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ABSTRACT The domain of Robotics is a good partner of renewable energy and is becoming critical
to the sustainability and survival of the energy industry. The multi-disciplinary nature of robots offers
precision, repeatability, reliability, productivity and intelligence, thus rendering their services in diversified
tasks ranging from manufacturing, assembling, and installation to inspection and maintenance of renewable
resources. This paper explores applications of real robots in four feasible renewable energy domains; solar,
wind, hydro, and biological setups. In each case, existing state-of-the-art innovative robotic systems are
investigated that have the potential to create a difference in the corresponding renewable sector in terms of
reduced set-up time, lesser cost, improved quality, enhanced productivity and exceptional competitiveness
in the global market. Instrumental opportunities and challenges of robot deployment in the renewable sector
are also discussed with a brief case study of Saudi Arabia. It is expected that the wider dissemination of the
instrumental role of robotics in renewable energy will contribute to further developments and stimulate more
collaborations and partnerships between professionals of robotics and energy communities.

INDEX TERMS Applied robotics, automation in renewable energy, mobile robots, robotic manipulators,
solar PV module, wind turbines.

I. INTRODUCTION
Human civilization perpetually depends on the energy that
has become a fundamental entity behind social, scientific and
economic developments. Thanks to advancements in various
technological avenues, reliance and dependence on fossil fuel
are getting reduced due to limited availability, growing needs
and environmental concerns [1]. Therefore, since the last two
decades, research and innovation in the renewable energy
sector have attracted the utmost attention of the scientific and
engineering communities. Primarily driven with economic
growth and climate mitigation [2], it is anticipated that 100%
of renewable energy may be available by 2050 [3]. This
huge target can be achieved if and only if novel and innova-
tive development, adaptation, commercialization and deploy-
ment technologies are presented by the scientific community
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to strengthen further the applied research associated with
the renewable energy sector [4]. Consequently, there is an
immense need to critically analyze the performance and via-
bility of the existing processes to automate these using recent
cutting edge technologies.

Robotics is an applied domain whose radius of applications
is getting incredibly wider owing to its multi-disciplinary
nature [5]. Robotics engineering is now being acknowl-
edged as a dedicated branch of engineering [6]. Robots are
extensively used in agriculture [7], food [8], [9], medical
[10]–[14], cognition [15]–[18], nuclear [19], space [20]–[22],
aerospace [23]–[25], under-water [26], [27], industrial
[28], [29], oil and gas [30], textile [31] and in other tracking
[32], [33] applications. International Federation of Robotics
(IFR) is considered as a primary resource of providing data
on the worldwide use of robots. IFR classifies the robots into
two broader categories; industrial robots and service robots.
In autumn 2019, IFR released the latest statistics of robots
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FIGURE 1. Global annual supply of robots for industrial setups during
2009-2018 and prediction until 2022 [34].

stating a 6% increase in global robot installations in 2018with
a record sales value of 16.5 billion USD [34]. It is reported
that a greater trend toward automation is the primary reason
for the tremendous increase in the demand for industrial
robots particularly since 2010. The speculated average yearly
growth rate of industrial robots during 2019-2021 is 14%,
with new installations of around 2.1 million setups round the
globe. The estimated annual supply of industrial robots with a
forecast in the coming years are presented in Fig. 1. Automo-
tive, electrical/electronics and metal/machinery sectors are
the top three industries w.r.t. deployment of industrial robots.
Statistics for robot usage in the renewable energy sector is not
available as of to date.

This paper is related to applications of robotics in the
renewable energy domain. The relationship between robotics
and renewable energy can be described in two folds; renew-
able energy resources can be used to meet the power require-
ments of the robots [35] while on the other side, robots find
enormous potential in renewable energy technologies [36].
The former aspect is reviewed in detail by the author in [37].
It is highlighted that the power system of a robot can be based
on solar [38], [39], wind [40], [41] and biological energy
[42], [43]. In contrast, the present review deals with the later
aspect. Robots have the potential to completely transform the
traditional methods in the renewable energy sector [44]. They
can precisely perform common industrial tasks like machine
tending [45], grasping [46], cutting [47], drilling [48], pol-
ishing [49], painting [50], welding [51], assembling [52],
palletizing [53], packing [54], moving [55], cleaning [56],
sorting [57] in addition to automating assembly lines [58]
and pick and place operations [59]. Most of these operations
are essentially required in the renewable energy industry, e.g.
during manufacturing, assembling, installation, inspection
and maintenance of panels and wind turbines. In combination
with computer vision [60], image processing [61] and control
[62], [63], robots offer intelligent and automated solutions to
improve quality and enhance productivity with adaptability
and efficiency at reduced costs [44] and thus demonstrate
a central role in making renewable energy resources more
competitive.

The paper is structured as follows; Section II discusses fun-
damental concepts behind robotic manipulators. Section III

and Section IV respectively classify robots for solar and
wind sectors and present recent and prominent state-of-the-
art developments. Section V deals with the contributions of
robots in other domains of renewable energy, namely hydro
energy and bio-energy. Section VI briefly outlines the chal-
lenges and explores further opportunities for robotics in the
renewable energy sector. A brief case study of Kingdom of
Saudi Arabia (KSA) is presented in Section VII. Finally,
Section VIII comments on the conclusion and highlights the
potential benefits of this comprehensive review.

II. KEY CONCEPTS BEHIND ROBOTIC MANIPULATORS
Robots can be generally classified into manipulator-type
robots [64] and mobile robots [65], [66]. The former category
is more common in the renewable energy sector. Understand-
ing of the fundamental concepts behind robotic manipulators
is important to adapt a general-purpose robot for a specific
application [67]. These concepts include but are not limited
to [68]; kinematics, dynamics, control, trajectory planning,
cost, workers’ safety, ease in Operation and Maintenance
(O&M), etc. Some of these concepts are detailed below:

FIGURE 2. Robot categories (a) Serial stage (b) Parallel Kinematic
Manipulator (PKM).

A. KINEMATICS AND DYNAMICS
A robotic manipulator can be kinematically based on
serial or parallel mechanisms. The serial robots offer a signif-
icant percentage of robotics-based solutions in the renewable
energy sector (See Fig. 2a) [69]. However, the robots with
Parallel Kinematic Manipulator (PKM) structure (Fig. 2b)
have been recently introduced in the energy sector.

An example of a platform centered on a 6-DOF (Degree Of
Freedom) serial link articulated robotic manipulator is shown
in Fig. 3. The framework named as AUTonomous Articulated
Robotic Educational Platform (AUTAREP) has been devel-
oped for educational and research purposes. The actuation
system consists of six precise DC geared servo motors while
the sensing system comprises of position encoders, a force-
sensing resistor and an on-board camera. Applications of
the platform implementing frequently encountered industrial
tasks, e.g. pick and place and sorting are reported in [70]
while software and hardware architectures of the platform are
presented in [71].

On the other hand, PKM is an ideal choice for light-weight
applications with the robotic end-effector offering low inertia
and high stiffness and high payload capacity. However, the
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FIGURE 3. AUTAREP – An open-source pseudo-industrial framework [70].

workspace envelope of a PKM is relatively smaller when
compared to serial manipulators [72]. A popular example of
PKM is FlexPicker, also called as ‘Delta’ robot [73]. The
robot accounts for 3-DOF configuration restricted to move
only in translation.

One of the preliminary steps to realize a robotic system
in an applied context is the modeling of its kinematics and
dynamics behavior [74]. Modeling can be based on Denavit-
Hatengerg (D-H) parameters or other representations, includ-
ing Hayati-Roberts (H-R), screw theory, geometrical, Lie
Algebra, etc. A detailed review of the modelling of robotic
manipulators is reported in [75]. The forward kinematics
of the AUTAREP manipulator is derived in [76], while the
inverse kinematic model is reported in [77]. Unlike serial
manipulators, the direct solution in PKM cannot be derived
analytically. For a PKM, a vector loop equation is formulated
for each limb considering a closed-loop kinematic chain.

The extension of a robot’s kinematics is the develop-
ment of dynamic models mainly used for acceleration analy-
sis [78]. The dynamics equations can be formulated based on
several methods like Newton-Euler, Euler-Lagrange, recur-
sive Lagrange, D’Alembert principle and Kane’s equations.
The first two approaches are more commonly followed.
The dynamic model of the AUTAREP manipulator based
on the Euler-Lagrange method is reported in [79]. For PKM,
explicit equations representing system dynamics are compli-
cated due to the closed kinematic chain in the manipulator.
One way to build a computationally inexpensive model is to
use the principle of virtual work.

B. CONTROL
Analysis and investigation of robotic manipulators in an
applied context has highlighted the immense need for com-
plex strategies for control and dexterity [80]. Systematic
reviews on current and emergent control strategies for robotic
manipulators are reported in [81]–[83]. Since the last three
decades, industrial processes have been classically controlled
based on linear control laws [84]. Proportional Integral
Derivative (PID) implementation of AUTAREP is reported
in [85] while Linear Quadratic Regulator is presented in [86].
The research community has lately applied advanced control

FIGURE 4. Step responses of a linear control law (Computed Torque
Control CTC with PID) and a modern control law (SMC) depict that later
demonstrates better tracking performance in the presence of
disturbances [79].

strategies based on modern and nonlinear control laws [87]
on multi-DOF robotic manipulators to deal with uncertain
parameters and disturbances [88]. The control laws based
on Sliding Mode Control (SMC), Passivity Based Control
(PBC) [89], Model Predictive Control (MPC) [90] and [91]
have been implemented on AUTAREPmanipulator. A typical
response is illustrated in Fig. 4, which shows the ability of a
non-linear control technique to handle disturbances.

III. ROBOTS IN SOLAR ENERGY SECTOR
Robots find enormous potential in production, handling,
installation, inspection and maintenance operations in the
solar sector [92]. In a typical solar system manufacturing,
robots can automate various processes involving silicon mod-
ules, silicon ingot, solar cells and silicon wafers. The role of
robots in the solar energy sector can be broadly categorized
into two domains; (a) Handling cells and wafers and (b)
installing, assembling and performing O&M of solar panels.

A. ROBOTS FOR HANDLING CELLS AND WAFERS
Robots are best suited to handle silicon wafers and solar
cells owing to their ability to handle delicate components.
Compared to the performance achieved with manual proce-
dures, robots assemble various solar components in a precise
and gentle fashion since they can accurately demonstrate
user-defined speeds while ensuring reliability and repeatabil-
ity. A prominent example of efficiency improvement in solar
cells using the application of advanced technologies is ‘p-type
monocrystalline perc solar cell’ by a company Jinkosolar,
which proclaims itself as the largest manufacturer of Photo-
voltaic (PV) arrays. Marking a new world record, the com-
pany improved the efficiency of the cells from 22.78% to
23.45% with the help of technologies like mobile robots,
intelligent mobile devices and the Internet of Things (IoT)
in the manufacturing chain.

Various robots have been reported in the scientific commu-
nity for cell and wafer handling. IRB Flex Picker, by ABB
Inc., is an industrial robot used for sorting and handling of
silicon wafers and solar cells. It is also applied for loading
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FIGURE 5. Commercial robots for cell/wafer handling [92], [93] (a) IRB
360 for sorting of wafers and loading/unloading of cells (b) IRB 4600 for
pelletizing/depolarizing and loading/unloading applications.

and unloading of solar cells production units (Fig. 5a) and
is considered as the fastest robot in terms of executing pick
and place cycles per minute [92]. It offers maximum han-
dling of 15g at 200 cycles/min. The cycle time depends
upon the tool, gripper, path radius, etc. It is an inverted
mounted robot with 120-145Kg weight having a payload
capacity up to 8Kg. Another functionally similar robotic
manipulator used for pelletizing/depolarizing, handling and
loading/unloading applications is IRB 4600 (Fig. 5b). It can
handle heavy payloads of up to 20Kg with flexible mounting
capability. Another prominent name of the global mechatron-
ics solution provider is Stäubli Corporation, which offered
4-axis and 6-axis robotic manipulators to handle all crys-
talline (c-Si) production processes. Examples of the robotic
arms include ultra-precise 4-axis FAST picker TP80, SCARA
(Selective Compliance Assembly Robot Arm) TS and 6-axis
TX manipulator.

Cutting of solar cell modules and edge trimming is
another important step in the production of solar panels. IRB
6640 series of ABB industrial robots offer high precision to
achieve this step in the shortest cycle time. This series of
robots provide a reach from 2.55m to 3.2m with a handling
capacity from 130Kg to 235Kg. Further, for the preparation of
ribbons and soldering of solar cell modules, IRB 1600 series
of ABB robotics is an efficient deal. While ensuring quality

and reliability, the robot offers 1.2m to 1.45m reach and can
handle 6Kg to 10Kg payloads with almost up to half-cycle
time than other competitors [92], [93]. Adept Robotics offers
a similar solution for solar panel production. Overheadmount
robot, Quattro s650, is a parallel robot that offers the largest
work envelop and handles solar cells at the highest speed with
minimum breakage level [94]. It can handle a payload of up
to 6Kg. Adept Inc. further facilitates solar panels’ cutting,
sorting, assembly, testing, loading/unloading, and inspection
with its Viper and Cobra modules [95].

In an attempt to strengthen the manufacturing of solar cell
arrays with a focus on the space industry, researchers from
the Robotic Institute of Shanghai Jiao Tong University have
developed a robotic platform [96] to automate various pro-
cesses. The platform can auto-dispense and can auto-laydown
with a three DOF mechanism (see Fig. 6) to handle the large
sizes of arrays with high precision. The system effectively
takes care of adhesive thickness, avoids bubbles formation
and offers stainless production.

FIGURE 6. CAD model of a robotic system for auto-dispensing and
auto-laydown of solar cells for space industry [96].

PV cells are covered with a protective glass coating, whose
capability to generate electricity is constrained if dust accu-
mulates on the modules [97], [98]. A study reported in [99]
explored the relationship of dust thickness and solar intensity
on the power output of a PV module. The experimental
setup consists of a fixed tilt angle of 16◦. The results in the
form of power output corresponding to solar intensities of
400 W/m2 - 700 W/m2 for various dust thickness were pre-
sented. It was noticed that degradation in the PV performance
decreased with the increase in solar intensity. The reduction
in power output was negligible at 700 W/m2 compared with
a 25% reduction at 400 W/m2. Another study [100] inves-
tigates the effect of varying tilt angles on the transmittance
of plates due to atmospheric dust for around one month.
Figure 7 presents the results of this experimental study show-
ing eight different degradation curves corresponding to tilt
angles from 0-90◦ w.r.t horizontal. The results dictate that
fractional degradation in transmittance is a strong function of
dust accumulation and tilt angle in addition to the exposure
period and climate conditions of the site. Other recent studies
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FIGURE 7. Effect of dust on the transmittance of PV glass plates versus
the number of days of exposure to dust [100].

TABLE 1. Comparison between water wash and robotic wash cleaning of
solar panels (↑ indicates ‘High’, ↓ indicates ‘Low’ and – indicates Nil).

exploring the degradation rate of transmittance as a result of
deposition of dust and various contaminations are reported
in [101]–[107].

Rain helps in cleaning the panel, provided they are slanted
downward. However, in desert regions, sand and dust are
accumulated on the surfaces [108]. Cleaning by human labor-
ers is not a viable solution due to the remote location of
panel facilities and harsh weather. Table 1 presents a com-
parative summary of cleaning strategies based on water-
wash and robotic mechanisms. Autonomous robots with
onboard state-of-the-art sensor technology have the potential
to replace the traditional method of manual cleaning of the
modules. The choice of a particular solution depends on
the application domain, geographical terrain, desired perfor-
mance and economic factors [109]. A comprehensive study
reported in [110] mentions that automatic cleaning is an
optimal choice for panel cleaning on Earth as well as on
Mars.

Figure 8 illustrates a robotic cleaner conceptualized and
realized under the supervision of the author. It is a custom-
designed and indigenously developed wheel-based mobile
robot equipped with a roller brush, ducted fan and blower fan.

FIGURE 8. Robotic cleaner (a) Schematics (b) Developed prototype [112].

FIGURE 9. Experimental results demonstrating the cleaning effect on the
power generation ability of a solar panel [112].

The cost of the cleaner is as low as 50$. Figure 9 demonstrates
the potential of the robot in cleaning PV modules.

Recently, mobile robots are being equipped with a multi-
DOF robotic arm for cleaning of PV panels. A prominent
example is of ‘Solar Panel Cleaning Robotic Arm’ (SPCRA),
which is a 4-DOF mobile manipulator with two prismatic
and two revolute joints [111]. A single unit containing a
wiper, an air blower and a water sprinkler is housed on the
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TABLE 2. Energy consumption of SPCRA for one-time cleaning [111].

TABLE 3. Popular solar panel cleaning robots.

end effector. Experimental trials conducted on 50W solar
panels demonstrated efficiency enhancement of 9.1%, which
can be further improved to a significant extent using modules
of a higher rating. Table 2 presents the results of the energy
consumption of SPCRA for a one-time cleaning operation.

Other examples of robots cleaning solar panels include
GEKKO, E4, RAYBOT, etc. GEKKO is a mobile robot that is
claimed to be four times more efficient compared to manual
cleaning. The robot can steep rooftops of up to 45◦ and is
teleoperated by a joystick. Unlike GEKKO, another robot E4
performs cleaning operation without water using controlled
airflow and microfiber to flick away soil. The gravity
ensures that soil is wiped in the downward direction and

off-panel rows. The robot has a dedicated onboard solar
module to meet the power requirements. Thanks to the World
Wide Web, the robot can be controlled anywhere from the
globe and weather data is available from onboard sensors.
Another autonomous robot based on dry-cleaning has been
designed byMiraikikai Inc. Japan. It is a small wheeled robot
that is powered with batteries and is equipped with advanced
sensory mechanism and rotating brushes to remove sand and
dust. RAYBOT is also a dry-cleaning robot presented by
Ecovacs- a household robotic innovator. It is essentially a
Roomba robot [113] equipped with brushes, vacuums and
a blower to wipe off sand. The robot has been successfully
tested in China and California before its launch. Table 3 lists
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FIGURE 10. MOMO Robotic System – Handling of PV modules [120]:
(a) Transportation (b) Assembly.

notable solar panel cleaning robots. Other examples are
reported in [114]–[118]. Interested readers are referred to a
recently conducted review [119] reporting state-of-the-art on
robots for cleaning PV panels.

B. ROBOTS FOR INSTALLATION, ASSEMBLING AND
MAINTENANCE OF SOLAR PANELS
Robots are now becoming an integral part of the solar panels
industry. Due to the complex design of the panels and associ-
ated stringent requirements in terms of precision, consistency
and delicate nature, robots are a natural choice.

Robotics community has offered numerous solutions to
facilitate installation, assembly and O&M of solar pan-
els. German companies Kiener Maschinenbau GmbH and
PV-Kraftwerker jointly realized a solar plant installation
robotic system named MOMO, which provides efficient pro-
ductivity and offers reduced risk factors [120]. The system,
shown in Fig. 10, offers cost-effective assembly, mainte-
nance, cleaning and dismantling of solar plants. It can be
operated in difficult terrains and weathers for extended oper-
ational periods. It is equipped with a gripper for automatic
assembly of PV modules with the capability of numerous
cycle repetitions. The robotic system can stand-alone cover
70Km of distance during an assembly operation.

KUKA Systems has offered state-of-the-art production
lines for solar panel manufacturers (Fig. 11). The pio-
neer assembly line installed in 2011 in Canada facilitated

FIGURE 11. A KUKA robot assisting in the production of solar
panels [123].

trimming, framing, testing and packaging of PV panels
employing three automated lines with five robots for each
line [121]. Such assembly lines take care of all production
stages of solar panels of different types and dimensions.
Besides, KUKA offers a whole range of robotized solutions
for a variety of solar module manufacturing, cell and wafer
handling, lamination, crystalline module simulation, etc.

National Renewable Energy Laboratory of the US, in coop-
eration with Spire Corporation, has completed a project
for automated production line for solar modules during
2003-2007 namedNREL’s PhotovoltaicManufacturing R&D
(PVMRD) [122]. The project comprising of three phases
included the realization of large-area PV arrays (5ft by 12 ft),
development of automated production tools for large scale
manufacturing and design of solar modules simulator.
Robots with various configurations were designed, tested and
employed for the project. An operational scenario is sketched
in Fig. 12, where a pair of SCARA robots is used to install
bus ribbons and diodes. The complete module is processed in
three parts using a conveyor belt mechanism so thatmoderate-
sized robots can be used.

FIGURE 12. String buses operation inspired by the use of two SCARA-type
robotic manipulators [122].

Robots are serving the installation and construction of solar
PV plants making the process safe, fast andmore economical.
Figure 13a shows a mobile robotic platform installing a solar
panel conceived by a German company Gehrlicher [124].
With the ability to install solar panels in all weather
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FIGURE 13. Robots for installation and construction of PV panels
(a) Gehrlicher’s robot [124] (b) Alion’s automated busing system [125].

conditions, the robot conveniently works with ground-
mounted panels. Another automated system for O&M of
solar PV plants by Alion Energy is illustrated in Fig. 13b.
The system has a rover that installs panels. A solar-charged
battery-powered and mobile-controlled cleaner named ‘Spot’
performs wet or dry cleaning.

FIGURE 14. Comparison of power generated by a static panel and a
moving panel [133].

Solar tracking systems find enormous potential in solar
energy applications, as highlighted in [126]–[130]. Tracking
of the panels is important since the amount of energy har-
nessed by a panel heavily depends on its orientation w.r.t. the
sun [129], [131]. Also, the tracker helps in uniform distri-
bution of solar flux over the surface of the collector [132].
Figure 14 presents a typical comparison of power generation

FIGURE 15. Monthly output energy (in kWh) of a robotics-based solar
tracker [135].

profiles in the case of static and moving panels. A significant
difference in power generation capability in both cases is
evident particularly in off-peak timings of sun.

Robots can offer a cost-effective and efficient solution for
solar tracking along two dimensions [128], [134]. A study
reported in [135] presents an optimized design of a solar
tracking system based on a 2-DOF robot with a parallel
mechanism. The constrained optimization procedure avoids
singularities and collisions between links/joints to permit
large operational workspace. Based on the universal and
spherical joints, the mechanism can move within the angle
range 0◦ to 90◦ in elevation and −90◦ to 90◦ in azimuth.
Figure 15 presents the experimental results in the form of
monthly energy assessment compared to fixed solar panels
with tilt inclinations of 0◦ and 30◦. An overall improvement
of 17.2% in energy production is reported using the proposed
robotic system compared to the solar panel placed at a fixed
inclination of 30◦. Another automated tracking system cen-
tered on a mobile robot (QBotix) is reported in [136]. With
an electricity consumption of as low as 30 cents/day, the robot
is claimed to have an average ability to adjust five solar
panels/min. This idea can be extended to multiple mobile
robots, which can also function in a coordinated manner for
solar tracking of various arrays [137]. Other studies reporting
solar tracking systems include [138]–[140].

Furthermore, inspection and maintenance activities of
solar plants are also being rendered by robotized systems.
MAINBOT [141] is one such platform designed for large
industrial plants. The objective was to develop ground robotic
vehicles and climbing robots with diversified sensory and
manipulation capabilities to navigate in plants following hor-
izontal and vertical paths respectively. The prototype of the
robot (shown in Fig. 16a) has been successfully demonstrated
on a cylindrical-parabolic collector type solar plant (Fig. 16b)
and central tower plant (Fig. 16c). Results of leakage detec-
tion and prevention are reported in [142]. As an alternative to
climbing robots, recently Unmanned Aerial Vehicles (UAVs)
[143], [144] are being used for inspection of solar plants.
One such advancement is reported in [145], [146], where a
UAV and a thermographic sensor are used for inspection of a
Concentrated Solar Power (CSP). Field trials were performed
at an altitude of 20, 40, 60, 80, 100 and 120 m above ground
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FIGURE 16. MAINBOT [147] (a) Prototype with mock-up (b) Parabolic
solar plant used for validation (c) Tower-type plant.

level with cruising speeds of 5, 7 and 10 m/s. Experimental
results proved the feasibility of using UAV to perform real-
time inspections for detecting anomalous absorber tunes.
Table 4 presents the results in the form of the percentage
improvement in UAV deployment compared to the manual
inspection. Depending upon the altitude and cruising speed,
the improvement range in inspection time using a UAV is
reported from 85.6% to 98.0%.

IV. ROBOTS IN WIND ENERGY SECTOR
Wind is another superfluous resource that has been pro-
fessed and explored to produce alternate energy [148].

TABLE 4. %Age Improvement in inspection time of CSPs using
a UAV [146].

FIGURE 17. Robots painting wind turbines [165].

Wind power can be titled as one of the ancient companions
of human civilization, like solar power [149]. A wind tur-
bine converts the kinetic energy of the wind into mechani-
cal power [150]. The resulting mechanical power can either
be used directly or can be converted into electricity as
per requirements. A typical turbine consists of a genera-
tor, main bearing, a rotor, a gearbox and shafts correspond-
ing to low-speed and high-speed [151]. A housing called
nacelle houses all these components. This technology has
now been advanced to a reliable level of sustainable elec-
tricity generation source [152]. However, the cost of the
technology is a point of concern [153] though technological
advancements have substantially reduced the constructional
as well as operational costs of wind turbines [154]. The
key objective of turbine control is to optimize the extracted
power. Techniques for turbine control include; blade angle
adjustment, turbine rotation adjustment and speed control.
Studies investigating the control of wind energy systems are
reported in [155]–[157], while control of wind turbines has
been reviewed in [158]–[160].

Multi-DOF robotic manipulators with large link lengths
are well-suited to handle wind turbines and towers. Robots
deployment has addressed various manufacturing challenges
by devising joining and cutting technologies and has offered
lower-cost production of wind tower equipment [161]. Intel-
ligent robotic tools meet the drilling requirements of surfaces
of the nacelle. Based on vision and force control laws, robots
ensure accurate drilling, mating and alignment. Also, robots
safeguard against inadequacies on surfaces of blade turbines
by assuring adequate surface preparation and thus can assist
in sanding applications. Moreover, robots are being used for
painting towers and nacelles of wind turbines (Fig. 17).
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FIGURE 18. Conceptual model of a wire-driven robot working in an
offshore wind turbine [166].

Wind farm productivity, reliability and performance
depend on monitoring, inspection and fault diagnosis of
the turbines [162], [163]. Inspection detects damage due to
bounding defects, air inclusions, delamination and lightning
strikes and cracks. Inspection of blades of a wind turbine
using traditional methods is a time consuming and dangerous
task [164]. As in the solar PV sector, robots are also being
used for inspection, monitoring and O&M of the turbines.
Figure 18 presents a simplified conceptual model of a wire-
driven robotic system intended for O&M of an offshore wind
turbine.

General Electric presented a track-based remote-controlled
robot (Fig. 19a) that can climb 300 feet [167]. Using an
onboard vacuum pump, the robot sticks to the wall of a wind
turbine by removing the air between the machine and the
turbine. The sensory system consists of an on-board cam-
era for visual inspection of blades. Another robot [168] for
monitoring the structural integrity of the insides of blades
has been proposed by researchers at London South Bank
University (LSBU). The blade inspection is based on axial
X-ray tomography with a scanner whose X-sectional dimen-
sions must be 1mx2m to envelop the blade completely. As a
concept demonstrator, a small scaled prototype of the robot
(Fig. 19b) has been developed that can perform three types
of climbing motion patterns; up/down, spiraling and rotation
about the circumference. Fraunhofer Institute for Factory
Operation andAutomation, Germany developed a novel wire-
drive robot (Fig. 19c) for inspection of onshore and offshore
turbines of any size [169]. The project, named as RIWEA,
was intended to design an autonomous robot that uses four
ropes to move up and down. The robot uses infrared radiator
and ultrasonic sensor, thermographs and images acquired
from a high-resolution camera for inspection of bonded spar
joints, leading edges and trailing edges.

Inspection using aerial vehicles is also getting attention
in the scientific community [170]–[172]. Due to their high
mobility and diversified sensing capability, the aerial vehicles
can inspect the structures faster. Figure 20 shows a conceptual
design of a micro aerial vehicle type wall-climbing robot.
A two-phase approach given in Figure 21 can be realized to

FIGURE 19. Climbing robots for inspection of wind turbines: (a) GE robot
[165] (b) LSBU robot with mockup [168] (c) RIWEA project [167].

FIGURE 20. Conceptual design of a micro aerial vehicle type wall
climbing robot [172].

achieve precision in the inspection task while still ensuring
high speed. At first, ‘macro inspection’ is performed to find
an approximate damaged area using a thermographic camera
mounted on an aerial vehicle flying in the vicinity of the
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FIGURE 21. Levels of inspection for wind turbines [172]: (a) Macro
inspection (b) Micro inspection.

blades of the turbine. This area is then thoroughly explored
in the second phase of ‘micro inspection’ for precise local-
ization of the damage location.

FIGURE 22. Arrangement of antennas for radar-based inspection [177].

Another emerging concept for continuous structural
health monitoring of wind turbines relies on millimeter-
wave and terahertz technology and employs radar tech-
nology [173]–[176]. The central idea is to place both the
transmitter (TX) and receiver (RX) antennas on the tower
and then using the TX antenna to radiate waves towards the
blades of the rotor. The automated and non-contact inspection
of the blades is based on the principle of inverse synthetic
aperture radar exploiting the rotational motion of the turbine.
All blades can be inspected in this way by mounting an array
of sensors. Figure 22 shows a typical arrangement for a radar-
based inspection strategy. Experimental results for damage
detection at two different frequency bands are illustrated

FIGURE 23. Experimental results of damage detection in blade-tip
sample at [174]: (a) 24 GHz (b) 35 GHz.

in Fig. 23. It is concluded that damage quantification is better
done at the 35 GHz band.

Going beyond inspection, Japanese researchers developed
a novel robot for the repair of the leading edge of the
blades [178]. The novelty of the robot lies in its smaller size
and ease in control to perform contact work. The vertical
motion is realized using an on-board winch system that con-
siders blade as a rail. A rope can also be used for landing/
take-off of the robot-assisted by an operator on the ground.
Images acquired from an on-board camera are viewed using
smart glasses worn by the operators. Experimental trials
demonstrated that the proposed system (Fig. 24) can reason-
ably move on the blade of the wind turbine. Other notable
research works highlighting the instrumental role of robots
for O&M of wind turbines include [166], [179]–[181].

The blades of wind turbines get contaminated over time
due to dust, ice, oil, marine salt, mosquitoes, flying plank-
ton, etc. Experimental studies investigating the performance
deterioration due to contaminations on the blade surfaces are
reported in [182]–[185]. Figure 25 shows a typical power
curve for a 300kWwind turbine. It is evident that the contami-
nation significantly affects the power generation capability of
the turbine particularly after three months.

Cleaning approaches can be broadly categorized into man-
ual, semi-automatic, or robotic-based autonomous solutions.
Table 5 presents a comparative summary of these approaches.
Manual cleaning of blades involves at least three human
personnel and takes about four hours for cleaning each blade,
thereby necessitating wind turbines to keep on halt during
cleaning operation [186]. Also, manual procedures can only

174908 VOLUME 7, 2019



J. Iqbal et al.: Robotics Inspired Renewable Energy Developments: Prospective Opportunities and Challenges

TABLE 5. Comparison of various approaches for cleaning of wind turbines blades [187].

FIGURE 24. System overview of a robot for inspection and repairing
blades of a wind turbine [178].

be conducted only in the absence of blowing wind. An alter-
nate solution [187] has been proposed by installing a water
hose on the pillar and then spraying water with the detergent.
This method also suffers from limitations since it requires
a pump to uplift water. Robotic vehicles with an ability to
climb have the potential to offer an optimal solution to clean
the blades by saving time, cost and efforts while ensuring
safety. Figure 26 illustrates one such autonomous robot [187]
equipped with a water jet and brush for cleaning. Water in
the tank is limited to 350 liters. The control system is centered
on a Programmable logic controller which synchronizes three
other microcontrollers.

Table 6 summarizes the role of robotics in wind farms. It is
evident that manufacturers of wind energy systems incorpo-
rate robotic-based automated solutions in both the fabrication
and operation phases.

In contrast to energy generation using conventional tower
mechanism, the last decade witnessed a rapidly evolving

FIGURE 25. Effect of dust on the power curve of a typical wind
turbine [182].

FIGURE 26. Blade cleaning robot [187].

class of airborne energy systems to capture high altitude
wind power [188]. Figure 27 illustrates the various types of
aircraft/kite used for energy generation. The most common
way of generating airborne wind energy is based on power
kites. The kites are tethered aerodynamic devices that can
be automatically controlled for launching, maneuvering and
landing using robotics and automation technology. The fac-
tors that need to be considered while designing a power kite
include; line length, wingspan, robustness, efficiency, stabil-
ity and manufacturability. The moving light-weight structure
consists of airfoils and lines. The operational principle of a
pumping kite system consists of two main phases; initially,
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TABLE 6. Applications of robotics in wind energy sector.

FIGURE 27. Various types of kites/aircrafts for airborne energy
systems [199]: (a) LEI SLE (Leading Edge Inflatable, Supported Leading
Edge) Kite (b) LEI C-Kite (c) Foil Kite, design from Skysails (d) Semi-rigid
wing (e) Glider, design from Ampix Power (f) Swept rigid wing, design
from Enerkite.

the kite is reeled out while it is moving high upward in cross-
wind direction following a similar trajectory as number ‘8’.
The lines transfer mechanical power to the heavy on-ground
equipment where this power is converted into electrical
power. The second phase consists of depowering the kite,
steering it to zenith and reeling in.

Table 7 presents a comparison of power generation using
traditional wind towers and power kites. It is highlighted
that meaningful use of kites depends on its control and
automatic adoption to changing wind conditions. Various
nonlinear and optimal control laws have been proposed by
the scientific community for winch control and flight-path
control to ensure stable operations of power kites. A nonlinear
MPC to maximize the energy obtained by the kite is reported
in [189] with an implementation of the control law based
on approximation of set membership function. The derived
kite generator model considers gravitational forces, apparent
forces and kite aerodynamic forces. Experimental results con-
sisting of measured generated power and length and speed
of line demonstrated successful capturing of wind energy up
to 500-700m.

Optimal control techniques proposed for non-linear sys-
tems having state constraints can find potential in control of
powered kites. One of such techniques is reported in [190],
which proposed an adaptive time-mesh algorithm based on
refinement criteria. The criteria use the information of the
adjoint multipliers and involve multi-level refinement unlike
earlier works [191], [192] and validates the results by apply-
ing the Maximum Principle of Pontryagin.

For more details, interested readers are referred to stud-
ies reported on modeling [193], control [194], optimiza-
tion [195], path planning [196], economic analysis [197] and
technologies [198] associated with airborne systems.

V. ROBOTS IN OTHER RENEWABLE ENERGY SECTORS
Recently, the robotics has broadened its application horizon
beyond solar and wind sectors. The present decade witnessed
robots in other forms of energy driven by water and biological
resources.

A. HYDRO ENERGY
In hydro energy, the robots are used in the fabrication and
refurbishment of hydro equipment without having to disman-
tle them. They reinforce hydroelectric turbines and enhance

174910 VOLUME 7, 2019



J. Iqbal et al.: Robotics Inspired Renewable Energy Developments: Prospective Opportunities and Challenges

TABLE 7. Wind energy generation - comparison between wind tower and power kites (X indicates relatively better compared to X).

their performance by increasing operational efficiency [200].
The dimensions of wickets used in hydroelectric turbines
range from 10-15 feet in length, 3 feet in width and
6-10 inches in thickness. So, manual welding is not a feasible
option due to large dimensions.Manual weldingmay result in
voids and thus lead to structural problems since wickets are
subjected to high stress. Also, welding of wickets demands
their rotation to access every part thus making flexible robots
an ideal choice for welding.

A recent example of robot deployment in innovative weld-
ing processes is demonstrated by the ‘Genesis System’ –
a US-based company, which uses robots to weld wicket
gates of hydroelectric plants. The robots effectively helped
to improve the speed, quality and accuracy compared
with the performance achieved through manual procedures.
Researchers from Quebec Canada, presented a novel track-
based multi-process robot named SCOMPI [201]. It is a
6-axis portable robot that has been specifically developed
for hydro equipment like headgates, turbines, penstocks and
spillway gates. The design of the manipulator is based on
operational constraints imposed by a curve surface within
a confined space. A new measurement system provides a
high-resolution 3D scan of the track. The robot has been
rigorously tested for diversified applications in hydropower
production, including welding penstocks, repairing turbine
runners and refurbishing tracks of head-gates. Figure 28 (a-b)
illustrates the applied use of SCOMPI. A typical response
in the form of the robot’s most flexible mode during grind-
ing operation is shown in Figure 29a [202]. Grinding was
performed with 6000 rpm on 30cmX30cm plates. Careful
observation revealed the presence of vibro-impact behav-
ior in the response with a transient frequency of 800 Hz.
In another test of cutting a plate with overlap traverse grind-
ing, Figure 29b [203] shows a depth profile as acquired from

FIGURE 28. SCOMPI in operation [201]: (a) On-site installation.
(b) Peening and grinding.

Altisurf 530 profilometer. Various successful demonstrations
of SCOMPI over the last two decades resulted in its extensive
deployment in diversified applications in the hydropower
sector.

Robotic crawlers are now being employed in hydropower
dams and wind turbine foundations to inspect concrete struc-
tures. Electric Power Research Institute (EPRI) designed and
developed one such crawler (Fig. 30a) with on-board Simul-
taneous Localization And Mapping (SLAM) and advanced
non-destructive evaluation instrumentation developed for
long term operational support of renewable, nuclear and fossil
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FIGURE 29. SCOMPI in operation: (a) Vibration profile along the robot’s
most flexible mode during grinding [202] (b) Depth of cut profile after
surface grinding [203].

generating resources [204]. Another robotic rover (Fig. 30b)
for exploring the walls of hydroelectric dams has been
presented by researchers from the University of Girona,
Spain [205]. The Autonomous Underwater Vehicle (AUV)
can be controlled in 4-DOF, i.e. sway, surge, yaw and heave.
It can visually inspect the dams based on intelligent control
architecture, sensory data from buoy and image processing
techniques.

B. BIOLOGICAL ENERGY
This form of renewable energy is obtained from living organ-
isms like plants, wood or gases extracted bymicro-organisms.
The sources for this alternate energy can be categorized into
biomass and biofuel. Due to direct acquisition and storage of
energy in the plants without employing any manufacturing
technology, bioenergy offers more reliability compared to
solar or wind counterparts. Given the abundance of organic
waste, paper, household garbage, etc., bioenergy has the
potential to supply energy indefinitely. Scientific commu-
nity from robotics and renewable energy has been exploring
the ways to advance applied research in biological process
control, bioengineering, robotics and bio-sensing. Notable
avenues of research include [206];

• Applied robotics molecular biology platform
• Floating robotics algae farms
• Virtual production approaches in forestry.
The core idea behind applied robotics platforms in areas

like Structural biology or Vaccinology is to automate the

FIGURE 30. Robotic crawler for inspection of structures: (a) EPRI’s
robot [204] (b) Univ. of Girona’s AUV [205].

protocols in gene cloning and expression processes to
improve microbial strains for producing biofuel. These intel-
ligent platforms improve operational scalability, procedural
consistency and processes throughput. Robotic-based solu-
tions also offer traceability of samples, reproducibility of
results and ease in data acquisition and storage [207]. It is
demonstrated in [208] that semi-automated solutions can pro-
vide 93.6% higher cloning success rates compared with the
manual procedure. A novel biological robot for improving
the throughput of colony picking is presented in [209]. The
novelty of the proposed system lies in its structure (composed
of a multi-pin synchronous manipulator) and its ability to
simultaneously pick, inoculate, clean and heat. The estimated
throughput rate of the system is 2400 colonies/hour. Fig-
ure 31 illustrates the structure of the visual servo system
for the robot. Another multi-purpose integrated robotic solu-
tion for the bioenergy sector is reported in [210], which
can produce complementary DeoxyriboNucleic Acid (DNA)
libraries, pick colony, isolate plasmid DNA, transform yeast
and bacteria, express protein and perform suitable functional
assays. These operations can tailor microbial strains to use
renewable feedstock to produce fertilizers, bio-derived chem-
icals, biofuels and other products for bio-refineries.

A self-sustainable floating robotic algae farm can turn
algae sludge into biofuel [211]. An example of floating algae
is a tub-sized algal biofuel farm innovated by ‘BEAR Ocean-
ics’ [212]. The robot floats in remote-controlled areas of
the ocean without colliding with boats and ships using its
vision ability. Powered solely with solar and wind resources,
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TABLE 8. Typical types of robots in renewable energy sector.

FIGURE 31. Structure of visual servo system for colony picking
robot [209].

FIGURE 32. Ocean robot farming fuel from algae [212].

the farm has biofuel production ability of 5 gallons per day
without using any chemical or resulting in toxic waste. The
biomass is converted into biodiesel by bursting cells of algae
with a small electric current and using thermal depolymeriza-
tion phenomena. Figure 32 shows the robot farm developed
as a technology demonstrator on a small scale. However,
the idea can be envisaged in the future to have spawn fleets of

robotic farms that can generate biodiesel for fueling vehicles,
trains and aircrafts simply by harnessing ocean winds and
solar energy.

Virtual production approaches can play an instrumental
role in sustainable forestry to fulfill the demands of bioenergy
in the near future [213]. These production approaches are
already well-established in mechanical and industrial engi-
neering. A recent trend is to extend this idea in forestry [206].
Simulation helps in choosing an optimal approach by esti-
mating and comparing costs involved in various approaches.
Also, the virtual rendering in a graphical environment per-
mits a user-friendly interpretation of the simulation results.
As a preliminary step, a ‘forest machine simulator’ has
been recently realized, which involved the integration of
knowledge from robotics and geo-informatics by generating
virtual forests online using topographical data.

Table 8 briefly outlines the types of robots in various
renewable energy sectors. In general, manipulator-type robots
are used for painting, assembling, welding, transporting and
accomplishing other common tasks in numerous application
scenarios. Table 9 summarizes prominent manipulator-type
robots with their key specifications that find potential in the
energy sector.

VI. CHALLENGES AND OPPORTUNITIES OF ROBOTICS
IN RENEWABLE ENERGY SECTOR
Renewable energy is now considered as an established source
to meet global energy demands in the face of increasing gas
and petroleum prices. The present decade witnessed increas-
ing trends of robot deployment in renewable energy setups
leading to enhancement in the system’s performance with
reduced costs.

The major presence of robotics in this sector is in
solar and wind energy systems. Although highly reliable,
the solar generation outlays significantly added expenses.
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TABLE 9. Prominent manipulator-type industrial robots (arranged alphabetically).

The cost and efforts to produce electricity from sunlight
are considerably high though the price is decreasing by
employing recent developments in modern semiconductor
materials [214]. First-rate handling is a prerequisite, right
from the production phase of these wafers to the solar panel
installation and maintenance [215]. Wind energy is another
form of clean energy which is vastly practical in areas having
a wind speed of 10mph. The industry gets to benefit from
robots in construction as well as in the finishing of turbines.
Robots can help in addressing the constraints which impede
the use of wind resources to their full potential. Both solar and
wind installations are more likely to be carried out in remote
areas possibly involving toxic elements. Besides, solar and
wind plants are mostly set up in large fields incorporating the
large quantities of panels and blades where installation, oper-
ation and maintenance of these modules and the associated
structure remain a challenge. In such circumstances, robots
are perfect candidates to execute safe and automated conduct
with high precision and productivity from locating parts to
maintaining renewable resources.

Following are the challenges and opportunities that may
serve as guidelines for future directions of R&D in the cross-
section of robotics and renewable energy:

• The primary challenge of robot deployment in renewable
energy setups is the immense need to reduce costs per
watt and to meet requirements of the demand-supply
chain. Due to the high relative cost of PV modules and
wind turbines in comparison with conventional energy
resources, the economic value of renewablesources is
recognized over several years. Although the cost of
producing energy with renewable resources is drop-
ping off due to technological advancements, researchers
and industrialists strongly feel that the price per watt
cannot yet compete without explicit incentives due to
being far from optima. Incorporating robotics-based

automation in these setups may address this limitation
by offering prominent features like high volume, high
yield, a quick change in specifications, adaptability and
thorough inspection throughout the product life cycle.
Considering the economics aspect [216], the scientific
community needs to put new investment in mecha-
tronics and renewable energy technologies to guar-
antee a suitable balance in achieving clean energy
milestones, ensuring energy security and expediting
economic progress.

• Regular inspection of renewables is extremely impor-
tant for cost-effectiveness. Failure to detect a minor
problem in a $1,000 bearing may lead to total repair
costs of $200,000 for a multi-MW wind turbine [217].
Deployment of robots in various sectors of renew-
ables is a recent trend; therefore, in terms of its cost-
effectiveness, not much quantitative data is available
from the already deployed systems. In a new fully
autonomous offshore wind farm O&M project, named
MIMRee (Multi-Platform Inspection, Maintenance and
Repair in Extreme Environments), the expected cost
saving is around £26 million throughout farm life-
time [218]. Full autonomy is planned to be achieved
through autonomous vessels, crawling robots and aerial
vehicles. This is a significant cost saving in one
project since the global loss due to inefficient blades
of the turbine is reported to be over $4 billion per
year [219]. Another study evaluating the cost-benefits
of remote inspection of offshore wind farms is reported
in [220]. The scenario consisted of an offshore wind
farm of 100 wind turbines, each of which has 3MW
rated power at the cost of e2400 per KW. The farm is
remotely located at a distance of 40km from a harbor.
The estimated cost of a condition monitoring system is
e160,000. An additionale80,000 is associated with the
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FIGURE 33. Cost-benefits evaluation of inspection of an offshore wind
farm [220].

remote inspection system. Simulation results (Fig. 33)
dictate over-performance of remote inspection both in
terms of energy cost and availability. These comparative
results are %age improvement with reference to a base
case.

FIGURE 34. The domains of robotics and automation are reshaping
various industrial processes in the context of industrial revolutions.

• Thanks to technological advancements, we are now wit-
nessing Industry 4.0 (see Fig. 34), where autonomous
robots are playing the key role owing to their autonomy,
intelligence and power [221]. The growing concept of
Industry 4.0, particularly in the context of ‘smart fac-
tory’ [222], ‘smart energy’ [223] and ‘smart grids’ [224]
is primarily due to advancements in digital technologies
of which robotics and IoT are instrumental drivers. The
role of the digital industry in the renewable energy sector
from the perspective of the fourth industrial revolution
is recently reported in [225]. It is concluded that dig-
itized industries have the potential to increase energy
efficiency, to provide flexibility for renewable energy
systems and finally to enhance transparency on the status
of the energy system.

• The futuristic way of getting things done in the renew-
able energy sector is anticipated to be eight times faster
reducing the labor workforce by 1/10. This challenge,
e.g. implies that 80x more PV panels can be installed
by the same number of laborers compared to manual

operation, thus demonstrating an exceptional increase in
productivity.

• Most (if not all) of the robotic manipulators found in
the renewable sector are based on rigid links, which are
usually made up of Aluminum or Iron [226]. In contrast,
robotic systems with flexible links and/or joints offer
lightweight, reduced inertia, low manufacturing cost
and permit faster movements [227], [228]. The applica-
tions of these flexible robotic manipulators [229], [230],
which are made up of lightweight carbon fiber, stainless
steel or light Aluminum, need to be explored in the
renewable energy sector.

• Much of the research on control of systems reported
in the last decade has been based on linear control
laws [231]. In contrast, nonlinear control systems offer
more precision and exhibit better performance espe-
cially in the environments polluted with external distur-
bances, as discussed in [232]. A recent trend is to apply
modern control laws in the renewable sector. This trend
needs to be continued in the future.

• Mobile robots are also used in renewable setups for
tasks involving mobility. The latest avenues of research
in mobile robots address their operational performance
with constraints that need to be explored in the renew-
able energy context. Examples of these avenues include;
navigation [233]–[235], path planning [236], collision
detection [237], [238], slip avoidance [239], [240] etc.

• Most of the reported works presenting deployment
of robots in renewable sectors involve a single robot
accomplishing the required task. Multiple homoge-
neous or heterogeneous robots can coordinate among
one another for the execution of a task, e.g. panel
cleaning, painting, welding, etc. Thus, Swarm-based
robotics [241] can be explored in the renewable sec-
tor for enhancing productivity and quality at a reduced
timeframe.

• Both solar and wind energy systems require a bat-
tery to absorb part of the generated energy for later
utilization. Owing to hazardous elements in battery,
intelligent robots can also find potential in battery
manufacturing [242].

• The long-term sustainability and viability of robots
in the renewable sector are strongly linked with their
autonomous and optimal operation backed by accu-
rate forecasting techniques. Consequently, various con-
cepts from computer science like artificial intelligence
[243], [244], neural networks [245], machine learning
[246], fuzzy logic [247], etc. find enormous potential
that needs to be unleashed from the renewable energy
perspective.

• In developing countries like KSA, which are enriched
with renewable resources, industrialists and business
people need to be educated by realizing them robotics
potential in renewable energy setups and convincing
them to replace traditional manufacturing, installation
and maintenance methods by robotics-based solutions.
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TABLE 10. [268] Amount of energy produced in saudi arabia based on type of production (MW).

This will help to globally uplift advancements in the
integration of robotics and renewable energy.

VII. BRIEF CASE STUDY
The potential of robotics in the renewable energy sector
is presented with a case study of Saudi Arabia. Vision
2030 of the Kingdom has three major goals; a vibrant society,
an ambitious nation and a thriving economy. The Saudi gov-
ernment has recognized the crucial nature of diversification
of the energy sources for long term economic prosperity.
One of the major strategic initiatives in Vision 2030 is the
National Renewable Energy Program (NREP), which is man-
aged by the Ministry of Energy. The geographical location of
the Kingdom renders the overall effect of the environmental
factor to be positive in terms of the efficiency of harnessing
the sunlight energy as well as wind energy [248].

The total energy produced in Saudi Arabia has reached
more than 80 GW, the vast majority of which is from fossil
fuels and crude oil production processes. Table 10 presents
the breakdown of the energy sources from 2014 to 2017.
This situation is not sustainable, neither economically nor
environmentally. To deal with this situation, the NREP aims
to gradually boost the renewable energy share in the total
mix of energy sources [249]. By 2030, the solar power based
on PV is targeted to be 40 GW [250] and the wind power
production target is set at 16 GW [251]. Figure 35 presents
a chart showing short term and long-term targets. By 2030,
renewable energy is going to constitute more than 50%
of the current total production (i.e., 56 GW clean energy
in 2030 compared to 80 GW total energy in 2017). Such
a distribution indicates the government’s preference for the
renewable energy. A quantitative research study reported
in [252] reveals significant willingness among the people of
the Kingdom to adopt technologies related with renewable
energy primarily due to the economic factor.

The kingdom is determined to reach its targets, which may
be challenging. The successful development and utilization
of renewable energy projects depend on many vital factors,
including economics, industrial, environmental and social,
as well as law and policy factors. The first two factors call
for the need of technological support such as robotics and
automation.

KSA has timely realized the pivotal role of robotics tech-
nology in achieving Vision 2030 [254]. The announcements
of megaprojects like Neom ($500 billion city of robots and
renewables) and preparations to launch a joint initiative with
Japan’s SoftBank are the two recent examples that truly

FIGURE 35. Planned capacity (in GW) indicating an increase in renewable
energy targets by 2023 and 2030 [253].

reflect the Kingdom’s realization to use robotics for prosper-
ity and sound growth in several pertinent areas. It is interest-
ing to mention here that in Oct. 2017, Sophia (a humanoid
robot!) was granted Saudi citizenship.

In an attempt to develop the robotics culture in the country,
IEEE (Saudi Arabia section) and Arab Robotics Association
joined hands to hold the Kingdom’s leading annual event
on robotics ‘‘Saudi Robotics Conference & Expo’’ organized
annually in Jubail Industrial City [255]. The event offers
a full spectrum of showcasing cutting edge technologies
and state-of-the-art solutions involving robotics and automa-
tion in various traditional industrial applications. In partic-
ular, four categories are addressed: Smart manufacturing,
industrial robots, operational safety and skills for future
technology.

Given the enormous potential of renewable energy in the
country and recently realized the importance of robotics,
huge potential and opportunities of robotics and automation
exist in the Kingdom in various applied spheres including the
renewable energy sector. The government intends to unleash
this potential by investing in the energy sector, enriching
R&D culture, strengthening industry-academia linkages and
developing infrastructure for the renewable energy industry.

VIII. CONCLUSION
This paper comprehensively reviews the integration of
robotics in the renewable energy sector. Recent state-of-the-
art robotic systems that are already operational or currently
under-development in renewable setups are highlighted.
Future directions of research and suggestions to further
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strengthen the integration are also discussed. It is concluded
that robots have got the right potential formeeting the require-
ments of various processes in the renewable sector espe-
cially in the manufacturing of products and O&M of setups
designed to harness renewable energy sources. The quality
control and productivity can be improved by the consistent
and precision performance of the robots. Remote inspection
robots can be deployed in troubleshooting and even main-
tenance of the renewable systems. Robotic crawlers with
onboard microwave or ultrasonic transmitters, can penetrate
in structures for fault identification in materials. Potential in
autonomous robots can be unleashed to optimize the supply
chain to build wind and solar farms. Self-driving machines
can transport components of a solar array or wind turbine
from factories. Intelligent and highly precise robots can be
deployed for assembling the structures. Thus, from pro-
duction to assembly of resources, robots with user-friendly
software and sophisticated control have got the potential to
reduce cost without compromising quality in the global mar-
ket. It is anticipated that this systematic reviewwill be benefi-
cial for roboticists, technologists, engineers, researchers and
industrialists in developing a more rigorous practical under-
standing of the integration of the current state of robotics in
renewable setups.
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