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This paper proposes kinematic based calibration methods for Delta parallel robots. The
boundary of the robot workspace is computed using a forward kinematic model. Influence
of errors in kinematic parameters on the workspace boundaries is investigated. The novelty
of the proposed approach lies in Jacobian-based computation of kinematic models. Also, the
present work extends and applies the existing calibration methods traditionally meant for
serial robots on the Delta robot. These methods include the forward method and the inverse
method. Simulation results confirm the efficacy of the proposed calibration strategies.
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1. Introduction

For some industrial applications such as High Speed Machining (HSM) or fast handling, serial
kinematics manipulators appear to be best suited (Alam et al., 2018). Indeed, this type of ar-
chitecture implies that each motor axis supports its successive link (Iqbal et al., 2016; Bentaleb
and Shahin, 2015). However, this results in degradation of the dynamic performance due to
accumulation of the masses in motion. Consequently, parallel robots attract a great attention
in robotics and mechatronics community owing to their distinguishing features compared with
other robot types such as serial robots (Ajwad et al., 2018). Superior accuracy in object ma-
nipulation, high compactness and rigidity in parallel robots lead to vast dynamics capabilities,
thus making them a best choice in several application areas. Nowadays, parallel kinematic ma-
nipulators are common in medical, space, industrial and other HSM applications requiring high
positional accuracy. However, it is necessary to improve its repeatability and positional accuracy,
which is a big challenge because of calibration issues. Generally, parallel robots require calibra-
tion to improve the precision performance during task execution. The accuracy synthesis and
kinematic calibration can be used to solve this problem. Theoretically, for a six degree of freedom
(DOF) parallel mechanism, the error can be compensated by kinematic calibration. However, for
mechanisms having less DOF than six, the accuracy synthesis is important because they have
uncompensable end errors as pointed in (Mei et al., 2009). A three-DOF parallel manipulator
named ’Delta’ belongs to this kind of mechanism.
Literature reports several techniques to address the calibration problem of Delta robots. Bai

et al. (2015) used distance measurements from a laser tracker to calibrate Delta robot. Based on
the derived kinematic model of error, they classified the source of errors affecting pose accuracy.
The set of acquired tracker data was used to fully or partially identify the source of error. To
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compensate error in real-time, a linearized actuator was designed and developed. Considering a
cylindrical work-envelope, results dictated that error in uncompensated positional accuracy was
suppressed so as to improve the kinematic calibration. In contrast to Bai’s work, the calibration
approach presented by Fan et al. (2015) for parallel mechanisms does not rely on measurement of
posture/position. Instead, they used forward kinematics of the robot in conjunction with genetic
algorithm that identified kinematic parameters by solving the discrete optimization problem.
The proposed calibration approach improved accuracy by a factor of 78.3%. Given the fact that
genetic algorithm does not result in a unique optimal solution, it was recommended to execute
the calibration procedure multiple times prior to selection of the best result.

A recent development in this subject is elasto-geometrical calibration proposed in (Kamali
et al., 2016). This approach used end-effector positional data acquired by a laser tracker to
identify parameters related with joint stiffness and errors. This work considered a wide range of
torques and forces to measure position errors for each configuration of the robot. The observ-
ability analysis reduced the sensitivity of calibration accuracy w.r.t. unmodelled errors and
noise. The results of various configurations subjected to external loads dictated that the over-
-performance of the presented approach compared to the customary kinematics-based calibration
strategy. Another novel approach to enhance robot accuracy is reported in (Nguyen et al., 2015)
which integrates Extended Kalman Filter (EKF) based algorithm and Artificial Neural Network
(ANN). EKF was used to model and identify geometric parameters while ANN compensated
non-geometric un-modelled sources of error. Simulation results on serial PUMA manipulator
confirmed the correctness of the proposed strategy and proved its over-performance compared
to the conventional approaches relying on joint compliance parameters and link geometry.

The absolute calibration approach proposed by Nubiola and Bonev (2014) was based on a
6D measurement system, which mainly comprises a COTS telescoping ballbar and two custom
developed fixtures. Considering a small six-axis serial robot, a laser tracker was used to validate
the calibration strategy in 10 000 random robot configurations. An improvement in mean posi-
tioning error from 0.873 to 0.479 was reported. Pagis et al. (2015) presented a promising robust
approach to enlarge work-envelope of parallel robots. The defined optimal trajectory permits
crossing Type-2 singularities. The generated trajectory mitigated the degeneration of the system
dynamics in the vicinity of the singularity locus. The multi-mode control law then tracked this
trajectory. A five-bar planar mechanism was used to validate the developed control laws. Zhao
et al. (2015) introduced a novel medical robot with a parallel structure intended for diagnosis
of vessel disease in lower limbs of humans. With a rigorous analysis of robot accuracy and re-
peatability, the work also reported a calibration procedure based on the identification approach
to identify kinematic parameters. Being a simple and easily realizable method, the proposed
method does not require advance knowledge of calibration approaches. The experimental results
demonstrated that the calibration process can improve the position error from 6mm to less
than 1mm.

The key objective behind the kinematic calibration of robots is to obtain the values of
kinematic parameters. Removing uncertainty about these settings allows adjustment of the ma-
thematical models or virtual models to more accurately position the robots. In fact, in most
cases, the robot positioning errors are due to poor fitting of the parametric values as highligh-
ted in (Mo et al., 2016; Axehill et al., 20141). Conventional methods of calibration of parallel
robots, such as those reported in (Yu, 2008; Yu et al., 2005; Rauf and Ryu, 2001; Besnard and
Khali, 2001) are expensive in terms of time and computational cost because of 3D measurement
devices, and also suffer from other constraints due to inaccuracy of measurement systems and
installation complexity (Meng and Zhuang, 2007). Other notable methods are based on semi-
-autonomous calibration procedures employing additional sensors mounted only on passive joints
of the robot instead of an external sensor. The proposed method in the present paper extends
Zhuang’s approach for Delta parallel robot.
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2. Description of Delta robot

Delta parallel robot was developed by Reymond Clavel in 1985 (Viera et al., 2011). Distinguishing
features of this robot include: high work rate, superior accuracy and less power consumption.
The coordinate points needed for the modeling of this structure are: Ai – motorized joints center
between the arms and the base, i = 1, 2, 3, Bi – passive joint between the two arms, Ci – passive
joint between the arm and to its connected mobile platform, O0 – center of the fixed platform
and O – center of the mobile platform. The point O0 is the origin of the coordinate system R0
associated with the base, and x0 axis passes through the points Ai. z0 axis and the normal of the
planar surface is denoted by Ai. The dimensioned parameters of the model are: Lai = 260mm,
Lbi = 480mm of the arm i and the parameter R is the difference between radii of the base and
the mobile platform (Rb = 194mm and Rn = 30mm). The angular parameters are: the joint
variable αi of each arm i and the angle θi (0

◦, 120◦ and 240◦) which corresponds to the orientation
of axes zi of each joint actuated revolution point Ai. The cornerstone of the mobile structure is
the parallelogram consisting of three kinematics chains that connects the static platform to the
moving platform. Regardless of its movements and position, the three orientations of the moving
platform are kept constant without any influence of the motor. The moving platform is the body
terminal of the robot with 3-DOF. The structure has a ternary symmetry consisting of three
identical kinematic chains arranged in 120◦. The lengths and angles parametric characteristics
of this structure are shown in Fig. 1.

Fig. 1. Left: schematic representations of Delta robot with the definition of the coordinate system by
placing the origin at the fixed base (base-plate). Right: lengths and angles parametric characteristics of

Delta robot. Each parallelogram is represented by a single segment

The nomenclature is as follows: Ra is the distance between the center of the static platform
and the axis of rotation of the arm, Rb is the distance between the center of the moving platform
and the side of the parallelogram associated with the moving platform, La is the arm length,
Lb is length of the parallel bar, R is the difference between Ra and Rb. This distance defines the
position of the pointCi on the line ai which is perpendicular to the lineOAi. Angle characteristics
of this structure are: αi is the angle between the i-th arm and the plane of the static platform, by
convention, this angle is positive when the arm is located on the side of the mobile platform, βi is
the angle between the plane of the i-th parallelogram and the horizontal plane measured in a
vertical plane πi containing the arm i, γi is the angle between the vertical plane πi and bars of the
parallelogram i, θi is the angle between the plane πi and the plane Oxz. The three orientations
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of the robot end-effector are constant. The kinematics can simplify the robot geometry. This
simplification is obtained by translation of the whole-arm parallel bars, thereby combining the
points Oi and Ai. The same simplification concept is applied to points Bi and P . In our previous
work (Bentaleb et al., 2007), the kinematic modeling of robots with closed structures was based
on an open loop kinematic model considering each chain individually according to the constraints
imposed by other chains. The derived models serve as basis to identify the constraints necessary
for calibration and to analyze workspace and accuracy.

3. Calibration methods

Two kinematic calibration approaches which are traditionally used to calibrate serial robots are
presented in this Section. The first approach is based on Forward Kinematic Model (FKM) of
Delta robot while the second strategy is based on Inverse Kinematic Model (IKM) of the robot.
These two kinematic approaches have been tested and applied to another type of parallel robots
“Gough platform” (Merlet, 2006). The two approaches are detailed below.

3.1. FKM-based method

The control of actuators allows the robot to reach a certain configuration X. This confi-
guration is computed using FKM. So, we can obtain XFKM = FFKM(P,α) based on values
of the actuators α and geometric parameters P . The exact position of the manipulator Xr is
calculated and then compared with the result given by FKM to determine the position error of
the manipulator, which is related with unknown geometrical parameters i.e.

∂X = Xr −Xfkm(P,α) (3.1)

In this method, the main concept behind calibration is to deal with the geometric parameters
to decrease the position error as much as possible.

3.2. IKM-based method

Instead of evaluating the position error in the operational space, the IKM-based method
relies on indirect quantification of the error on the joint values in the coordinate space. For a
known reference position of the manipulator Xr, the joint coordinates are calculated using IKM
based on geometric parameters P i of the robot. Then αikmi of each segment is obtained using

αikmi = Fikm(Pi,X
r) (3.2)

These information values are compared with the actual values of the joint coordinates αr i.e.

∆αi = α
r
i − α

ikm
i (Pi,X

r) (3.3)

The goal is that for each arm segment i, the geometric parameters are modified to decrease ∆α
error as much as possible. The main advantage of this method is that the error for a given segment
is independent of errors in other segments of the robot. Calibration can be decomposed into
successive identification of the parameters P i of each segment. Thus, the number of unknowns
can be determined by the number of manipulator segments (3 for Delta robot) consequently
resolving the problem.
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3.3. Solution of equations

3.3.1. Using FKM

The position error εfkmk for a configuration of the manipulator k gives the constraint as

εfkmk (P ) = X
fkm
k −Xfkm(P,αrk) (3.4)

Such that, for the exact parameters P r of the manipulator, the error is zero. The calibration
problem leads to determining P r as follows

εfkmk (P
r) = Xfkmk −Xfkm(P r, αrk) = 0 (3.5)

The solution of this problem requires having as many algebraically independent equations as
the number of unknowns. Depending on the nature of the reference variables, the error εfkmk
provides Nm equations where sensory instrumentation gives the position (3 parameters) of the
mobile platform. The vector Xrk provides three independent information values, i.e. Nm = 3.
If we place the mobile plate in Nc reference configurations, we get Nc types of relationships
and thus Nm ×Nc equations. The number Np of the geometrical parameters to be identified is

dependent on the selected robot model. To determine P , as εfkmk (P ) = 0, with k = 1, . . . , Nc,
the inequality Nm ×Nc ­ Np holds true. Taking the case of calibration of Model 24, where the
number 24 represents the number of parameters, i.e. Np = 24. So, for each segment, there are
8 parameters (i = 1-3) i.e.

Pi = [Dxi,Dyi,Dzi, θi, αi, Laxi , Layi , Lbi] (3.6)

The minimum number of measured positions of the manipulator configuration is equal to
24/3 = 8. The problem is to determine P c, i.e. all parameters obtained by the calibration, such
as

εfkm1 (P
c) = χfkm1 (P

c, αr1) = 0

...

εfkmk (P
c) = χfkmk (P

c, αrk) = 0

...

εfkmNc (P
c) = χfkmNc (P

c, αrNc) = 0

(3.7)

where k = 1, . . . , Nc is the index of the robot configuration. The required parameters need to be
determined for all the configurations corresponding to the known reference positions χrk of the
robot and for all angles θrk of the mobile joints.

3.3.2. Using IKM

Instead of using the error in the angles of motorized joints and substitute in (3.3), we prefer
to use a difference of square of the angles to simplify the IKM equations of IKM. There are
several models of Delta robots depending on the choice of number of parameters (see Ibrahim
and Khalil, 2010). For the position k and exactly known manipulator configurations χrk as well
as the movable hinge angle i to be calibrated, the IKM equation gives

F i,kikm(Pi, χ
r
k, α
r
i,k) = (CB

r
i,k)
TCB

r
i,k − Lbi (3.8)

With this constraint equation, for Pi = P
r
i , we therefore have

εikmi,k (Pi, χ
r
k, α
r
i,k) = F

i,k
ikm(Pi, χ

r
k, α
r
i,k) = 0 (3.9)
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In order to obtain a finite set of solutions, we need as many algebraically independent equations
as unknowns. However, (3.9) provides us a single (Nm = 1) equation for each segment i. For
a configuration k = 1, . . . , Nc, there are Nc constraint equations corresponding to Nc reference
positions. To identify all the Np geometric parameters Pi for each segment i, it will require
Nc ­ Np. Thus, for Model 24, we have Np = 8 reference configurations. Since the constraint
equations are defined independently for each segment, the same calibration data of all the other
parameters of the robot can be used. To determine 24 geometric parameters, it will take at least
8 measurement configurations. The problem therefore is to determine P ci such as

εikmi,1 (P
c
i , χ
r
1, α
r
i,1) = 0

...

εikmi,k (P
c
i , χ
r
k, α
r
i,k)) = 0

...

εikmi,Nc(P
c
i , χ
r
Nc
, αri,Nc)) = 0

(3.10)

3.4. Solution

The main challenge in calibration is that we do not know the exact placement χrr and
associated angles of the movable joints associated αrr. An approximation of their values can be
obtained by means of measuring devices. Therefore

χrk = χ
m
k + εp (3.11)

where χmk is the measured position of the configuration k and εp is the error in the position
induced by the measurement noise. Similarly,

αrk = α
m
k + εθ (3.12)

where αmk is the angle measured from the articulated joint i of the configuration k and εθ is the
error in the angle of the movable joint i induced by the measurement noise.

The idea is to determine P = P r in order to have (3.13)1 for FKM and (3.13)2 for IKM
based methods for each segment i

min
P=P c

Nc∑

k=1

∥
∥
∥εFKMk

(

χmk , α
m
k ,

unknown
︷︸︸︷

P
)∥
∥
∥

2

min
Pi=P ci

Nc∑

k=1

∥
∥
∥εIKMi,k

(

χmk , α
m
i,k,

unknown
︷︸︸︷

Pi
)∥
∥
∥

2

(3.13)

An optimization method offers several advantages. In fact, the measurement noise modifies
the constraints of equation coefficients and, therefore, the solution does not lead to the exact
root. Finding a solution that minimizes the criterion c = εTε in P better describes the calibra-
tion problem. The noise on the measurements and numerical precision machines prevent exact
cancellation of errors εfkmk or εikmk . An attempt to make them as small as possible is made in
the present work to minimize the square of the norm of these errors. This leads to definition of a
quadratic criterion c such that c = εTε and then to minimization of it. For this, we used a non-
linear least squares based optimization method which usually resolves such multi-dimensional
problems.
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3.5. Jacobian computation

3.5.1. Jacobian of FKM method

The determination of the parameters of the Jacobian Jk,Pfkm is required to calculate the deriva-
tive of the position provided by the FKM w.r.t. the parameters P . The implicit equations of IKM
gives i for each segment corresponding to each measurement configuration k. Now F k,iikm = 0. Dif-
ferentiating the equation for segment i w.r.t. the geometrical parameters, Eq. (3.6), and relative
position of the manipulator χk = [xk, yk, zk], we get

∂F k,iikm
∂Pi
∆Pi +

∂F k,iikm
∂χk

∆χk = 0 (3.14)

Rewriting in the matrix form












∂F k,1ikm
∂P

0 0

0
∂F k,2ikm
∂P

0

0 0
∂F k,3mgi
∂P












∆P +













∂F k,1ikm
∂χk
∂F k,2ikm
∂χk
∂F k,3ikm
∂χk













∆χk = 0 (3.15)

where

∆P = [∆PT1 ,∆P
T
2 ,∆P

T
3 ]
T

∆PTi = [∆Dxi,∆Dyi,∆Dzi,∆θi,∆αi,∆Laxi ,∆Layi ,∆Lbi]

Alternatively,

[Jkχ ]3×3[∆χ
k]3×1 = [J

k
P ]3×24[∆P

k]24×1 (3.16)

If Jkχ is invertible, we obtain

∆χk = Jfkmk,P ∆P (3.17)

where Jfkmk,P = (J
k
χ)
−1(JkP ).

The Jacobian JfkmP for all errors εfkmk with k = 1, . . . , Nc is given by

JfkmP =













Jfkm1,P
...

Jfkmk,P
...

JfkmNc,P













=












−(J1χ)
−1J1P
...

−(Jkχ)
−1JkP
...

−(JNcχ )
−1JNcP












3×Nc×24

(3.18)

3.5.2. Jacobian of IKM method

For the inverse method, a symbolic form of constraint equations εikmi,k is considered. The
Jacobian parameter is easier to calculate in the IKM method compared to the FKM method.
Since the calibration of each segment is independent, the Jacobian parameters εk,Piikm of the
segment i for the configuration k is calculated by differentiating the error εikmk,Pi (a single equation)
w.r.t. the parameters Pi, i.e.

J ikmk,P i =
∂εikmi,k
∂Pi

(3.19)
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For Model 24, the equation corresponding to the derivative of each error k = 1, . . . , Nc for
the segment i is given by

J ikmk,P i =

[

∂εikmi,k
∂Dxi

,
∂εikmi,k
∂Dyi

,
∂εikmi,k
∂Dzi

,
∂εikmi,k
∂θi
,
∂εikmi,k
∂αi
,
∂εikmi,k
∂Laxi

,
∂εikmi,k
∂Layi

,
∂εikmi,k
∂Lbi

]

(3.20)

The Jacobian corresponding to the derivative of all Nc errors ε
ikm
i,k for the segment i w.r.t. the

parameters Pi can be expressed as

J ikmk,Pi =



















∂εikmi,1
∂Dxi

∂εikmi,1
∂Dyi

∂εikmi,1
∂Dzi

∂εikmi,1
∂θi

∂εikmi,1
∂αi

∂εikmi,1
∂Laxi

∂εikmi,1
∂Layi

∂εikmi,1
∂Lbi

...
...

...
...

...
...

...
...

∂εikmi,k
∂Dxi

∂εikmi,k
∂Dyi

∂εikmi,k
∂Dzi

∂εikmi,k
∂θi

∂εikmi,k
∂αi

∂εikmi,k
∂Laxi

∂εikmi,k
∂Layi

∂εikmi,k
∂Lbi

...
...

...
...

...
...

...
...

∂εikmi,Nc
∂Dxi

∂εikmi,Nc
∂Dyi

∂εikmi,Nc
∂Dzi

∂εikmi,Nc
∂θi

∂εikmi,Nc
∂αi

∂εikmi,Nc
∂Laxi

∂εikmi,Nc
∂Layi

∂εikmi,Nc
∂Lbi



















Nc×8

(3.21)

The principle advantage of this method is that the error corresponding to each arm is in-
dependent of the errors obtained on other arms of the robot. The calibration process can be
decomposed into successive parameters P i for identification of each arm. However, the number
of unknown variables are divided by the number of the robot arm (3 for the Delta robot) to
simplify the solution.

4. Simulations

Several simulations have been carried out by varying the number of parameters to test the
effectiveness of the basic methods. For fair comparison, the same measurement configurations
for simulation of the two basic methods are considered. These patterns are generated random-
ly within the workspace of the robot. The inverse kinematics Jacobian associated with these
positions is evaluated for any singularity. The resulting equations are generically independent.
The simulation is based on an optimization algorithm which requires an initial estimate of the
parameters. A uniformly distributed error Pr is added with noise to simulate the nominal pa-
rameters Pr. From these parameters, the calibration methods determine the settings to give
calibration parameters Pc. The solution Pc is insufficient to assess the validity of the calibration.
Therefore, a calibration gain G is defined as

G = 100 ·
‖Pr − Pn‖ − ‖Pr − Pc‖

‖Pr − Pn‖
(4.1)

The calibration gain G closer to 100% indicates a great improvement of parameter estimation,
which means that the method converges to the exact solution, i.e. errors obtained (norm of the
difference between the parameters estimated by calibration and the actual parameters of the
robot) are negligible.

4.1. Simulations without measurement noise

First, the simulation is carried out without considering noise in the measurements. The
initial estimate of the error in the parameters is one millimetre. The results from 8 measurement
configurations demonstrate that the calibration gains are closed to G = 100% for both methods.
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The simulation time using the forward method and the inverse method is, respectively, t =
0.911 s and t = 2.906 s. For errors on initial estimates of one centimetre, the forward method
does not converge at all, and thus the resulting solution is insignificant. This results in a large
numerical instability of this calibration method. On the other hand, the inverse method converges
successfully. The simulation time using the forward method and the inverse method is t = 1.395 s
and t = 3.385 s, respectively.

4.2. Simulations with measurement noise

4.2.1. FKM

First, we added a noise of one micron in the measurements of the position of the end effector
and length and a noise of one hundredth of a degree in the joint angles corresponding to the
calibration simulation for 8 measurement configurations. For an error of one tenth of a millime-
ter, a negative gain is obtained, which means we cannot improve the knowledge of geometric
parameters of the robot (G = −38.54% is the percentage average of the gain on all parameters).
We can improve results by increasing the number of measurement configurations. By doing the
same simulation but with 20, 40 and 60 configurations, the percentage average of the gain on
all parameters of 20%, 38%, 45.38% is obtained with the simulation time of 4.256 s, 5.247 s and
10.945 s, respectively, thus improving the results. For errors higher than 0.1mm, the forward
method provides unsatisfactory results (negative calibration gain of G = −260% with 30.877 s).
The major problem of the forward method is that for a number of parameters to be determined
(24 in our example), the optimization algorithms hardly or even do not converge. Thus, this
method is unreliable and slow. Figure 2 shows an example of the simulation results using FKM
where the number of measurement configurations is equal to 60 and the estimated error on the
parameters is 0.01mm.

Fig. 2. Simulation result based on FKM: (a) gain of calibration of each parameter, (b) evaluation test of
the forward method using the error in the operating points before (blue points) and after (red points)

the calibration

4.2.2. IKM

Based on the simulated method without considering the measurement error, we can deter-
mine exactly the geometric parameters of the robot with a number of configuration Nc > 7. For
relatively low measurement errors (0.001mm and 0.001 degrees) and errors on large estimates
(about a centimeter), the results show that the parameters are significantly improved (calibra-
tion gain close to 100%). For errors on the initial estimate of one centimeter (the error here is
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ten times higher compared with FKM), the convergence of the inverse method is observed with
G = 99.9% in 3.385 s. The results obtained using the Levenberg-Marquardt and Gauss-Newton
approaches are similar. For measurement errors in the order of 1mm and 0.01 degree on the
parameters, the results show that 8 configurations are not enough to improve the parameters
estimation where the calibration gain obtained is G = −6.17% in 2.578 s. It is therefore neces-
sary to increase the numbers of measurement configurations to 20, 40 and 60, with the resulting
percentage average of the gain on all parameters found as 62.54%, 87.58%, 86.5% in simulation
times of 5.781 s, 8.877 s and 11.907 s, respectively. Comparing the inverse method with the for-
ward one, it is found that the former is more robust to measurement errors and is faster and
has a greater radius of convergence. Figure 3 shows an example of the simulation results using
IKM where the number of measurement configurations is 60 and the estimated error on the
parameters is equal to 1mm.

Fig. 3. Simulation result based on IKM: (a) gain of calibration of each parameter, (b) evaluation test of
the inverse method using the error in the operating points before (blue points) and after (red points)

the calibration

5. Discussion

In this study, we adapted traditional methods used for serial robots on Delta parallel ro-
bot. The simulation allowed us to highlight the benefit of the inverse method compared to the
forward method. In the inverse method, the calibration gains near 100% are achieved thereby
demonstrating significant improvement of the parameters until convergence to the exact solu-
tion. However, in comparison with the forward method, the gain observed in this case is 48.27%.
The subdivisions of the calibration parameter identification chain by chain of the joints and the
form of the equations of formal constraints improve the algorithm convergence speed and its
robustness. The simulation results also highlighted challenges faced by the numerical calibra-
tion methods. This is primarily due to convergence problems in optimization methods, which
provide a solution that minimizes the criterion but does not achieve the desired outcome. The
key reason behind this challenge is measurement noise that modifies the equations of constra-
ints. The resulting solution considers an error function of measurement noise, types of methods
used and constraints, and the number and quality of measurement configurations. If this error
has the same order of magnitude as the initial estimated optimization procedures, we cannot
guarantee the quality of calibration. To deal with the number of parameters to be taken into
account and to improve the accuracy of results, we have to increase the number of measurement
configurations. However, we have observed the limits where the results do not improve more
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than 50 considered positions (see Fig. 4). Other possible strategy involves taking into account
the distribution of noise in the measurements and to choose the measurement configurations.
The proposed solution seems to offer very interesting perspectives. It is therefore not necessary
to consider further measurement configurations.

Fig. 4. Influence of measurement configuration on the results of the inverse method in the presence of
errors on the parameters of 0.1mm/degrees for lengths/angles and with amplitude noise position

measurements equal to 1µm

6. Conclusion

In this research, the calibration methods used traditionally for serial robots have been pro-
posed for parallel robots. Considering an example of ’Delta’ robot, the simulation results highli-
ghted over-performance of the inverse method compared to the forward method. The proposed
subdivision concept of the calibration parameters (i.e. segment by segment identification) and
the constraints of the inverse method equations improve the convergence of the algorithm to-
ward the optimal solution. The future work can be related with going beyond the optimization
procedures and focusing on the adaptation tools with distributed measurement errors taken into
consideration.
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