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Abstract

Incremental dialogue systems are often perceived as more responsive and natu-

ral because they are able to address phenomena of turn-taking and overlapping

speech, such as backchannels or barge-ins. Previous work in this area has of-

ten identified distinctive prosodic features, or features relating to syntactic or

semantic completeness, as marking appropriate places of turn-taking. In a sep-

arate strand of work, psycholinguistic studies have established a connection

between information density and prominence in language—the less expected a

linguistic unit is in a particular context, the more likely it is to be linguistically

marked. This has been observed across linguistic levels, including the prosodic,

which plays an important role in predicting overlapping speech.

In this article, we explore the hypothesis that information density (ID) also

plays a role in turn-taking. Specifically, we aim to show that humans are sensi-

tive to the peaks and troughs of information density in speech, and that over-

lapping speech at ID troughs is perceived as more acceptable than overlaps at

ID peaks. To test our hypothesis, we collect human ratings for three models

of generating overlapping speech based on features of: (1) prosody and seman-

tic or syntactic completeness, (2) information density, and (3) both types of

Preprint submitted to Journal of Computer Speech and Language October 30, 2015

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/



information. Results show that over 50% of users preferred the version using

both types of features, followed by a preference for information density features

alone. This indicates a clear human sensitivity to the effects of information den-

sity in spoken language and provides a strong motivation to adopt this metric

for the design, development and evaluation of turn-taking modules in spoken

and incremental dialogue systems.

Keywords: overlap, turn-taking, information density, incremental processing,

spoken dialogue systems

1. Introduction

Traditionally, the smallest unit of processing in spoken dialogue systems has

been a full utterance with strict, rigid turn-taking. More recently, however,

work on incremental systems has shown that processing smaller ‘chunks’ of user

input can improve the user experience by providing faster responses and allow

more flexibility in turn-taking (Skantze and Schlangen, 2009; Purver and Otsuka,

2003; Skantze and Hjalmarsson, 2010; Baumann et al., 2011; Raux and Eskenazi,

2009; Dethlefs et al., 2012b). Incrementality in spoken dialogue systems enables

the system designer to model several dialogue phenomena that play a vital

role in human conversation (Levelt, 1989), but have so far been absent from

most systems. These include more natural turn-taking and grounding through

the generation of backchannels and barge-ins—which we will refer to jointly as

overlaps in this article.

Previous studies on the triggers of backchannels and barge-ins in human-

human conversation have revealed the importance of prosodic features, such

as pitch, duration, and energy, and features relating to syntactic and semantic

completeness (Koiso et al., 1998; Ward and Tsukahara, 2000; Cathcart et al.,

2003; Morency et al., 2008; Gravano and Hirschberg, 2009; Oertel et al., 2012).

The latter can refer to the grammatical completeness of constituents, e.g., such

as a full NP versus just the determiner. We will refer to such features jointly

as suprasegmental. Most previous studies have relied on manually annotated
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corpora for their analyses and reported results from held-out datasets, and few

findings have been implemented in real spoken dialogue systems.

In a separate strand of research, psycholinguistic studies have shown that

humans distribute information across linguistic units in a way so that more

prominence is given to units that are less expected in a given context (Genzel and

Charniak, 2002; Bell et al., 2003; Aylett and Turk, 2004; Levy and Jaeger, 2007).

This evidence led us to hypothesise that there is a relation between information

density and suitable places for backchannels or barge-ins in spoken conversation.

Information density can be seen as a measure of entropy in human language and

is computed from a language model of the domain at hand (Shannon, 1948). One

advantage is therefore that it can easily be obtained incrementally for incoming

strings of user speech. A further advantage of information density over other

features, relating e.g. to syntactic completeness, is that it can be seen as an

‘abstract’ type of information. Information is estimated solely based on n-grams

and we do not need to understand what is being said on a semantic level.

In a study that explored the relationship between information density and

overlaps (Dethlefs et al., 2012a), we trained a hierarchical reinforcement learner

that could generate backchannels and barge-ins in conversations with human

users. The model compared a reward function that was sensitive to information

density against a reward function that was not. Results showed that significantly

higher human ratings were obtained for the version that took information den-

sity into account. While these results are promising, they were drawn from

an exclusively text-based rating study, which potentially does not account for

the peculiarities of spoken language. In this article, we therefore replicate our

earlier experiments in a speech-based rating study, involving word-based as well

as suprasegmental features, in order to see whether the earlier results hold in

a realistic dialogue setting. Results show a clear human preference for a model

that generates overlapping speech based on both suprasegmental and informa-

tion density features. This is followed by overlaps based on information density

features alone and then suprasegmental features alone. The results indicate

a strong human sensitivity to the peaks and troughs in evolving information
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density in spoken language. These results hold even in the face of ASR errors.

We will start Section 2 by discussing related work on overlap in spoken

dialogue systems, mainly from the perspective of incremental processing archi-

tectures. We will then describe the types of features that previous work has

identified as predicting different types of overlaps, and finally the information

density effects that have been observed across linguistic units in human lan-

guage. Section 3 will introduce the notion of information density and exemplify

some of its effects on a spoken corpus from the information-seeking dialogue

domain. The relation between information density and suprasegmental features

in spoken language is also discussed. In Section 4, we describe our experimental

setting, data and methodology, and present results on the effect of information

density on spoken overlap in dialogue. Section 5 finally draws conclusions and

lays out the directions for future research.

2. Related work

The production of backchannels and barge-ins has long been recognised to

facilitate grounding, feedback and clarifications in human spoken dialogue (e.g.,

Yankelovich et al. (1995)). With the rise of incremental processing architectures

(Schlangen and Skantze, 2009; Dethlefs et al., 2012b; Selfridge et al., 2011; De-

Vault et al., 2009), we now have the opportunity to integrate these phenom-

ena into spoken dialogue systems. This section reviews the state of the art in

incremental processing and the identification of triggers for backchannels and

barge-ins in human dialogue. Finally, we discuss findings from information den-

sity applied to spoken language and draw conclusions on how all aspects can be

brought together into an effective model.

2.1. Incremental processing

Traditionally, the smallest processing unit in a dialogue system has been a

full user utterance with correspondingly rigid turn-taking. With the rise of incre-

mental architectures in recent years, however, it has become possible to model
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several discourse phenomena that have previously been exclusive to human-

human conversation. These phenomena include faster turn-taking, grounding

through the generation of backchannels and feedback, and facilitated clarifica-

tion through barge-ins. Recent work has shown that including such phenomena

into human-computer interaction can significantly improve the user’s experience

in terms of automatic speech recognition (Baumann et al., 2011), dialogue man-

agement (Buss et al., 2010), dialogue act recognition (Cuayáhuitl et al., 2013)

and speech generation (Skantze and Hjalmarsson, 2010).

The smallest unit of processing in incremental systems is called an incre-

mental unit (IU) (Schlangen and Skantze, 2009). Its instantiation depends on

the particular processing module. In speech recognition, IUs can correspond

to phoneme sequences that are mapped onto words (Baumann and Schlangen,

2011). In dialogue management, IUs can correspond to dialogue acts (Buss

et al., 2010). In natural language and speech generation, IUs can correspond

to single words, phrases or full dialogue acts (Skantze and Hjalmarsson, 2010;

Dethlefs et al., 2012b). Finally, in speech synthesis, IUs can correspond to

speech unit sequences which are mapped to segments and speech plans (Skantze

and Hjalmarsson, 2010).

Figure 1 illustrates the contrast between traditional processing units and in-

cremental units, where an advantage of the latter is that they allow more flexible

turn-taking. While the non-incremental case in the Figure would process a full

dialogue act, e.g., inform(restaurant, venueName=Beluga, priceRange=moderate,

foodType=Italian, area=city centre) without giving a user the opportunity to

barge-in, the incremental case is able to process smaller unit dialogue acts, such

as inform(restaurant, venueName=Beluga), inform(restaurant, priceRange=mo-

derate), etc. The advantage of the latter model is that a user barge-in over an

incremental dialogue act would not lead to the entire system utterance being

re-prompted at the next turn.

Phenomena of turn-taking have been the focus of several studies in incremen-

tal processing. For example, Raux and Eskenazi (2009) optimise turn-taking in

a dialogue system based on a cost matrix and decision theoretic principles, as-
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SDA1 SDA2 SDA3 SDAn...

UDA1

SDA1 SDA2 SDA3 SDAn...

UDAnUDA1 UDA2 ...

(a) non-incremental

(b) incremental

SYS:

SYS:

USR:

USR:

Figure 1: Contrast of traditional non-incremental processing (top) against incremental pro-

cessing (bottom). The latter allows more flexible turn-taking and gives the user the oppor-

tunity to backchannel or barge-in leading to more efficient interactions. SDA here stands for

‘system dialogue act’ and UDA stands for ‘user dialogue act’.

suming that users prefer no gap and no overlap at turn boundaries. DeVault

et al. (2009) allow a small “responsive” overlap between user and system ut-

terances by predicting the completion and thus the end of a user utterance.

Selfridge et al. (2011) incrementally predict the stability and accuracy of speech

recognition hypotheses so as to enhance system performance without causing

delays at turn boundaries.

Initial evidence therefore suggests that incremental architectures are able to

offer the turn-taking flexibility required to model more of the discourse phenom-

ena found in human language. Backchannels, barge-ins and some studies that

aim to predict them in human conversation will be discussed in the following.

2.2. Backchannels and barge-ins

An important advantage of incremental architectures is that they are able to

generate and process backchannels and barge-ins—often adding to the system’s

reactiveness. Figure 2 shows examples of both phenomena. Backchannels can
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Backchannel (the user backchannels)

USR I want Italian food in the centre of town . . .

SYS OK. I found 35 central Italian restaurants . . .

USR OK.

SYS The restaurant Verona has great food but is also a bit expensive.

The Roma is cheaper, but not as central as Verona . . .

Barge-in (the user barges in on system)

USR I want Italian food in the centre of town . . .

SYS I found 35 Indian . . .

USR Not Indian, I want Italian.

SYS OK, Italian . . .

SYS I have 24 Italian restaurants . . .

Figure 2: Examples of backchannels and barge-ins from human-computer dialogues in the

restaurant domain. The first example represents a signal of grounding whereas the latter

represents a correction to an initial system hypothesis. Utterances are aligned with the place

at which they occur in the preceding utterance.

often be interpreted as signals of grounding. Produced by the user, the system

may infer that the user is following the presentation of information or is con-

firming a piece of information without trying to take the turn. Similarly, we

could allow a system to generate backchannels to the user to confirm that it

understands the user’s preferences. An important decision for a dialogue sys-

tem then would be when to generate a backchannel. Barge-ins typically occur

in different situations. The user may barge-in on the system to correct an ASR

error (such as ‘Italian’ instead of ‘Indian’ in Figure 2). A system may want to

barge-in on a user in order to confirm a low-confidence ASR hypothesis imme-

diately so as to start its database look-up. In the latter case, the system will

need to decide if and when to generate a barge-in. Both overlap phenomena

are presumably particularly relevant to hands-free, eyes-free scenarios. Previous

work has confirmed that users of spoken dialogue systems do require feedback

so as to know whether the system is still listening to them or processing their

request (Yankelovich et al., 1995). However, it has also been shown that feed-
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back needs to occur at the right moment in order not to confuse the user rather

than helping (Hirasawa et al., 1999). Several studies have therefore investigated

the linguistic cues that signal suitable points for backchannels or barge-ins in

human-human dialogue. Common findings have been a final falling or rising

pitch or final low/high pitch levels as distinctive prosodic features indicating

the end of a turn (Ward and Tsukahara, 2000; Koiso et al., 1998). Duration

and energy can sometimes play a role, as well as features relating to semantic

or syntactic completeness (Ward and Tsukahara, 2000; Cathcart et al., 2003;

Morency et al., 2008). The latter tend to denote the completion of a gram-

matical clause or constituents as indicated through its Part-of-Speech (POS)

sequence. Several authors have observed that a combination of features leads

to improved performance Koiso et al. (1998); Gravano and Hirschberg (2009).

A common approach to investigating turn-taking signals has been to anno-

tate data sets of human-human spoken conversation and then train a statistical

prediction model from them. Focusing on predicting locations of overlapping

speech, for example, Oertel et al. (2012) analyse a corpus of spoken human multi-

party conversations. They demonstrate in a classification study that locations of

overlapping speech are prosodically different from locations of non-overlapping

speech. The prosodic features of a 5 seconds window surrounding an overlap are

characterised by significantly higher intensity and F0 frequency and significantly

smaller F0 range than in windows of non-overlapping speech. The authors in-

terpret this as representing a potentially higher level of involvement of one of

the speakers which leads to the observed prosodic patterns at overlaps.

Another study (Gravano and Hirschberg, 2011) looks into the prosodic, syn-

tactic and lexical cues that precede turn switches and backchannels in human-

human conversation. Based on a classification study from human-labelled data,

the authors identify seven cues that precede smooth turn switches (i.e., with-

out overlap). Their unit of analysis is the inter-pausal unit (IPU), a sequence

of words preceded and followed by a silence period of more than 50 ms. The

following cues signalled suitable places for turn transitions with little variation

in the authors’ dataset:
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1. a falling or high-rising intonation at the end of an IPU,

2. a reduced lengthening of IPU-final words,

3. a reduced intensity level,

4. a reduced pitch level,

5. a point of textual completion,

6. a higher variability in frequency, amplitude of vocal-fold vibration or en-

ergy ratio of noise to harmonic components in the voiced speech signal,

7. longer duration of the IPU.

Regarding relevant places for backchannels, six cues were identified:

1. a rising intonation at the end of an IPU,

2. an increased intensity level,

3. an increased pitch level,

4. a final POS bigram out of ‘DT NN’, ‘JJ NN’, ‘NN NN’,

5. a reduced noise-to harmonics ratio (NHR), and

6. an increased duration of the IPU.

While the authors reliably found some of these cues present when backchannels

occurred in the data, the reverse is not true—there need not be a backchannel

whenever the cues occur. This can likely be related to the optional nature of

backchannels and varies between individual speakers.

Good progress has been made in identifying the triggers of backchannels

and barge-ins in human-human conversation. Unfortunately, not many of these

results have been implemented within real spoken dialogue systems—even incre-

mental ones—and tested with human users. This may be to some extent because

several of the suprasegmental features used in classification can be computation-

ally intensive to obtain online (e.g., the noise-to-harmonics ratio) so that authors

have preferred manual annotation. Another reason could be that backchannels,

and even barge-ins, are often optional in dialogue so that human production

can not be seen as much of a gold standard.
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2.3. Information density in spoken language

Humans have a tendency to distribute information across linguistic units in

a way that all information is transmitted within the bounds of a communica-

tive channel, where information-dense segments are marked with an increased

prominence (Bell et al., 2003; Aylett and Turk, 2004; Levy and Jaeger, 2007;

Rajkumar and White, 2011). This finding has been reported at different lin-

guistic levels, including the prosodic, syntactic, syllable and word levels. As an

example, Bell et al. (2003) study the origins of variability in the pronunciation

of function words, such as the, that, and and of. Based on the observation that

these words receive a fuller or reduced pronunciation in different linguistic con-

texts, the authors investigate the variation in the length of words, the form of

their vowel (basic, full or reduced) and the presence of final obstruents. They

find that the entropy of words (i.e., how expected they are in their given con-

text) is one of three factors determining the pronunciation of function words.

The other two factors are neighbouring disfluencies and the word’s position in

an utterance. These findings have been confirmed for prosody. Aylett and Turk

(2004) show that prosodic prominence in spoken language is strongly related

to entropy—the less expected a section of speech is in an utterance, the more

likely it is to be prosodically prominent.

Other studies have shown evidence for a role of information density—or

entropy—in syntactic reduction (Levy and Jaeger, 2007; Jaeger, 2010). It is

shown that speakers are more likely to produce an optional syntactic comple-

mentiser (e.g., that) when entropy is high rather than when it is low. Given

that complementisers such as that often have low entropy, they can be used to

reduce the cognitive load on the listener in high-entropy sections. These findings

have also been applied to surface realisation. Using features from information

density, Rajkumar and White (2011) show that the prediction accuracy of a

realisation ranking model is substantially improved for the use of optional that

complementisers. Results by Genzel and Charniak (2002) are in line with this

result, where the authors study the entropy of words in English text and find

that all words in a text have roughly the same entropy.
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Several studies thus seem to suggest a strong relationship between informa-

tion density and linguistic prominence, including prosodic prominence. From

the previous section we know that there is a relation between suprasegmen-

tal features and overlapping speech among humans. It is therefore worth ask-

ing whether a relationship can be established between information density and

overlapping speech. In an earlier study (Dethlefs et al., 2012a), we trained a

hierarchical reinforcement learner to predict the best point for a barge-in or

backchannel in human-computer interaction. Results showed that a reward

function that draws on information density helps to obtain significantly higher

user ratings than baselines that are not sensitive to information density. While

these findings seemed to point in a positive direction, they were drawn exclu-

sively from a text-based rating study. In this article, we aim to extend them to

spoken language and observe the relationship between information density and

overlaps in speech.

3. Information Density in Spoken Utterances

This section will introduce the concepts behind information density and

present some examples from actual interactions with a spoken dialogue system

in the restaurant domain. We will also compare the information density in

spoken utterances to suprasegmental features used in previous studies. Finally,

we show that information density can be obtained from ASR analyses so that

use within spoken dialogue systems is feasible.

3.1. Information Theory

Information Theory (Shannon, 1948) is based on two main concepts: a com-

municative channel through which information is transferred in bits and the

information gain, i.e., the information load carried by each bit. For natural lan-

guage, the assumption is that humans aim to communicate as closely as possible

to the channel’s capacity. If they exceed it, the cognitive load of the listener gets

too high. If they stay too far below, too little information is transferred per bit
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and the utterance is uninformative. The information gain of each word, which

is indicative of how close we are to the channel’s capacity, can be computed

using measures of entropy. A related measure to entropy is information density

which measures the distribution of information across an utterance.

3.2. Information Density

Psycholinguistic research as discussed in Section 2.3 has shown that humans

have a tendency to distribute information across the linguistic units in an ut-

terance, e.g. words, syllables or phonetic units, in a way that keeps the overall

information density within the bounds of the communicative channel. While the

exact bits transmitted per unit can vary, practically they seem to lie between

2 and 6 bits with an average of about 4 bits per linguistic unit. This is shown

by our own experiments in this article and in Dethlefs et al. (2012a) but also in

examples shown in Jaeger (2010).

Relating information density to likelihood of words, we can say that the less

frequent a word is, the more information it is likely to carry (Jaeger, 2010).

In other words, the lower the probability of a word or n-gram, the higher its

information density will be. Compare, for example, the word ‘the’ in a corpus

of restaurant recommendations against the word ‘Nepalese’. Similarly, Jaeger

(2010) has shown that the notion of information density can be used to predict

the occurrence of ‘that’ in relative clauses where it is optional.

Information density is defined as the log-probability of an event (i.e., a word,

a phrase or a whole utterance) (Shannon, 1948; Levy and Jaeger, 2007), so that

for a utterance formed by N words {w1 . . . wN}, we can compute the incremental

point-wise information density (for each word wi) as:

ID(wi) =



log 1
P (w1)

for i = 1

log 1
P (w2)

+ log 1
P (w2|w1)

for i = 2

log 1
P (w3)

+ log 1
P (w3|w2)

+ log 1
P (w3|w1,w2)

for i = 3

. . .

log 1
P (wi)

+ log 1
P (wi|wi−1)

+ log 1
P (wi|wi−1,wi−2)

for i > 3

(1)
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I need to find a Chinese restaurant in the Girton area

0

1

2

3

4

5

6

7 Information density

I'm looking for a French restaurant in the Edinburgh area

0

1

2

3

4

5

6 Information density

Figure 3: Evolving point-wise information density for two utterances, where information

peaks occur at keywords and troughs at function words. Words in an utterance are shown on

the x-axis and information density (as computed from Equation 1) is shown on the y-axis.

Note that while typically the context of a word is given by all preceding

words of the utterance, several authors have restricted themselves to trigrams

for practical reasons (Genzel and Charniak, 2002; Jaeger, 2010).

3.3. Information Density in a Corpus of Spoken User Utterances

To utilise information density in our own study, we first need to estimate

an n-gram model for the domain of interest, in our case information-seeking

dialogues in the restaurant domain. To compute the point-wise information

density of user utterances (in the form of human transcriptions) at each word
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that is spoken, we estimated an n−gram language model based on the CLASSiC

corpus, a corpus of spoken human-system dialogues in the restaurant domain

(Lemon et al., 2012). The corpus consists of 1500 dialogues and is freely avail-

able.1 We base our analysis on 1-grams, 2-grams and 3-grams, which has yielded

good results in previous work. The language model was trained with the Kylm

Language Modelling Toolkit2 and applied Good-Turing smoothing.

Figure 3 shows examples of the evolving information density of two spoken

utterances from different speakers from CLASSiC. In accordance with Equation

1, for the utterance “I need to find a Chinese restaurant in the Girton area”,

we can compute the information density of each word wi as:

ID(wi) =



log 1
P (I) for i = 1

log 1
P (need) + log 1

P (need|I) for i = 2

log 1
P (to) + log 1

P (to|need) + log 1
P (to|I,need) for i = 3

. . .

log 1
P (area) + log 1

P (area|Girton) + log 1
P (area|Girton,the) for i = 11

(2)

We can observe that information is distributed across linguistic units that all

transmit information between 2 and 6 bits. Peaks or rising information density

occur at keywords, such as Chinese, Girton, French restaurant or Edinburgh and

troughs at function words such as a and the. Note that while Equation 1 might

suggest that information density is ever increasing throughout an utterance (by

computing the sums of previous information density scores), one cause of the

peaks and troughs we can observe in information density is the fact that they

are computed from trigrams of words. This means that whenever the sum of

point-wise information density scores for a trigram is lower than the sum of the

previous trigram, we would see a trough.

1Corpus available from http://www.macs.hw.ac.uk/ilabarchive/classicproject/data/

login.php.
2http://www.phontron.com/kylm/
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overlaps features

Barge-in Falling or high-rising intonation at the end of an IPU (F0)

Reduced lengthening of IPU-final words (duration)

Reduced intensity level (intensity)

Reduced pitch level (F0)

Point of textual completion (POS)

Longer duration of the IPU (duration)

Backchannel Rising intonation at the end of an IPU (F0)

Increased intensity level (intensity)

Increased pitch level (F0)

Final POS bigram out of ‘DT NN’, ‘JJ NN’, ‘NN NN’ (POS)

Increased duration of the IPU (duration)

Table 1: Features used to mark appropriate points of barge-ins and backchannels in spoken

user utterances. The feature sets are subsets identified in previous work by Gravano and

Hirschberg (2011), described in more detail in Section 2.2. Bold-face features in parentheses

denote the annotations that were made to the original sound files.

From the CLASSiC corpus, we compute our language model based on 1200

dialogues (which correspond to 11,000 user utterances) and hold the remainder

out for testing. This is to ensure that the information density of user utterances

is not computed for the same word string as occurring in the training data.

4. Experiments

4.1. Data

Our experiments are based on spoken excerpts of interactions between a hu-

man and a spoken dialogue system in the restaurant domain. For each excerpt,

we compare three alternative points of the system generating overlapping speech

over a user utterance. Each triplet contains each of the following:

1. An overlap generated based on features identified by previous work (Gra-

vano and Hirschberg, 2011; Oertel et al., 2012). This includes prosodic
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information, but also features on bigrams of POS tags indicating com-

pleteness of a constituent. We will refer to this set as suprasegmental

features. Section 2.2 gave an overview of the general findings of related

work and Table 1 shows the features used to mark appropriate locations

of barge-ins and backchannels in a spoken user utterance. An appropriate

location was marked when at least two of the features were observed at

the same location in a user utterance.

2. An overlap generated based on information density features alone. To

this end, we used the language models trained in Section 3.3 to compute

the information density after each word in a user utterance. Noticeable

troughs in information density (by at least a measure of 2) were marked

as appropriate locations for an overlap, either backchannel or barge-in.

3. An overlap generated based on both types of features described in

points 1 and 2 above. An appropriate location was marked whenever the

conditions for both 1 and 2 above were met at the same location. This

was the case at least once in all user utterances.

All tokens for the evaluation study were prepared based on automatically ex-

tractable features to avoid subjective judgement. We used the Praat software for

the extraction of prosodic features and the Stanford POS tagger3 for POS tags.

Based on these features, we extracted 60 interactions between users and sys-

tems (i.e. pairs of user utterances and overlapping system utterances) from the

CLASSiC corpus and prepared three versions of overlap for each extract. Half

of them involved a backchannel and the other half involved a barge-in so that

potential differences could be observed. Specifically, barge-ins were produced

according to the rules in the top half of Table 1 and backchannels were produced

according to the rules in the bottom half of the table. Table 2 shows an example

excerpt with the three overlap options, here using the backchannel “Okay” as

overlap. The overlap is shown in the three different places predicted by the

3http://nlp.stanford.edu/software/tagger.shtml
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user: I’m looking for a moderately priced restaurant in the central area.

sys-sup: Okay.

sys-id: Okay.

sys-both: Okay.

Table 2: Excerpt of an interaction between a human and three versions of a spoken dia-

logue system. The spoken dialogue system produces an overlap (here a backchannel) at three

different points during the user’s speech: sys-sup shows the backchannel location predicted

by suprasegmental features, sys-id shows the backchannel location predicted by information

density features, and sys-both shows the backchannel location predicted by both.

different models. As can be seen, sys-both produces the latest backchannel in

the utterance but still overlaps with the word “area” uttered by the user. While

in our particular system, the area slot is the most likely follow-up to “central”,

a system with wider coverage, e.g. for slots park or town, could have missed

part of the user’s intention in this case.

We deliberately chose to investigate overlap with a spoken dialogue system,

rather than in human-human dialogue, because our ultimate research objective

is to integrate our results into spoken dialogue systems, such as the PARLANCE

system (Hastie et al., 2013) for the restaurant domain. In the following, we will

present experiments in two conditions: (a) overlaps based on transcriptions of

user utterances, and (b) overlaps based on the ASR 1-best results obtained

during interactions.

4.2. Experiments based on transcribed utterances

Methodology. 200 users took part in our rating study and rated altogether 529

triplets of speech overlaps. All users were recruited via the CrowdFlower crowd-

sourcing platform4 and were all self-rated native or fluent speakers of English.

From CrowdFlower, participants were provided with a link to an external web-

page, where the actual rating study was hosted. The webpage is shown in Figure

4 along with instructions on how to use it. Participants were presented with

4http://www.crowdflower.com/
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Figure 4: Illustration of the webpage that participants used to rate utterances along with

instructions presented. Participants were re-directed to the webpage via CrowdFlower and

asked to listen to all three recordings carefully before choosing their preferred option.

three short excerpts of interactions between a human user and a spoken dialogue

system. While the human was trying to obtain information from the system, the

system would produce overlapping speech at three alternative points during the

user’s speech. These alternatives corresponded to our three models of produc-

ing overlap. Our research question is thus that assuming the system wants to

produce an overlap, where is the best or most natural place to do so. While we

would in general assume that a spoken dialogue system would always have the

option to overlap or not overlap, in this experimental setup we deliberately did
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Features Preferences

suprasegmental

all 40 (7.56%)

backchannel 24 (4.54%)

barge-in 16 (3.02%)

info density (id) 148 (28%)

both

all 341 (64.46%)

backchannel + id 185 (35%)

barge-in + id 156 (29.49%)

Table 3: Results comparing user preference ratings in overlapping speech based on (a)

suprasegmental features alone, (b) info density features alone, and (c) both types of fea-

tures. Preferences along with the percentage out of all 592 ratings are shown for all mod-

els. In addition, suprasegmental features are split into preferences of overlaps corresponding

to backchannels and barge-ins. The differences between all three models are significant at

p<0.001 according to a Chi-Squared test ranking one out of three options. Results based on

transcribed utterances.

not offer users the option to click “no interruption”. Previous work has shown

that generating system overlaps can be advantageous under certain conditions,

e.g. producing a backchannel to signal continued attention or clarifying a known

ASR error early on to avoid follow-up errors (Yankelovich et al., 1995; Hirasawa

et al., 1999), so that in this article we are particularly interested in the question

so as when would be the best point to produce such overlap. Participants in

our study were asked to listen to all three versions carefully and then choose

one option as their preferred one. Table 2 showed an example of a triplet.

Results. The results will be analysed from two perspectives, (a) overall user

preferences for our three different models, and (b) the predictive power of dif-

ferent features with respect to user preferences based on a regression study.

User Preferences. Table 3 shows the user preference results organised into three

groups: (a) preferences for overlaps based on suprasegmental features only, (b)

preferences based on information density features only, and (c) preferences based

on both types of features. We can see that users showed a clear preference for
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the third model, which combines different types of features. For this model, the

overall preference lies at 64.46%, corresponding to 341 out of 529 ratings, and

is significant at p<0.001 using a Chi-Squared test with 2 degrees of freedom. In

comparison, the model based on information density features alone is preferred

148 times, corresponding to 28%, which is preferred significantly more often than

the version based on suprasegmental features alone (40 ratings, 7.56%). The

differences between these two is again significant with p<0.0001. In addition,

we can analyse the effect that particular types of overlaps had, i.e., whether

overlapping backchannels were perceived differently from overlapping barge-ins.

Results are shown in rows 2-3 and 5-6 in the third column Table 3. None of the

differences found are significant, though. Since users rated overlaps from the

same set of samples, the variance between user preferences can be analysed. We

found an average variance of 0.25 across utterances with a maximum of 0.63 for

one overlap and a minimum of 0.03 for another overlap. There is no difference

in the variance between preferences for barge-ins and overlaps.

Our results largely confirm the findings of previous work in highlighting the

importance of suprasegmental—i.e., prosodic and grammatical completeness—

features to predict overlaps in spoken language. Moreover, the results provide

evidence that information density has a strong influence on the perception of

appropriate points for overlapping speech, which has so far been overlooked.

The effect of information density appears drastic when comparing human pref-

erences for the suprasegmental system of only 7.56% (which can be said to rep-

resent the current state of the art in overlap prediction) and the system which

takes information density into account in addition (64.46%). The overall human

preference for a model that takes both types of features into account seems to

suggest that information density adds further information over previously used

features, which is possibly particularly advantageous in human-computer inter-

action. Since spoken dialogue systems tend to lack the sophisticated turn-taking

strategies observable in human-human conversation, information density might

provide valuable cues in where overlap is acceptable to humans and where it is

not.
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Figure 5: J48 decision tree classifier trained for predicting preferred points of overlap in

the experiments with transcribed utterances. The features were taken from the annotations

described in Section 4.1 and listed in Table 1.

Variability in User Preferences. Given the fact that users preferred a model that

takes a mixture of features into account to produce overlaps, we were interested

in the different ways that each of the features contributes to the overall user

preference found. We therefore used pairs of feature vectors characterising each

overlap point in our data set and their assigned user preference (1 for preferred,

0 for not-preferred) in a classification experiment. Since we found no difference

between backchannel and barge-in overlaps in Section 4.2, both are treated in

the same way in this experiment. Feature vectors contained the same features as

shown in Table 1 (shown as bold-face in parentheses) at the point that an overlap
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occurred. In addition, we used a “position” feature indicating the position of the

word at which the overlap occurs. Using the Weka toolkit (Witten and Frank,

2005), we trained a J48 decision tree classifier. In a 10-fold cross-validation, the

classifier reached an accuracy of 86%. In comparison, a simple majority baseline

on the same data only achieved an accuracy of 78%.

Figure 5 shows an illustration of our learnt tree, where more important

features can be seen as occurring higher in the tree. Again, we can observe that

while the features identified in previous work play a critical role, information

density is an important factor in determining the overall user preference for

system overlaps. The tree also provides some insights into the cases where our

combined system was not the preferred user option. This occurred most often

when the system would (a) overlap over a keyword e.g. in order to clarify a

previous misrecognised keyword, which is shown by the information density tree

nodes and to a lesser extent by the POS-tag sequences (users did not like the

system to overlap over noun phrases); and (b) when the system would overlap

too early in the utterance because of a longer user silence. In addition to this,

there appears to be subjectivity in the preferences of different versions of overlap

as indicated in the analysis of variance.

4.3. Experiments based on ASR analyses

Results. To demonstrate that our earlier results hold even in the face of potential

ASR errors, we repeated the experiments described above with a separate set of

60 tokens, i.e. pairs of user utterances with overlapping system utterances. In

the new tokens, overlaps were estimated based on information density in ASR 1-

best hypotheses, which could contain errors in recognition. The language model

used was the same as previously, i.e. trained on transcribed utterances, so as

to make sure that the system would not be trained on ASR errors and thus

“expect” them. 200 users took part in an online rating study that was identical

in its setup to the earlier study. 452 utterances were rated all together. The

results are presented in Table 4.

We can see that the results largely confirm the earlier results obtained for
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Features Preferences

suprasegmental

all 42 (9.29%)

backchannel 28 (6.19%)

barge-in 14 (3.1%)

info density (id) 166 (36.72%)

both

all 244 (54%)

backchannel + id 114 (25.22%)

barge-in + id 130 (28.76%)

Table 4: Results comparing user preference ratings in overlapping speech based on (a)

suprasegmental features alone, (b) info density features alone, and (c) both types of fea-

tures. Preferences along with the percentage out of all 452 ratings are shown for all mod-

els. In addition, suprasegmental features are split into preferences of overlaps corresponding

to backchannels and barge-ins. The differences between all three models are significant at

p<0.001 according to a Chi-Square test ranking one out of three options. Results based on

ASR 1-best hypotheses.

transcribed utterances. An overall preference is revealed in favour of the model

that compares suprasegmental and information density features (54%). All dif-

ferences are significant at p<0.001 based on a Chi-Square test with 2 degrees

of freedom. The variance between user ratings lies at 0.3 on average with a

maximum variance of 0.58 for one utterance and a minimum variance of 0 for

three utterances.

User Preferences. Interestingly, we can observe a slight increase in preference

for the model that relies on information density features only in comparison

to the combined model. A closer qualitative analysis reveals that even in the

case of misrecognitions, it is often still possible to identify keywords. For ex-

ample, in one case the utterance “Hi (0.52) I’m (0.07) looking (0.07) for (0.39)

a (2.28) Thai (1.046) restaurant (0.05)” was misrecognised as “Hi (0.52) I’m

(0.07) looking (0.07) for (0.39) a (2.28) five (5.55) restaurant (4.90)”. Despite

the error, the information density distribution is similar across both utterances

as indicated in parentheses after the respective words. A difference however
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Figure 6: J48 decision tree classifier trained for predicting preferred points of overlap in

the experiments with ASR 1-best hypotheses. The features were taken from the annotations

described in Section 4.1 and listed in Table 1.

occurs around the misrecognised “five”, which results in a sharp increase in

information density. This would lead to an overlap occurring following the mis-

recognised keyword because information density falls again after the word. In

this particular example, this leads to an overlap occurring later in the utterance

than in for its transcribed counterpart: while in the transcribed utterance, the

overlap would occur just after “Thai”, in the ASR utterance, it would get de-

layed until just after “restaurant”. It is likely that such differences could have

led to the overall increase in user preferences for the information density model.

Incidentally, when analysing to what extent taking account of the full ASR N-

best list would help to improve results, we find that the correct utterance is only

part of the N-best list in 41.7% when it is not ranked as 1-best. The automatic

speech recogniser that was used in the CLASSiC corpus, on which our results
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are based had a WER of 53.6, see Rieser et al. (2011).

Variability in User Preferences. Similarly to the experiments based on tran-

scribed utterances, we can train a J48 decision tree classifier to reveal the most

important determining factors in user preference. The resulting model is shown

in Figure 6. Our decision tree classifier achieved an accuracy of 85% in a 10-

fold cross-validation, while a simple majority baseline only achieved in accuracy

of 79% in the same experimental setup. In contrast to the tree trained from

transcribed utterances, we can see here that user preferences were sensitive to

certain POS-sequences as well the duration and pitch of overlapped segments.

Information density plays a role in connection with POS-sequences as was also

observed in the decision tree for transcribed utterances.

5. Conclusions and Future Work

Previous work investigating spoken overlap in human-human conversation

has often highlighted the importance of suprasegmental features in marking

suitable points for backchannels or barge-ins. A separate strand of investi-

gations has established that there is a strong relationship between entropy and

prominence in language, manifesting itself in less expected linguistic units being

realised in a marked form. The notion of entropy or expectation in language has

often been related to information density and has been shown to be operational

at the phonetic and prosodic levels of language, among others.

In this article, we bring these two strands together. We explore the hypothe-

sis that information density can also be related to the occurrence of overlapping

speech, such as backchannels and barge-ins, in spoken dialogue. In an exper-

iment with human judges, we collected ratings of three models that generate

overlaps based on features relating to (1) prosody and semantic and syntactic

completeness, (2) information density, and (3) both types of information. Hu-

man raters showed a significant preference for the third model (p<0.001). This

demonstrates that besides prosodic and completeness features, humans are in-

deed sensitive to the evolving information density in spoken language. They
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significantly preferred overlaps at points of low information density over such

occurring at points of high information density. These results are relevant to

research on spoken dialogue systems, especially those that make use of incre-

mental processing, and are therefore able to address communicative features

such as backchannels or barge-ins. Previous work has provided evidence that

interactive feedback mechanisms such as backchannels and barge-ins have im-

portant positive effects on spoken dialogue systems in terms of indicating the

system’s status to the user (Yankelovich et al., 1995; Hirasawa et al., 1999). Our

work represents a further step in the direction of equipping spoken dialogue sys-

tems with interactive feedback mechanisms, which are easy to implement based

on a measure of entropy that requires access to only the words spoken and a

language model of the domain. In particular, we have made the following novel

contributions:

• We have presented the first study that investigates experimentally the

effects of different suprasegmental features on human turn-taking pref-

erences in spoken dialogue (previous studies have relied on classification

experiments only).

• Our experiment shows that humans are (at least partially) sensitive to the

peaks and troughs of information density in spoken language.

• We have demonstrated that the effects found hold for transcribed utter-

ances and for (potentially erroneous) outputs of an ASR module equally.

Our results show that humans are sensitive to the troughs and peaks in informa-

tion density in spoken language and that this sensitivity does at least partially

guide their preferences on system-initiated overlap. Equipping spoken dialogue

systems therefore with more interactive feedback mechanisms, such as spoken

overlaps in the form of backchannels or barge-ins, could help to make them more

responsive to user overlaps, more communicative of their own status and more

natural and human-like to interact with.

Future research will explore the following directions:
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1. In this article, we have been able to confirm the positive effect of infor-

mation density on overlap in spoken language reported earlier in Dethlefs

et al. (2012a). While the present speech-based scenario was more natural

than the earlier text-based rating study, we plan further experiments using

a full spoken dialogue system. This step is essential to show that users per-

ceive and approve of the points of overlap predicted by our method even

in a task-based scenario when they are not particularly focused on the

differences. This will also be important to show whether system-initiated

overlaps are preferable to users over repetition or clarification requests.

2. Information density has been shown to be operational across linguistic lev-

els in human language. However, its effects in natural language processing

have not been explored, with a few exceptions (Rajkumar and White, 2011;

Dethlefs et al., 2012a). It would be interesting and important to further

explore the role that information density can play within spoken dialogue

systems or natural language generators. This could address the rankings

of a set of competing dialogue acts or surface realisations in the face of

the communicative channel and its capacity at different times during an

interaction.

3. While this paper has focused on system-initiated overlaps, future work

could also explore phenomena of user-initiated overlap. For example, in-

formation density might help the system to decide whether the user is

offering a backchannel or is barging-in on the system. In the latter case,

the system could weigh up the importance of what the user is saying in

order to decide whether to yield or try to keep the current turn.

4. Our experiments were based on conventional n-gram language models in

accordance with earlier work on information density in language. Since

the quality of overlap prediction crucially depends on the robustness of the

underlying language model, future work could explore alternative meth-

ods. A candidate for investigation are recurrent neural networks, which

have been shown to superior to conventional n-gram models in a number

of respects (Mikolov et al., 2010).
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5. Information density has so far only been explored at the linguistic level.

However, it has been shown that phenomena of salience and information

structure are also at work in visual and multimodal language scenarios

(Elsner et al., 2014). Future work could attempt to establish a relationship

between information density and multimodal dialogue or natural language

generation scenarios or investigate the effect of information density on

multimodal turn-taking scenarios (Chao and Thomaz, 2013; Nalin et al.,

2012).

6. Throughout this article, we have followed previous work in assuming that

the principles of human-human turn taking are readily transferable to

turn taking in human-computer interaction. In a recent study on the

occurrence of barge-ins of users over a spoken dialogue system, however,

Cuayáhuitl et al. (2013) find that the most likely place for a user to barge-

in on a system is after the first or second dialogue act. This substantially

differs from human-human communication, where barge-ins tend to occur

much later, supposedly because very early barge-ins may be less socially

acceptable among humans. As a conclusion, it may be that not all findings

from human-human data are as readily transferable to spoken dialogue

systems as is often assumed. Future work could provide a systematic

comparison of the differences between the two modes of interaction.
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