibits an effective disturbance
rejection capability. This enhanced robustness in our sug-
gested FCS is due to the adopted TSMBAADC control strat-
egy including the robust ADRC and the DOBC control
structures based on the nonlinear terminal SMC. It is evident
that the PID controller is more sensitive to disturbances and
suffers from a lack of robustness with large tracking errors.
This is because the control law of the PID does not consider
the quadrotor’s dynamics. Also, we can see that the FCS 2
which is based on the ANFTSMC provides noticeable distur-
bance rejection.

To provide a more precise quantitative comparison of the
achieved results, the integral of square error (ISE) index is
used for error signal analysis. The ISE is defined as

ISE =
ðt f
t0

eP τð Þ2dτ, ð86Þ

where P = fx, y, zg. This performance index is computed and
summarized in Table 3 where the best performances are
shown in boldface.

Table 3: ISE performance index analysis: flight scenario 1.

Control strategy
Performance index

ISE
x y z

FCS 1 (Pixhawk®) 172.5 28.47 0.83

FCS 2 [53] 6.02 1.39 0.05

FCS 3 [29] 28.32 1.47 0.32

FCS 4 (proposed) 0.10 0.22 0.003

Table 4: IADU performance index for chattering analysis.

Control strategy
Performance index

IADU
uz uΦ uθ uψ

FCS 3 [29] 0.108 0.0805 0.122 0.996

FCS 2 [53] 0.037 0.010 0.031 0.03

FCS 4 (proposed) 0.029 0.006 0.010 0.007
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We can see from Table 3 that the proposed control strat-
egy has the smallest ISE index for the x, y, and z states. The
PID controller is observed to have the largest ISE index. This
can be explained by the fact that the proposed FCS has a
strong disturbance rejection feature which leads to enhanc-
ing the robustness.

Meanwhile, the desired attitude signals, their first and
second derivative provided by the REDBTD, are depicted in
Figure 9. It is clear that the REDBTD can provide a continu-
ous, smooth, and bounded estimate of the desired attitude
signal and its derivative. Such that the high frequency due
to the traditional differentiation can be filtered out.

The attitude tracking of the proposed robust CNTSMC
controller is shown in Figure 10. It can be observed that the
proposed attitude controller guarantees a robust and accurate
tracking of the attitude reference. The control signals for the
SMC-based controllers, i.e., IBSMC, ANFTSMC, and the
proposed controller are depicted in Figure 11 where we can
see that the magnitudes of the inputs are within the admissi-
ble ranges in the case of the proposed controller. Moreover,
unlike the IBSMC that is affected by chattering, the control
inputs of the proposed control system have no chattering
effect. We can also observe that the FCS2 which is based on
the ANFTSMC controller allows mitigating the chattering
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Figure 19: Evolution of the tracking errors for the translational subsystem ðex , ey , ezÞ: flight scenario 2.
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effect; however, our proposed controller has the overall supe-
riority since the control signals provided by the control law
are continuous.

The well-known integral of the absolute value of the
derivative of the input uðtÞ (IADU) criterion is used for the
control signal (shown in Figure 11) analysis. It is given as

IADU =
ðt f
ti

du τð Þ
dτ





 



 dτ: ð87Þ

The IADU index is very appropriate to check the control
signal smoothness and thereby indicates chattering allevia-
tion capability for the control input [62]. Taken together,
the control signal results are compared in Table 4.

It is apparent from this table that the smoothness is
improved by the proposed control strategy for all control sig-
nals compared to the IBSMC and ANFTSMC controllers.
Thus, the chattering effect has been effectively alleviated.

The output _φi,1 of the SMBF which is employed to tackle
the “explosion of complexity” issue is shown in Figure 12. It
is evident that the filter provides a bounded and smooth esti-
mate of the virtual control signal. We can see that the output
signal provided by the differentiator is not affected by the
noise; hence, the controller is more applicable in practice.

Figures 13 and 14 display the outputs provided by the
designed FXESO observer. Figure 13 shows the estimated
lumped disturbances along the three axes. It can be observed
that the disturbances can be exactly estimated along the three

axes after they have been applied to the quadrotor system at
t = 15s, which leads to enhancing the robustness of the con-
trol system against strong lumped disturbances. The esti-
mates of the velocities are presented in Figure 14 from
which it is clear that the FXESO observer provides a precise
velocity estimate within a very short convergence time. By
estimating the velocities, the velocity-free control can be
achieved where only the position of the quadrotor is assumed
to be measurable. This prominent result of the adopted
output-feedback control contributes to avoiding the short-
coming of the full-state feedback-based controllers. Thus,
the proposed control method relying on velocity-free control
is robust against the accelerometer’s faults.

Figure 15 depicts the velocities of the simulated Dryden
wind, from which it can be seen that the wind gusts can reach
a speed of around 10m/s and 15m/s, which is a challenging
flight condition for the FCS. The estimated lumped distur-
bances affecting the rotational subsystem are presented in
Figure 16. The designed FTO observer allows estimating
the disturbances accurately within a fast convergence time,
which improves the robustness of the attitude controller
and thus leading to precise tracking of the attitude reference.

4.2.2. Flight Scenario 2. The quadrotor is required to track the
following time-varying Cartesian trajectory:

xd , yd , zd , ψd½ �T = 2 sin 0:2tð Þ, 2 sin 0:2tð Þ cos 0:2tð Þ, 3, 0½ �T :
ð88Þ
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The results of this flight scenario are presented in
Figures 17–23. The 3D trajectory tracking for different FCSs
is presented in Figure 17, and the evolution of the quadrotor’s
trajectory in the x − y plane is given in Figure 18. The profiles
of the tracking errors and the translational variables are
depicted in Figures 19 and 20, respectively. It can be seen
from these figures that the designed FCS succeeds in tracking
the desired flight trajectory with high accuracy while external
disturbances, parameter variation, and model uncertainty
effects are well compensated. Figure 21 presents the profiles
of the rotational variables of the quadrotor ðΦ, θ, ψÞ. As in
the first flight scenario, the proposed attitude controller
ensures precise tracking of the three angles. The signals of
the unmeasurable states of the quadrotor are successfully
and accurately estimated by the designed FXESO observer
as is shown in Figure 22. From Figure 23, we can see again
that the control inputs provided by our suggested FCS are
chattering-free and are within the admissible range.

The results obtained from the analysis of tracking
errors using the ISE index are compared in Table 5. The
best performances are shown in bold text. Similar to the
previous flight scenario, the obtained results confirm the
effectiveness of the proposed FCS in dealing with trajec-
tory tracking even in the presence of fast-time varying
external disturbances and model uncertainties. Moreover,
the proposed FCS demonstrates the superior performance
w.r.t the employed performance index related to the posi-
tion tracking errors.

5. Conclusion

This research work presents a solution to the robust finite-
time trajectory tracking control problem of a quadrotor sys-
tem subjected to various disturbances. A new FCS has been
proposed. The design of the control laws is based on two steps:
attitude control design and position control design. First, a
robust DOBC has been constructed to stabilize the inner atti-
tude loop. In addition, a REDBTD has been introduced to sup-
ply smooth and bounded attitude reference signals. Second, an
ADRC approach has been proposed by creatively combining a
BSITSMC strategy and an FXESO observer. Besides, the
“explosion of complexity” problem in BS design has been
addressed by designing an SMBF. The most distinguishing
feature of the proposed FCS lies in its ability to track the trajec-
tory in finite-time under lumped disturbances. The control
law is smooth without undesirable singularity or chattering
effect. Stability analysis for the closed-loop system has been

provided based on the Lyapunov theorem. PIL implementa-
tions on real Pixhawk® autopilot have corroborated the theo-
retical findings. Furthermore, a comparative study has been
made with relevant works to evaluate the performance and
show the improvements attained by the developed flight con-
troller. The obtained results confirm the superiority of the pro-
posed control strategy regarding the accuracy, robustness, and
chattering alleviation.

As an extension and improvement to the present study,
fixed-time stability could be addressed in our future works.
Fixed-time stability is aimed at predefining and adjusting a
uniformly bounded settling time. Such a control method
allows for stabilizing the system’s states in a fixed time inde-
pendently of initial conditions. This important property is
potentially useful in practical scenarios of the quadrotor since
it enhances the system’s robustness and provides faster con-
vergence. Besides, this interesting feature is pivotal in the
cooperative control of the multiquadrotor systems, which lies
in our research. Also, actuator faults and control input satu-
ration are interesting aspects that could also be addressed. In
addition, an optimization method could be usefully intro-
duced for the tuning of the control parameters. Finally, a real
outdoor flight experiment could be conducted to further
evaluate the proposed flight-control system.

Nomenclature

ℝ: Set of real numbers
ℝn: n-dimensional state-space
ℝ+ ≔ fx ∈ℝ : x ≥ 0g: Set of positive real numbers
_x, €x: First and second-time

derivatives of a variable x
jxj: Absolute value of x in ℝ
dxcα: dxcα ≔ jxjα sign ðxÞ∀x ∈ℝ

and α ∈ℝ+
sign ð·Þ: Standard signum function
C1: Class C1 is the space of

continuously differentiable
functions

t, τ, ti, t f : Time variables

i = 1, n: Sequence of integers i = 1,
⋯, n

λminðAÞ, λmaxðAÞ: Minimum and maximum
eigenvalue of matrix A

diag ða1, a2,⋯, anÞan ∈ℝ: Diagonal matrix
sx, cx: sin x, cos x
P = ½x, y, z�T : Position of the aircraft in the

E-frame
B = ðOB, xB, yB, zBÞ: Body-fixed frame “B-frame”
E = ðOE , xE , yE , zEÞ: Earth-fixed frame “E-

frame” (inertial frame)
η = ½Φ, θ, ψ�T : Euler angles in B-frame

(roll, pitch, yaw)
Y ≔ ½ _x, _y, _z�T = ½vx, vy, vz�T : Velocity of the aircraft in E-

frame
ζ≔ ½p, q, r�T : Angular velocities of the

aircraft
m: Total mass of the quadrotor

Table 5: ISE performance index analysis: flight scenario 2.

Control strategy
Performance index

ISE
x y z

FCS 1 (Pixhawk®) 50.41 15.20 10.83

FCS 2 [53] 8.12 2.39 8.31

FCS 3 [29] 16.27 4.47 9.14

FCS 4 (proposed) 0.25 0.27 7.96
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l: Length of the quadrotor’s
arm

dP ≔ ½dx, dy, dz�T : Total disturbances acting on
the quadrotor

dη ≔ ½dΦ, dθ, dψ�T :
f i ∈ℝ+, ði = 1, 4Þ: Forces produced by each

rotor
duncη , duncP : Unmodeled dynamics and

uncertainties
dextη , dextP : External disturbances

g: Gravitational acceleration
constant

Ka ≔ diag ðkx, ky, kzÞ: Diagonal aerodynamic drag
matrix

uη ≔ ½uΦ, uθ, uψ�T : Control inputs for the atti-
tude subsystem

uz : Thrust control (total lift
force)

Jr : Inertia of the rotor
J ≔ diag ðJxx, Jyy , Jzz Þ: Moments of inertia matrix

Ωi, ði = 1, 4Þ: Angular speed of the rotors
cΦ, cθ, cψ ∈ℝ+: Aerodynamic friction

coefficients
cd , ct ∈ℝ+: Drag coefficient and thrust

coefficient
kd,P ∈ℝ+: Positive constant
vP, vw,P , P = fx, y, zg: Quadrotor’s and wind’s

velocities
lη, lP: Upper bound of k _dηk and k

_dPk
τa, τg: Aerodynamic and gyro-

scopic moments
Fa: Drag force
�ω: �ω≔Ω1 −Ω2 +Ω3 −Ω4 is

the overall residual angular
velocity of the rotor

ϰ: Variable of the tracking dif-
ferentiator (TD)

k0, k1, k2 ∈ℝ+: Constant parameters of the
TD

χ, �x, Xη, XP: State vectors
f η, gη, f P , FP : Smooth vector fields

Y1 = ½Φ, θ, ψ�T ,Y2 = ½x, y, z�T : Vectors of the controlled
outputs

ρ
η
1, ρ

η
2, ρ

η
3 ∈ℝ+: Constants for the FTO

observer design
ρP1 , ρP2 , ρP3 , �ρP1 , �ρP2 , �ρP3 ∈ℝ+: Constants for the FXESO

observer design
?0, ?1: Intermediate variables for

the FTO observer design
Γ
η
2: Estimates of dη

ΓP
1 , ΓP

2 , ΓP
3 : Estimates of P, Y , and dP

ℓη1, ℓ
η
2, ℓ

η
3: Observation errors of the

FTO observer
ℓP1 , ℓP2 , ℓP3 : Observation errors of the

FXESO observer
h, δ ∈ℝ+: Positive constants

Q1,Q2, P1, P2: Nonsingular, symmetric,
and positive-definite
matrices

eη1 ≔ eη and eη2 ≔ _eη: Attitude tracking error and
its dynamics

sη, sx,1, sx,2: Sliding surfaces

λη, μη, k
η
j ∈ℝ+.: Positive parameters

kx,1, kx,2, ς, ϑ, λx,1, ξx,1 ∈ℝ+: Positive parameters
ξ, ε, α, α1,j, α2,jðj = 1, 2Þ: Positive exponents

ueqη , urη : Equivalent control and
reaching control

d̂η, d̂P: Estimates of dη and dP ,
respectively

V : Positive-definite Lyapunov
function

Tr , T⋆: Reaching time during the
sliding motion and its upper
bound

T0, T2: Convergence time of the
FTO and FXESO observers

T1, T3: Convergence time of atti-
tude and position tracking
errors

ex: Tracking error for x
position

wx,1,wx,2, ϵx,1: Control design variables
φx,1: Virtual control signal
Θ0,Θ1,Θ2, L: Positive parameters of

SMBF
z0,z1: Estimates of φx,1 and _φx,1.
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