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Abstract The natural exponential and logarithm are typically introduced
to undergraduate engineering students in a calculus course using the notion
of limits. We here present an approach to introducing the natural expo-
nential (logarithm) through a novel interpretation of derivatives. This ap-
proach does not rely on limits, allowing an early and intuitive introduction
of these functions. The question behind our contribution is whether one can
introduce derivatives using only polynomials and power series? Motivated
by an earlier exposure of engineering students to differential equations, we
demonstrate that the natural exponential/logarithm can arise from two
common differential equations. Our limit-free approach to derivatives pro-
vides an intuitive interpretation of e, the Euler number, and an intuitive
introduction of time constants in first-order dynamical systems.
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1 Introduction

The natural exponential and logarithm are typically introduced to under-
graduate engineering students in a calculus course using the notion of limits
[1]. These functions play an important role in ordinary differential equations
(ODEs), a topic introduced later. These two tightly linked concepts are thus
introduced in separate classes, often with different textbooks and by different
lecturers. Therefore, we found it useful to introduce the natural exponential
earlier, as a solution to an ODE, but then we also require a simplified introduc-
tion to ODEs, without relying on limits. We found that students often struggle
with the limit-based introduction to calculus. The limits-based introduction
to calculus has been enriched in [2] with computational and graphical aids.
More intuitive, it seems, is the introduction of the derivative as the slope of a
tangent to a polynomial curve [3]. We extend the approach in [3] to include
non-polynomials of a wider class. While this approach is not a replacement
of a rigorous limits-based treatment of calculus [1,4], teaching the natural ex-
ponential together with differential equations links the concepts early to real
world problems and provides an intuitive introduction to time constants in
first-order dynamical systems.

The rest of the paper is organized as follows. Section 2 introduces the
concept of tangent for polynomial curves. Section 3 presents examples of how
ODEs arise in engineering. Section 4 discusses a commonly arising ODE to
introduce the exponential and logarithmic functions as a power series. Section
5 concludes the paper.

2 From Tangent to Derivative

Experience with curves shows that the linear trend of a curve at a point is
reasonably captured by a tangent line to the curve at that point. The “linear
trend” answers two questions at a point: (i) what is the ordinate of the curve?
and (ii) how is the curve directed? The tangent to the curve at a point is unique
among all the lines passing through the point in that it is directed along the
curve by “just touching” it. Procedures to draw tangents to a circle (and other
simple curves) are taught in basic geometry courses. One such example is a
compass-and-straightedge construction of a tangent to a circle illustrated in
Figure 1. To construct a line t tangent to a circle at a point T on the circle,
a line a is drawn from the center O through T and a line perpendicular to a

through T [5] is drawn. Neither the informal description “just touching”, nor
any geometrical procedure helps understand the relationship between the tan-
gent and the derivative. Students could answer questions about the conditions



A New Perspective on Teaching the Natural Exponential to Engineering Students 3

for a line to be tangent to a curve at a point. Curves of polynomials are famil-
iar to freshman students. As our first example, consider a curve represented
by a quadratic polynomial

P (x) = a0 + a1x+ a2x
2. (1)

We are seeking the linear trend of the curve near x = r, i.e., a linear polynomial
L (x) = P (r) +m (x− r) whose graph is a line that passes through, and has a
slope m that truly represents the direction of the curve at, the point (r, P (r)).
Towards that end, let us express P (x) in powers of (x− r)

P (x) = a0 + a1 (r + x− r) + a2 (r + x− r)2

= P (r) + (a1 + 2a2r) (x− r) + a2 (x− r)2 (2)

and examine the quadratic remainder

R (x) = P (x)− L (x)

= (a1 + 2a2r −m) (x− r) + a2 (x− r)2 . (3)

Following observations can be made:

– R (r) = 0 as the line passes through (r, P (r)) regardless of the slope m.
– If m 6= a1 + 2a2r, the R (x) has a single root at x = r, that is, the line in-

tersects the curve once at (r, P (r)) and once elsewhere. With intersections
at different points, the slope m cannot represent the direction of the curve.

– If m = a1 + 2a2r, R (x) has a double root at x = r, i.e., the line intersects
the curve twice at (r, P (r)). With repeated intersections at the point, the
slope a1 + 2a2r truly represents the direction of the curve at the point.

Figure 2 illustrates the last two points and what is meant by a line tangent to
a curve at a point: it truly represents the ordinate and direction of the curve
because it intersects the curve twice at the point in question. The repeated
intersection at the point is the precise condition replacing the informal phrase
“just touch”. Lines intersecting a curve at distinct points are said to be secant
to the curve. What we essentially learned from the above is the following:

Fig. 1 Geometric construction of a tangent to a circle modified from [5]

.
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Fig. 2 The tangent “just touches” the curve whereas the secants cross it.

Lemma 1 In the vicinity of a point x = r, a quadratic polynomial P (x) =
a0 + a1x+ a2x

2 has a linear trend P (r) + (a1 + 2a2r) (x− r) and a quadratic

remainder a2 (x− r)2. The graph of the linear trend is the tangent line to the
curve at (r, P (r)) and has slope a1 + 2a2r.

As a specific example, in the vicinity of x = 2, the quadratic polynomial
14 − 3x + x2 = 12 + (x − 2) + (x − 2)2 has a linear trend 12 + (x − 2) and a
quadratic remainder (x−2)2. We now extend the above approach to work out
the linear trend of a degree-n polynomial,

P (x) =

n∑
k=0

akx
k = a0 + a1x+ a2x

2 + · · ·+ anx
n (4)

at x = r. As before, P (x) needs to be expressed in powers of x − r. A good
starting point is the expansion

xk = (r + x− r)k =

k∑
i=0

(
k

i

)
rk−i (x− r)i−2

= rk + (x− r) krk−1 + (x− r)2Qk−2 (r, x− r) (5)

where

Qk−2 (r, x− r) =

k∑
i=2

(
k

i

)
rk−i (x− r)i−2 (6)
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is a polynomial of degree k−2 in x−r. Termwise substitution of this expansion
allows to expand P (x) too:

P (x) =

n∑
k=0

akx
k

=

n∑
k=0

ak

[
rk + (x− r) krk−1 + (x− r)2Qk−2 (r, x− r)

]
= P (r) + (x− r)P ′ (r) + (x− r)2 P̃ (r, x− r) (7)

where

P ′ (r) =

n∑
k=1

kakr
k−1 (8)

P̃ (r, x− r) =

n∑
k=2

akQk−2 (r, x− r) (9)

Examine the polynomial remainder

R (x) = P (x)− L (x)

= (x− r) (P ′ (r)−m) + (x− r)2 P̃ (r, x− r) .
(10)

Observations similar to those in the quadratic case can be made.

– R (r) = 0 because the line passes through (r, P (r)) regardless of the slope
m.

– If m 6= P ′ (r), the remainder has only a single root at x = r, the remaining
roots being elsewhere.

– If m = P ′ (r), the remainder has at least two roots at x = r, that is, the
line intersects the curve at least twice at (r, P (r)).

Thus, the result previously obtained for a quadratic polynomial holds for all
polynomials:

Lemma 2 In the vicinity of a point x = r, a degree-n polynomial can be
decomposed into a linear trend and and a nonlinear remainder, namely

P (x) =
n∑

k=0

akx
k

= P (r) + (x− r)P ′ (r) + (x− r)2 P̃ (r, x− r) (11)

where P ′ (r), given by (8), is the slope of the linear trend P (r)+(x− r)P ′ (r)
and P̃ (r, x− r), given by (9), is a polynomial of degree n − 2 in x − r. The
last equation can be re-written in an alternative form to be found useful later:

P (r + h) =

n∑
k=1

ak (r + h)
k

= P (r) + hP ′ (r) + h2P̃ (r, h) (12)
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As a specific example, in the vicinity of x = 2, the degree-3 polynomial 4+11x−
5x2+x3 = 12+3(x−2)+(x−2)2+(x−2)3 has a linear trend 12+3(x−2) and a
nonlinear remainder (x−2)2(x−1). Starting from qualitative statements about
polynomial curves, we have derived a quantitative and precision notion of the
tangent. At this point an educator may rise the question of what happens to
non-polynomials. The prelude in [3] provides a starting point answering this
question but crucially, this argument eventually requires again limits-based
calculus. What we contribute here is an intuitive extension of the approach in
[3] to non-polynomials.

2.1 Functions beyond polynomials

Not every function is a polynomial and the decomposition in (12) needs ex-
tension to accommodate non-polynomials. Examples include results of taking
reciprocal or square root of a polynomial and dividing a polynomial by another
of a higher degree:

1

r + h
=

1

r
− h

r2
+
h2

r3

(
1− h

r
+
h2

r2
· · ·
)

(13)

√
r + h =

√
r +

1

2

h√
r
− h2

8r
√
r

[
1− 1

2

h

r
+

5

16

h2

r2
+ · · ·

]
(14)

In both cases, the expression on the right can be viewed as a decomposition
of the form

f (r + h) = f (r) + hf ′ (r) + h2f̃ (r, h) (15)

where the factor f̃ (r, h) appearing in the nonlinear remainder is a power series
convergent over the interval |h| < r around r 6= 0. Following extension of the
foregoing decomposition into linear trend and nonlinear remainder is proposed
so as to accommodate a wide class of non-polynomials.

Lemma 3 In the vicinity of a point x = r, the linear trend of a function f (x)
can be defined if it is possible to decompose the function around x = r in the
form

f (x) = f (r) + (x− r) f ′ (r) + (x− r)2 f̃ (r, x− r) (16)

where f̃ (r, x− r) is either a polynomial or a power series in x− r convergent
over an approriate region of interest around x = r. The slope f ′ (r) of the
linear trend is called the derivative of f (x) at r1.

A specific example is the expansion on the right of (13) of f(x) = 1/x with
r = 2 and f ′ (r) = −1/r2. Since r can be chosen anywhere on the real line,
it is legitimate to replace r in f ′ (r) with x so as to get a function in its own

1 Notice the subtle difference between the usage of the two terms: slope of a line versus
derivative of a function
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right. Viewed as a function of x, f ′ (x) is called the derivative of f (x) and
must be interpreted as appearing in the following decomposition:

f (x+ δx) = f (x) + f ′ (x) δx+ f̃ (x, δx) (δx)
2

(17)

For any increment δx in x, the increment in f (x) is

δf (x) = f (x+ δx)− f (x) . (18)

The linear trend f ′ (x) δx of the increment is called the differential of f (x) and
denoted by df (x). Commonly, the increment in x is replaced by the differential
dx so as to rewrite foregoing decomposition as2

f (x+ dx) = f (x) + f ′ (x) dx+ f̃ (x, dx) (dx)
2
. (19)

The increment and differential of f (x) are then written as

δf (x) = f (x+ dx)− f (x) (20)

df (x) = f ′ (x) dx (21)

It is very important to realize that the derivative df/dx is a valid quotient
of two differentials, a fact often reminded by calling it differential quotient.
The differentials are widely mistaken as infinitesimals to the extent that some
criticize treating the derivative as a quotient. With equation (19), we now have
a scheme by which we can differentiate functions without limits.

2.2 Properties of differentiation

In case someone wonders how to derive the various rules of differentiation from
(19), we include a few derivations here. Let us consider two functions f (x) and
g (x) satisfying

f (x+ dx) = f (x) + f ′ (x) dx+ f̃ (x, dx) (dx)
2

(22)

g (x+ dx) = g (x) + g′ (x) dx+ g̃ (x,dx) (dx)
2

(23)

1. Constant: c is a special case of (11) when a0 = c and ak = 0 for all k > 0.
Therefore dc/dx = 0.

2. Power rule: xn is a special case of (11) when an = 1 and ak = 0 for all
k < n. Therefore dxn/dx = 0

3. Product rule:

f (x+ dx) g (x+ dx) =

f (x)g(x)+(f(x) g′(x)+f ′(x) g(x)) dx+f̃g (x,dx) (dx)
2

(24)

⇒ (fg)
′
(x) = f (x) g′ (x) + f ′ (x) g (x) . (25)

2 Since dx can be chosen arbitrarily (large or small) just like δx, there is no point in
distinguishing between the two and we can take dx = δx.
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4. Scaling: Set f (x) = c in the product rule

(cg)
′
(x) = cg′ (x) . (26)

5. Addition of n functions
n∑

i=1

fi (x+ dx) =

n∑
i=1

fi (x) +

[
n∑

i=1

f ′i (x)

]
dx+

[
n∑

i=1

f̃i (x, dx)

]
(dx)

2
(27)

⇒ d

dx

n∑
i=1

fi (x) =

n∑
i=1

f ′i (x) . (28)

6. Power series: We expect the addition rule to be true for an infinite power
series, though the proof is beyond the scope of this paper. This is one exam-
ple of why rigorous treatments of calculus cannot be replaced by intuitive
ones like ours.

d

dx

∞∑
i=1

fi (x) =

∞∑
i=1

d

dx
fi (x) (29)

d

dx

∞∑
k=1

ak (x− c)k =

∞∑
k=1

akk (x− c)k−1 . (30)

7. Linearity: Combining scaling and addition

(af + bg)
′
(x) = af ′ (x) + bg′ (x) . (31)

8. Reciprocal: Set g = 1/f in the product rule

0 = f (x) (1/f)
′
(x) + f ′ (x)

1

f (x)
(32)

⇒ (1/f)
′
(x) = −f ′ (x) / [f (x)]

2
. (33)

9. Quotient rule: Set g = 1/q in the product rule

(f/q)
′
(x) = −f (x) q′ (x) / [q (x)]

2
+ f ′ (x) /q (x)

=
f ′ (x) q (x)− f (x) q′ (x)

[q (x)]
2 . (34)

10. Chain rule:

df (g (x)) = f ′ (g (x)) dg (x) = f ′ (g (x)) g′ (x) dx. (35)

(f ◦ g)
′
(x) =

df (g (x))

dx
=

df (g (x))

dg (x)

dg (x)

dx

= f ′ (g (x)) g′ (x) . (36)
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d [f (x)]
n

dx
=

d [f (x)]
n

df (x)

df (x)

dx
= n [f (x)]

n−1
f ′ (x) . (37)

We have reached our first milestone, introducing differential calculus without
limits, preparing us to understand ODEs. As a bonus, working out differenia-
tion from first priciples gets self-explanatory and compact.

2.3 The D-operator and its inverse

The notation used in our introduction to differentiation is not helpful in our
journey to the exponential via ODEs. Towards that end, it is neater to intro-
duce a so called D-operator defined by its action D f (x) = f ′ (x) = df/dx on
a function f (x).

The question then is whether we can recover a function f (x) from its
derivative g (x). In other words, can we solve the ODE

D f (x) = g (x) . (38)

Say we identify, after a few tries, a function G (x) with derivative g (x). We say
that G (x) is an anti-derivative of g (x) and the general solution to the ODE
is the family of all anti-derivatives

f (x) = D−1 g (x) + c = G (x) + c, c ∈ R (39)

because the derivative of every constant c is zero. The D−1-operator here gives
a particular anti-derivative, also called a particular integral, which ignores
constants. At times, we may require the solution to satisfy what is called an
initial condition. The ODE together with such an initial condition is called an
initial value problem (IVP). If we require the solution to pass through (x0, f0),
the IVP takes the form

D f (x) = g (x) , f (x0) = f0 . (40)

The particular constant needed to satisfy the initial condition can be deter-
mined by choosing x = x0 in the general solution, namely

f0 = G (x0) + c (41)

which gives c = f0 −G (x0). The solution to the IVP then reads

f (x) = f0 +
[
D−1 g (t)

]t=x

t=x0
= f0 +G (x)−G (x0) . (42)

What follows are a few examples of how ODEs arise in practice.
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3 How do ODEs arise?

As our goal is to show that the exponential function arises naturally as the
solution to an ODE, one must wonder how do ODEs arise in the first place?
It turns out that, for many physical processes, derivatives come naturally and
one has to find the anti-derivative. Many functions are abstractions of physical
quantities generated by some physical process. Attempts of understanding a
process based on measured values of these functions often suggest that the
process can be modeled by a first-order ODE, similar to that discussed in the
closing remarks of the previous section.

3.1 Population growth

According to the Malthusian model, the instantaneous growth rate dn/ dt of
a population of bacteria in a resource-rich environment, is to proportional to
the number n (t) of bacteria present at that instant. The population growth
obeys the IVP

dn/dt = rn (t) , n(0) = n0, (43)

where r is the rate constant and n0 is the initial number of bacteria. Other
examples of unrestricted growth are tumor growth, nuclear chain reaction, and
the avalanche breakdown.

3.2 R-C circuit

The voltage V (t) across the capacitor in a source-free R-C circuit is dropped
across the resistor as −RC dV/ dt. Starting from an initial voltage V0, the
decaying capacitor voltage obeys the IVP

dV/ dt = (−1/RC)V (t) , V (0) = V0 . (44)

3.3 R-L circuit

The current I(t) through an inductor in a source-free R-L circuit establishes
a potential difference LdI/dt across the inductor that is dropped across the
resistor as −RI(t). Starting from an initial current I0, the decaying inductor
current obeys the IVP

dI/ dt = (−R/L) I(t), I (0) = I0 . (45)
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Table 1

R-C R-L Dashpot-mass Dashpot-spring Population growth

q V i v x n
a −1/RC −R/L −b/m −k/b r

3.4 Dashpot-mass model

The rate −m dv/dt of decrease of momentum of a point mass is caused by a
viscous force bv(t) in the absence of a driving force. Starting from an initial
velocity v0, the decaying velocity vt obeys the IVP

dv/dt = (−b/m) v (t) , v (0) = v0 . (46)

3.5 Dashpot-spring model

The deformation x(t) present in a spring establishes a restoring force −kx(t)
that is balanced by a viscous force bdx/ dt the absence of a driving force.
Starting from an initial deformation x0, the decaying deformation obeys the
IVP

dx/dt = (−k/b)x (t) , x (0) = x0 . (47)

3.6 One ODE for all

One notices that the different IVPs can all be represented by a single IVP of
the form

dq/dt = aq (t) , q (0) = q0 (48)

with rate parameter a and intial value q0. The rate parameter a = (dq/dt) /q,
also called the relative growth rate, helps to distinguish among the different
processes, as illustrated in Table 1.

The initial value q0 helps to distinguish among the different solutions for a
particular process. Can we simplify (48) so that we do not have to worry about
the values of a and q0? Towards, that end, define two dimensionless quantities

t̄ = at (49)

q̄ (t̄) = q (t) /q0 = q (t̄/a) /q0 (50)

and employ the chain rule

dq̄

dt̄
=

dq̄

dt

dt

dt̄
=

1

q0

dq

dt

1

a
=
q (t)

q0
= q̄ (t̄) (51)

to rewrite the IVP in the form

dq̄/dt̄ = q̄ (t̄) , q̄ (0) = 1 . (52)
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Assume that this IVP could be solved for the dimensionless q̄, the associated
physical quantity can then be recovered as

q (t) = q0q̄ (at) . (53)

This relation highlights an important fact about time scales. Each first-order
process has an intrinsic time scale, a characteristic time τ = 1/ |a| called the
time constant, that is the shortest time for discernible changes to be observed
in a physical quantity [6]. In terms of the time constant, (53) can be rewritten
as

q (t) = q0q̄ (±t/τ) , (54)

where ± translates to + for growth and − for decay. The solution of the IVP
in the dimensionless form is attempted in the following section. The value of
the dimensionless representation is in its generalized nature that allows one to
study a range of systems regardless of their domain or specifc parameters.

We have now reached our second milestone: we have completed our intro-
duction to ODEs necessary for our final endeavor.

4 How does the exponential arise?

We have all the tools ready to show how the exponential function arises natu-
rally as a solution to an IVP. Let us solve the IVP (52) written here in a more
standard notation:

dy/dx = y, y(0) = 1 . (55)

The ”aha”-moment now comes when we simply apply successive anti-differentation
using the D−1 operator,

y (x) = y (0) +
[
D−1 y (t)

]t=x

t=0
= 1 + D−1 y (x)

=1 + D−1
[
1 + D−1 y (x)

]
= 1 + x+ D−2 y (x)

=1 + x+ D−2
[
1 + D−1 y (x)

]
= 1 + x+ x2/2 + D−3 y (x)

=1 + x+ x2/2 + D−3
[
1 + D−1 y (x)

]
=1 + x+ x2/2! + x3/3! + · · · . (56)

This emergent power series satisfies the constraint in (55) on the process gen-
erating y(t). Our next task is to establish that this power series can be viewed
as an exponential function, one in which a constant is raised to x. We have
enough reason and motivation to define a new function

exp (x) =

∞∑
n=0

xn/n!, (57)

which arises as a solution to a simple ODE. Figure 3 illustrates the construction
of this new function from polynomials of increasing degrees.

Following observations can be made about exp (x) and its relationship with
the ODE dy/dx = y:
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Fig. 3 Construction of the exponential from polynomials

– exp (x) is a (particular) solution passing through (0, 1).
– y0 exp (x) is a solution passing through (0, y0).
– exp (x− x0) is a solution passing through (x0, 1).
– y0 exp (x− x0) is a solution passing through (x0, y0).
– exp (x0) exp (x− x0) = exp (x) is the same solution that passes through

(x0, exp (x0)) and (0, 1).
– exp (x1) exp (x2) = exp (x1 + x2)
– exp (x) exp (−x) = exp (0) = 1 implies that exp (x) and exp (−x) are mul-

tiplicative inverses of each other.
– exp (x1) / exp (x2) = exp (x1 − x2)
– [exp (x)]

m
= exp (mx)

– [exp (x)]
1/n

= exp (x/n)

– [exp (x)]
m/n

= exp (mx/n)

All these properties are shared only by exponential functions. We have no
choice left but to define the natural exponential function

ex = exp (x) =

∞∑
n=0

xn

n!
= 1 + x+

1

2!
x2 +

1

3!
x3 + · · · , (58)

with the natural base e defined by

e = exp (1) =

∞∑
n=0

1

n!
= 1 + 1 +

1

2!
+

1

3!
+ · · · . (59)
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The inverse function exp−1 of the natural exponential must be a logarithmic
function. That motivates us to define the natural Logarithm by

ln (y) = exp−1 (y) . (60)

Note that ln (y) is the length of interval (on the x-axis) in which exp (x) changes
by a factor of y from its intial value of unity. Moreover, ln (y/y0) is the length
of interval (on the x-axis) in which y0 exp (x) changes by a factor of y/y0 from
its intial value of y0. Calculating ln (y) requires to solve exp (x) = y for x and
that is difficult algebraically. The good news is that ln (y) is the solution to
the IVP

dx/dy = 1/y, x(1) = 0 . (61)

Similarly, ln (1 + v) is the solution to the IVP

du

dv
=

1

1 + v
= 1− v + v2 − v3 + · · · , |v| < 1, u(0) = 0 . (62)

Termwise anti-differentiation gives

ln (1 + v) = v − 1

2
v2 +

1

3
v3 − 1

4
v4 + · · · , −1 < v ≤ 1 . (63)

Replacing v by −v gives,

ln (1− v) = −v − 1

2
v2 − 1

3
v3 − 1

4
v4 − · · · , −1 ≤ v < 1 . (64)

Subtracting this from the previous equation gives

ln

(
1 + v

1− v

)
= ln (1 + v)− ln (1− v)

= 2

(
v +

1

3
v3 +

1

5
v5 + · · ·

)
, |v| < 1 . (65)

Setting v = (y − 1)/(y + 1) gives a power series of ln(y) valid for all positive
reals,

ln (y) = ln

(
1 + (y − 1)/(y + 1)

1− (y − 1)(y + 1)

)
= 2

(
y − 1

y + 1
+

1

3

(
y − 1

y + 1

)3

+
1

5

(
y − 1

y + 1

)5

+ · · ·

)
, y > 0 . (66)

Figure 4 illustrates the construction of ln(y) from polynomials of increasing
degrees in (y − 1)/(y + 1). That completes our exploration: the exponential
function arises naturally as the solution to a specific IVP and the logarithmic
function arises as the solution to an associated IVP. It is important to notice
that the IVPs were solved by successive anti-differentiation. This is very differ-
ent from standard methods of solving these IVPs which require knowledge of
the two functions (exponential and logaritmic). We have turned that around
and showed how the two functions arise naturally. One last comment: (53)
allows to use our solution to (55) to solve equations of the form (48) in the
dimensional form.
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Fig. 4 Construction of the logarithm from polynomials.

5 Conclusion

This paper introduced differentiation and differential equations based on poly-
nomials and power series rather than limits. It is shown that the natural
exponential function and its inverse (the natural logrithmic function), arise
naturally as solutions to commonly occuring first-order differential equations.
We believe this quick introduction will enhance the understanding of under-
graduate students before they are exposed to more rigrorous treatements of
calculus. While this approach is not a replacement of a rigorous limits-based
treatment of calculus, teaching the natural exponential together with differ-
ential equations links the concepts early to real world problems and provides
an intuitive introduction to time constants in first-order dynamical systems.
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