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Abstract
Bio-inspired optimization algorithms have recently attracted much attention in the
control community. Most of these algorithms mimic particular behaviors of some an-
imal species in such a way that allows solving optimization problems. The present
paper aims at applying three metaheuristic methods for optimizing Fuzzy Logic
Controllers used for quadrotor attitude stabilization. The investigated methods are
Particle Swarm Optimization (PSO), BAT algorithm and Cuckoo Search (CS). These
methods are applied to find the best output distribution of singleton membership
functions of the Fuzzy Controllers. The quadrotor control requires measured re-
sponses, therefore, three objective functions are considered: Integral Squared Er-
ror, Integral Time-weighted Absolute Error and Integral Time-Squared Error. These
metrics allow performance comparison of to compare the controllers in terms of
tracking errors and speed of convergence. The simulation results indicate that BAT
algorithm demonstrated higher performance than both PSO and CS. Furthermore,
BAT algorithm is capable of offering 50% less computation time than CS and 10%
less time than PSO. In terms of fitness, BAT algorithm achieved an average of 5%
better fitness than PSO and 15% better than Cuckoo Search. According to these
results, the BAT-based Fuzzy Controller exhibits superior performance compared
with other algorithms to stabilize the quadrotor.

Keywords
Meta-heuristic Fuzzy Logic Quadrotor Attitude Controller
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1 Introduction
Fuzzy Logic Systems (FLS) is an active research topic in
automation community and is based on the fuzzy sets the-
ory of L. Zadeh [1]. The first application of FLS in control
has been realized by Mamdani in 1975. The basic idea be-
hind a FLS consists of using human experiences to design
a Fuzzy Inference System (FIS). The operation of a Fuzzy
Logic Controller (FLC) mainly depends on the characteris-
tics of three subsystems: fuzzification, fuzzy rules and de-
fuzzification [2]. Various reported applications show that
FLC demonstrates superior performance compared to the
classical control algorithms [3-6].

A FLC is based on human’s expertise and is easy to de-
sign and implement because of its structural simplicity,
less computational complexity, and greater control per-
formance [4-6]. Besides, a FLC is very useful for the
systems that are hard to model due to their strong in-
herent nonlinearities and uncertainties [7]. Consider-
ing a quadrotor system, scientific literature reports sev-
eral nonlinear controllers such as, observer-based adap-
tive fuzzy backstepping [8] model-free control [9], gain-
scheduled Proportional Integral Derivative (PID) control
[10], fractional-order super twisting sliding mode control
[11] and FLC . In this regard, numerous studies have cov-
ered various aspects of Unmanned Aerial Vehicle (UAV)
systems such as, stability enhancement [3], payload drop
missions [4], fault-tolerance [5], visual-based control [6],
taxi model [10], path following [11] and quadrotor stabi-
lization [12]. Particularly, the fuzzy control of a quadrotor
with or without optimization is reported in [4, 5, 12, 14,
15, 16]. On the other hand, human’s expertise does not
allow the synthesis of an optimal FLC, therefore; fuzzy-
based controllers exhibit limited performance and robust-
ness. The parametric and structural optimization of a FLC
makes it possible to achieve suitable performance and ro-
bustness. A multitude of fuzzy controller optimization
methods have been proposed and applied in the scien-
tific literature [17-25], which can be classified into two
categories; the first is the optimization based on analyt-
ical methods. A prominent example of this category is
the gradient descent algorithm. The second category em-
ploys the bio-inspired optimization methods to find the
optimal FLC. They are based on population coding and it-
erative search of the optimal value of a fitness function in
this population. In case of FIS, researchers have focused
on optimizing Membership Functions (MFs) [26] or fuzzy
rules [27] or both of these simultaneously. The commonly
used optimization methods include; Genetic Algorithms
[27], Ant Colony Optimization (ACO) [17, 24], Particle
Swarm Optimization (PSO) [28], Bee Colony Optimiza-
tion [29] and others [30]. These algorithms have been
applied for various UAV systems such as birotor helicopter
[21, 23, 24], quadrotor [4, 6, 12, 14, 15, 16, 18, 25], hex-
acopter [31] and so on.

Few comparative studies of metaheuristic methods have
been recently presented owing to novelty of research in
this domain and emergence of several algorithmic vari-
ants. Studies have addressed the control of a quadrotor
UAV system while considering different optimization ob-

jectives. PSO-tuned FLC for full autopilot control of a
quadrotor dealing with wind disturbances is proposed in
[18]. PSO algorithm is utilized to have minimum 4 rules
for FLC to improve the controller response. However, the
use of PSO has become relatively standard. An approach
named as PD-T2-FNN has been proposed in [22] which
consists of tuning type-2 Fuzzy Neural Networks (FNN)
based on a novel PSO-Sliding Mode Control (SMC) hy-
brid learning algorithm. PSO has been used for identi-
fication of the antecedent part of the T2-FNNs. Another
research work [24] proposed optimization of normalized
type-2 fuzzy controller parameters based on ACO algo-
rithm which is compared with PSO. Nevertheless, the real-
time implementation of these optimized controllers re-
quires advanced computing resources due to several in-
herent mathematical operations. An Adaptive PSO for op-
timal Linear Quadratic Regulator (LQR) tracking control
of a 2-DoF (Degree of Freedom) laboratory helicopter is
proposed in [21], where the adaptive PSO method is used
to obtain the elements of Q and R matrices. However,
LQR is an optimal controller for linear system whereas
a laboratory helicopter presents some nonlinearities and
uncertainties.
The present research presents a comparative study of
three popular metaheuristic techniques; PSO [28], BAT
algorithm [32] and Cuckoo search (CS) [33, 34] which
are applied to optimize the distribution of the single-
ton output MF to control attitude of a quadrotor system.
These techniques or their variants have gradually become
more popular in scientific community and have success-
fully been applied to diverse domains owing to their ease
in implementation, requirement of few parameters and
demand of exceptional performance. As a Genetic Algo-
rithm (GA), PSO has become a de facto standard for com-
paring bio-inspired methods. CS algorithm was chosen
because it has a relatively high convergence speed and a
low computational cost compared to several metaheuris-
tics algorithms. BAT algorithm is a latest metaheuristic
optimization technique inspired by the echolocation skill
of the microbats which directs them based on their forag-
ing behavior. BAT algorithm incorporates major strengths
of PSO and Harmony Search (HS) algorithm and thus may
give relatively superior performance. The objective of this
work is to determine the algorithm that demonstrates su-
perior performance for a quadrotor attitude control. In
contrast with another comparative study [35], which ap-
plies the optimized fuzzy controller on a brushless mo-
tor considering the system dynamics as linear, the present
work examines three algorithms under a strong nonlinear
multivariable system well known by its control complex-
ity. The fitness functions used are Integral Squared Error
(ISE) [30], Integral Time-weighted Absolute Error (ITAE)
[35] and Integral Time Squared Error (ITSE). These objec-
tive functions are selected to examine precision in case of
ISE and robustness in case of ITAE. ITSE permits simulta-
neous evaluation of precision and speed of convergence.
The choice to optimize only the MFs output is based on
modeling the input dynamics by two fuzzy variables (er-
ror and its change). Hence, the use of Singletons MFs for
the outputs addresses performance and robustness with
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possible limitations. In this regard, the optimization of
the output offers improved performance. The minimiza-
tion of the number of parameters to be optimized is also
an important reason considering that the processing time
is closely linked with specifications of the equipment used
for optimization. This paper sights to present three main
contributions: Firstly, a FLC of a quadrotor attitude to im-
prove its speed is detailed. Moreover, the optimization of
this controller is based on three metaheuristic algorithms
which are PSO, CS and BAT. Secondly, a thorough sta-
tistical analysis is performed demonstrating that the FLC
based on BAT algorithm is more appropriate for stabiliz-
ing a quadrotor than PSO and CS algorithms. Thirdly, the
application of the optimized controllers with and without
disturbances has proven the superiority of the BAT algo-
rithm in regulation and trajectory tracking modes com-
pared to PSO and CS.The novelty of the proposed work is
mentioned below in a point by point manner:
i. Various studies applying FLC on UAV systems are re-
ported (Table I) highlighting metaheuristic optimization
(Table II). However, very few of the recently reported
works (please refer to Table III) present a rigorous per-
formance comparison among diversified algorithms that
lead to a concrete conclusion.
ii. The comprehensive analysis presented in the proposed
work involves various design aspects such as, the dynamic
model of the quadrotor is derived while taking into ac-
count the rotor dynamics, the environment dynamics is
also involved in simulation, etc.
iii. Another notable feature of the proposed work is to
address both global algorithms (i.e. PSO, CS and BAT)
as well as local methods (PEO) using a fuzzy controller
with a very clear rules table (Section III.1). In addition
these methods are compared with backstepping a PD con-
trollers.
iv. The comparative analysis based on multiple fitness
functions (ISE, ITAE and ITSE) makes the proposed work
comprehensive leading to a potentially useful conclusion
that the fuzzy controller based on BAT algorithm demon-
strates superior performance in transient as well as in
steady state compared to PSO, CS and PEO algorithms.
FLC based BAT is also best to an integral backstepping
method.
The remaining of the paper is organized in the following
Sections: Section II summarizes the related state-of-the-
art, presents the quadrotor dynamic model and briefly de-
scribes the related bio-inspired metaheuristics methods.
Section III provides a description of the proposed FLC op-
timized for a quadrotor attitude control. Section IV de-
tails the simulation results which are discussed in Section
V. Finally, Section VI concludes the paper.

2 Related works and background
2.1 Related works
In order to demonstrate the importance of the research
domains pertinent to the present research paper, three re-
view tables are given in this section. Table I describes
approaches that apply fuzzy logic in standalone and in
combination with other techniques on UAV systems. Ta-

ble II lists recently reported studies addressing the meta-
heuristic optimizations of FLCs for UAV systems. Table III
illustrates the comparative studies published in last few
years with a focus on the nature of the solved problem.

2.2 Quadrotor Dynamic Model
A quadrotor is an under-actuated system composed of
four rotors structured in a cross configuration where each
symmetric pair of propellers turns in opposite direction.
The movement is created by varying speeds in one or sev-
eral rotors. A quadrotor is a highly nonlinear MIMO (Mul-
tiple Input Multiple Output) deterministic system that
presents internal parametric and external nonparametric
uncertainties with many physical phenomena characteriz-
ing its dynamics. It is pertinent to mention here that exact
real-world quadrotor dynamics is very difficult to be de-
fined. In order to develop a reasonable dynamic model
of the system, several assumptions need to be considered
such as:

1. Assumption 1. (i) The structure is assumed to be
rigid and strictly symmetrical, (ii) The torque is pro-
portional to DC motor voltage and (iii) The quadro-
tor reference is supposed to be confined with its cen-
ter of gravity.

2. Assumption 2. Quadrotor dynamics is related to the
translational positions (x,y,z) and attitude described
by the angles (φ,θ ,ψ). The angles are characterized
by the following constraints:

−π/2≤ (φ,θ )≤ π/2−π≤ψ≤ π (1)

The coordinate system is composed of a fixed frame Oe
and a body frame OB (Figure 1).

Figure 1. Schema of a quadrotor UAV

Using Newton-Euler formulation (equation 2), dynamics
of the quadrotor is written as

�

mξ̈= F f + Fd + Fg
JΩ̇= −Ω∧ JΩ+ Γ f + Γa + Γg

(2)

Using (equation 2), the quadrotor dynamic model can be
written as [41],
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Name of the ap-
proach

Year Focus Remarks Reference

Generic Self-
Evolving Neuro-
Fuzzy controller

2018 Altitude hexacopter UAV control Various trajectories are tested [37]

Uncertain T-S Fuzzy
controller

2018 Attitude stabilization of a quadro-
tor

New generic and relaxed Linear
Matrix Inequality (LMI) conditions
are proposed

[15]

Generic-controller 2018 Control of hexacopter Stability of the G-controller is guar-
anteed using the Lyapunov func-
tion. Learning machine namely
Generic Evolving Neuro-Fuzzy In-
ference System is used

[31]

Fuzzy GS-PID Con-
troller

2018 Reducing overshoot of a quadrotor
during payload in drop missions

Experimental results are presented [4]

Adaptive Fuzzy
Kalman Fusion
Algorithm (AFKF)

2018 Estimation of the quadrotor states
and control using adaptive FLC

Precision landing of quadrotor [13]

Active Fuzzy Fault
Tolerant Tracking
Control (AFFTTC)

2018 Addressed MIMO unknown nonlin-
ear systems in the presence of un-
known actuator faults, sensor fail-
ures and external disturbance.

A fuzzy adaptive controller based
on back-stepping design is devel-
oped

[5]

Cen-NSFLC 2018 Visual Cen-NSFLCs control for tra-
jectory tracking accurate in a real-
time for quadrotor

Cen-NSFLCs are compared with
PIDs, SFLCs and Tra-NSFLCs

[16]

T–S fuzzy MASs 2018 Sliding-mode control (SMC) prob-
lem of Takagi–Sugeno (T–S) fuzzy
Multi-Agent Systems (MASs)

A cooperative fuzzy-based dynam-
ical sliding-mode controller is de-
signed and the overall closed-loop
T–S fuzzy MAS is constructed

[36]

PID fuzzy controller 2017 Control of attitude and z-axis of
quadrotor system

Stability of the PID fuzzy controller
is guaranteed

[12]

Fuzzy Cognitive
Map (FCM)

2016 FCM is suitable choice for imple-
menting a vision-based intelligent
technique

No sensor has been installed on
the moving object UAV and the
changes in its yaw angle are not
available

[6]

Fuzzy sliding mode
controller named
“AFGS-SMC”

2016 Attitude stabilization of quadrotors
with parametric uncertainties and
external disturbances

Use of the fuzzy logic to estimate
discontinuous control part of a slid-
ing mode controller

[14]

Table 1. Fuzzy logic applied to UAV systems - Recent stat of the art
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U3 = bl(w2
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1 −w2
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3 −w2
4)

Ωr = w1 −w2 +w3 −w4

(4)

ζ(φ),ζ(θ ) and ζ(ψ) represent time-varying external
disturbances affecting on roll, pitch and yaw dynamics
of the quadrotor respectively, Ui(i = 1, 2,3, 4) are the
control inputs, Ωr is the total residual speed of rotors,
b, dandl are factors corresponding to thrust, drag and

lever respectively.

Rotor dynamics

The quadrotor has four fixed pitch rotors and for each ro-
tor, a DC motor is used to actuate the system. As reported
in [42], a first-order transfer function given in (equation
5) is sufficient to represent the rotor dynamics considering
the reference speed of the propeller and its actual speed.

G(s) =
0.936

0.178s+ 1
(5)

The input to the motor is the armature voltage and its
output is the angular velocity. A PD controller controls the
rotor system. Introducing the rotor dynamics, the model
of the quadrotor essentially becomes more sophisticated.
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Name of the approach Year Focus Reference
Dynamic ant colony’s labor division (DACLD)
model for swarm UAVs

2018 New dynamic environmental stimulus, re-
sponse threshold and transition probability has
been designed and DACLD is proposed for
swarm UAVs

[17]

PSO tuned FLC for full autopilot control 2018 PSO tuned FLC for full autopilot control of
quadrotor to tackle wind disturbance using
bond graph approach

[18]

PD -T2-FNN 2018 FNN is trained using a novel PSO-SMC hybrid
learning algorithm

[22]

A novel algorithm identifying optimal flight
trajectories for UAVs compliant with environ-
mental constraints

2017 The proposed path planning method is based
on an original trajectory modeling coupled with
PSO approach

[19]

A novel multi-UAVs coordinated path planning
method based on the k-degree smoothing

2016 The k-degree smoothing is the improved ACO [20]

A novel method for Small Unmanned Heli-
copter (SUH) system identification based on
improved fuzzy PSO

2016 The corresponding aerodynamic parameters of
the state-space model of the SUH

[23]

Adaptive PSO for optimal LQR tracking control
of 2 DoF laboratory helicopter

2016 Adaptive Particle Swarm Optimization (APSO)
method to obtain the elements of Q and R ma-
trices

[21]

ACO fuzzy controller 2014 Optimization of normalization fuzzy parame-
ters

[24]

Table 2. Metaheuristic optimization of FLCs for UAVs

Methods compared Year Focus Reference
Firefly Algorithm (FA), Differential Evolution
(DE), Artificial Bee Colony (ABC), Harmony
Search (HS) and Directed Tabu Search (DTS),
Hooke-and-Jeeves (HJ) local

2018 Parameter estimation problem in dynamic sys-
tems

[38]

PSO, BCO and BAT 2017 Comparative Study of Type-2 Fuzzyfor the
fuzzy controllers

[29]

CS and DE 2016 Solving the constrained optimization problem
from selected benchmark functions

[34]

PSO algorithm and its variants 2015 Review of approaches and applications [28]
BAT algorithm and its variants 2013 Review of approaches and applications [32]
CS and its variants such as (Discrete binary CS,
Binary CS, etc.)

2013 Review of approaches and applications [33]

ACO and PSO 2012 Optimization of the MFs of FLC for finding the
optimal controller for an autonomous wheeled
mobile robot

[26]

PSO , Differential Evolution (DE), and Scatter
Search

2012 Comparison of GPU-based implementations [39]

ACO, GA, simulated annealing (SA) and Tabu
Search (TS)

2008 Solving Customer Order Scheduling Problem
(COSP)

[40]

Table 3. Review of metaheuristic optimization comparative studies

2.3 Metaheuristic Methods
This section introduces the related metaheuristic meth-
ods, i.e. PSO, CS and BAT algorithms. Mathematical re-
lationships and necessary parameters are given for these
algorithms.

2.3.1 PSO Algorithm
PSO algorithm imitates the social behavior of people or
animals [43]. It is a stochastic search technique where

the potential solutions, called particles move through the
problem space until some criteria are met, and it applies
to every method (the solution). During the processing
time, the updates in positions and velocities of particles
are based on the local and global best solutions. PSO al-
gorithm is given by two main equations:

1. Position of a particle i: The next position of a particle
x i(t + 1) is measured by adding its velocity to the
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actual position i.e.

x i(t + 1) = x i(t) + Vi(t + 1) (6)

2. Velocity update: The velocity of a particle i at time
instant ′ t + 1′ is calculated as

Vi(t + 1) = Vi(t) + c1 r1(t)(xbest i(t)− x i(t))

+c2 r2(t)(xGbest (t)− x i(t)) (7)

where, x i(t) and Vi(t) are the position and the velocity of
particle i at time t respectively. c1 and c2 are real positive
constants and r1(t) and r2(t) are random values included
in the interval [0, 1]. xbest i(t) is the best position found
by particle i and xGbest(t) is the best position found so far
by all the particles in the swarm.

2.3.2 CS Algorithm
CS is an evolutionary metaheuristic approach that was
first proposed by Xin. [33, 34]. It simulates the reproduc-
tion process of the cuckoos. The CS procedure is based
on three main features: (1) Each cuckoo lays one egg at a
time. He drops it in a nest that he chooses randomly. (2)
The best nests that include eggs (solutions) of good qual-
ity build the members of the new generation. (3) The
number of valid host nests is fixed. The host bird can
detect the foreign cuckoo with a probability Pa ∈ [0,1].
Probability Pa represents the fraction of N nests to be re-
placed by new nests (with new random solutions at new
positions in the search). The quality of a nest (or a so-
lution) is measured according to the fitness function that
varies from one problem to another. CS algorithm is char-
acterized by the Lévy flight which is described in below
subsection.
In order to generate a new solution x(t + 1) for a cuckoo
i, Yang and Deb [44] integrated the Lévy flight in the fol-
lowing way

x i(t + 1) = x i(t) +α⊕ Lév y(λ) (8)

where α > 0 is the step size and is related to the problem
under consideration. In most of the cases, α is assumed
to be unity. ⊕ is the boolean XOR operator.
Lévy flight was proposed by French mathematician
Paul Pierre Lévy [33, 34]. Since its creation, Lévy’s
flight has given theoretical interpretations to several
physical, chemical, biological and natural phenomena.
In fact, Lévy’s flight makes it possible to model random
sequence composed of a large number of steps where the
transitions are based on probabilities. In mathematical
terminology, Lévy’s flight is a random trajectory in
which the distance between the steps has a probability
distribution that is heavily tailed. The distribution of
Lévy is given by (9).

Lév y ∼ u= t(−λ), (1< λ≤ 3) (9)

The step length is calculated by (10)

s =
u

|v|(1/β)
(10)

where u and v are drawn by the normal distribution

u∼ N(0,σ2
u), v ∼ N(0,σ2

v)

with

σu =







Γ (1+ β)sin(πβ2 )

Γ
�

1+β
2

�

β2
(β−1)

2







1/β

where Γ is the gamma function and 0< β < 2.

2.3.3 BAT Algorithm
Proposed by Xin-She Yang in 2010 [32], the optimization
using the BAT algorithm is inspired by the behavior of a
bat. In order to avoid obstacles and to target their prey,
bats send forth some pulses to the environment. The re-
turned echo permits possibility to identify various objects
in the surroundings. BAT algorithm can be employed to
solve continuous optimization problems where the possi-
ble solutions can be represented by the geographical po-
sitions of the bats. The principle of the algorithm is given
below:

• In the space Rn, at a time instant t, each bat i is as-
sociated with a position x i(t) ∈ Rn x t

i and it moves
with a velocity Vi(t) ∈ Rn while emitting a pulse of
frequency fmin.

• At the perception of a prey, frequency, position and
velocity parameters are adjusted according to the re-
lationships (11-13):

fi = fmin + β( fmax − fmin) (11)

Vi(t + 1) = Vi(t) + fi(x i(t)− xbest(t)) (12)

x i(t + 1) = x i(t) + Vi(t + 1) (13)

where β is a random vector and xbest is the position of the
best bat of the group.
In order to search around the best position (xbest), Yang
[45] has proposed a modification in (11-13) which
permits BAT algorithm to consider the solution near the
best position. In this regard, a new solution for each bat is
generated locally using a random sequence given by (14).

xnew = xbest + εA(t) (14)

where A(t) =< Ai(t) > is the average loudness of all
bats computed at the t th iteration and ε ∈ [−1, 1] is an
uniformly distributed random value. A new solution is
accepted if a uniform random number is less than the
current loudness Ai and the current fitness value is better
than that of global best solution. In order to achieve
the balance between exploration and exploitation during
the search process, loudness Ai and pulse emission rate
ri should be updated only if the candidate solution
is improved as the iterations proceed [46]. In each
iteration, the frequency Ai and the amplitude ri are then
updated by (15-16):

Ai(t + 1) = αAi(t) (15)
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ri(t + 1) = ri(0)(1− eγt) (16)

where α and γ are positive real constants satisfying con-
ditions 0< α < 1 and γ > 0.

2.4 The Objective Functions
In this research paper, three criteria are used to exam-
ine the performance. These criteria are ISE, I TAE and
I TSE. The multiplicative term penalizes the error more
at the later stages than at the start and therefore effec-
tively reduces the settling time [35]. The square of the
error function handles both positive and negative values
of the error [35] and consequently guarantees the preci-
sion. The quadrotor attitude control needs good precision
and response thus highlighting the need of fitness func-
tions [47]. The functions ISE, I TAE and I TSE are given
in (17), (18) and (19) respectively:

ISE =

∫ T

0

e2d t (17)

I TAE =

∫ T

0

(t|e|)d t (18)

I TSE =

∫ T

0

te2d t (19)

In order to provide a thorough comparison, each fitness
function is performed for the three algorithms under dis-
cussion i.e. PSO, CS and BAT.

3 Control and optimization algorithms
design

3.1 Attitude Fuzzy Controller
The main objective, here, is to design a fuzzy optimized
controller for the quadrotor attitude stabilization. The
idea of applying the attitude control law on the quadrotor
is to set the first control U1 as a constant value and apply
other commands (U2, U3, U4) so as to let (ϕ,θ ,ψ) follow
their desired values (ϕd ,θd ,ψd) (See Figure 2).

Figure 2. Fuzzy attitude quadrotor control

We considered fuzzy zero order Takagi Sugeno controllers
[2]. These controllers are composed of two inputs and
one output. The inputs are the error in angular po-
sition and its time derivative while the output consists
of the velocities that must be applied to each motor of

the quadrotor system. The choice of the MFs is based
on a typical step response of a second order linear sys-
tem. The error is divided in three cases i.e. error is
positive, negative and around zero. The change in er-
ror is related to the tangent under the step response
and is also described by three angles positive, nega-
tive and around zero (Figure (3). The input and out-
put variables are defined by eleven (11) fuzzy values
called: {P(Posi t ive), Z(Zero), and N(Negative)} for
the error and (Posi t ive), (Zero), and(Negative) for the
time derivative of the error and {NG(Lar geNegative),
N M(MediumNegative), Z(Zero), PM(MeanPosi t ive),
PG(Lar gePosi t ive)} for the output. The distributions of
the MFs on universes of discourse for all inputs-output
are normalized between [−1, 1] except the error change
which is between [−3, 3]. The used MFs as well as their
distributions in universes of discourse are presented in
Figures 3-4.

(a)

(b)

Figure 3. MFs of: (a) Error e (b) Derivative of the error
de

The rules base:
Two main conditions have been considered to design the
rules base: the completeness and the consistency:

• Completeness: ’Rule base’ of a fuzzy system is called
complete if, for each input vector, there is at least one
active fuzzy rule. To ensure this property, the MFs
must cover all possible ranges of the input variables.
We have used uniformly distributed triangular MFs
which satisfy this property.

Figure 4. The output MFs
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• Consistency: ’Rule base’ of a fuzzy system is consid-
ered to be inconsistent, if there are two fuzzy rules
with the same premise but leading to different con-
clusions. This consistency avoids contradictions in
a ‘rule base’. The design rules base used in this re-
search is given in Table IV as an anti-diagonal and
anti-symmetrical form. The rule base has been taken
based on the relevance with a typical response of a
second order system. The essential parameters of
this response have been considered which include;
start of the response, response around setting time
and peak time and response in the vicinity of rise
time and overshoot. Moreover, the response around
the steady state error is also taken into account.

Figure 5 elaborates the design of the fuzzy rule base given
in Table IV. The error indicates presents the difference be-
tween the desired response and the measured one. The
change in the error represents the velocity and the direc-
tion and can bear positive or negative sign. The main
idea involves a representative set of situations taken un-
der typical step response of a second order system. Sim-
ilar approach has been adopted in [50] to design FLC in
MATLAB/Simulink environment. Since the error and its
derivative can have three values (positive, negative and
zero), we have considered a simple rule base correspond-
ing to these three situations for both the error and its
change. The output of the fuzzy controller is defined by
five MFs in order to have good performances particularly
in terms of precision in the response. The overall concept
of the chosen rule base is summarized by nine possible
combined situations for the error and its change as high-
lighted in Figure 5.

• If the error is around zero and the error change is
also zero, this indicates that the system attained the
desired response (situation 9 in Fig. 5).

• If the error or its change is positive and the other
input is negative (situations 3 and 7 in Fig. 5), the
system is near to the desired response with a positive
or a negative velocity. The system is solely guided
by its actual inertia to maintain the controlled angle
near to the desired one.

• The change in the error is zero in the situations 4, 7
and 9 (see Fig. 5), the control action in this case is
related only to the fuzzy value of the error. Due to
this reason, if the error is positive, then the system
does not always reach the desired angle since a pos-
itive control signal is required. On the other hand, if
the error goes negative indicating an overshoot situ-
ation, then it is important to apply a negative com-
mand signal to decrease the error.

• If the error is around zero and the change in error is
positive corresponding to the situation 2 in Fig. 5,
the system must be decelerated slowly with the neg-
ative medium command. On the other hand, if the
change in error is negative (situation 6 in Fig. 5),
the error becomes positive consequently requiring a

Figure 5. Membership and rules determination

positive control action to stabilize the system around
the desired angle.

• If the error and it change have their maximum posi-
tive or negative values (situations 1 and 5 in Fig. 5),
the required actions of applying signals of higher am-
plitudes. The positive values of error and change in
error indicate the situation where the system is very
far from the desired angle and the quadrotor should
be subjected to a strong positive signal. In contrast,
if the error and its change have negative fuzzy val-
ues, the system exhibits an overshoot behavior and
should be slowed by applying an appropriate signal.

It is evident that if the number of rules is small, there is no
necessity to optimize them. The aggregation/implication
method of Zadeh min-max is used in the present research.
Since each rule has a numerical conclusion, so the time
consumed by defuzzification procedure is considerably
reduced comparing with a Mamdani-type controller. In
fact, the output of the Takagi Sugeno fuzzy controller of
zeroth order is given by (20):

y(x) =

∑N
k=1µk(x) fk(x)
∑N

k=1µk(x)
(20)

where µk(x) is the degree to which the i th rule matches
the input, N is the number of active outputs and fk(x) is
the value of the control output.

Error (e)
N Z P

Nde NG N M Z
Error Zde N M Z PM

Change Pde Z PM PG

Table 4. Controller rules base

3.2 Metaheuristic Optimization of Fuzzy Con-
trollers

The proposed optimization approach consists of finding
the most optimal distribution of the outputs fuzzy con-
trollers. Figure 6 illustrates the proposed optimization
strategy to optimize the distribution of the MFs outputs
C1, C2, C3, C4, C5. The key points are summarized be-
low:
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• The fewer number of rules requires no structural op-
timization. Also, optimization of a small number will
not give significant improvement in terms of perfor-
mance.

• The optimization of output MFs allows investigating
the role of optimized distribution of the output sin-
gletons MFs to improve the control performance.

• The modeling of input dynamics by two fuzzy vari-
ables (error and its change) is supposed to be suffi-
cient, hence; the use of singletons MFs for the out-
puts generates limited performance and robustness.
Therefore, the optimization of the output allows ob-
taining best performance in terms of control energy.

• The minimization of the number of parameters to be
optimized is also an important reason given the fact
that the processing time is a function of specifications
of the equipment available to carry out the optimiza-
tion procedure.

The proposed optimization approach can be briefly out-
lined as:

• In order to calculate the FLC, for the first iteration, all
inputs MFs are fixed as shown in Fig. 3. The output
MFs {C1, C2, C3, C4, C5}. of the controller have
a random distribution for each controller Roll, Pitch
and Yaw (Fig. 4),

• With this first output random distribution, the con-
trol law is calculated and applied to the quadrotor.
Three fuzzy control signals u1,u2,u3, u4 are calcu-
lated, u1 has a fixed value,

• Control signals u1,u2,u3, u4 are sent to the quadrotor
actuators and an actual response (φ, θ and ψ) is
obtained,

• The actual response obtained from the quadrotor is
compared with the desired one(φd ,θd and θd) to cal-
culate the error and consequently, an objective func-
tion i.e. the criterion to be minimized (17), (18) or
(19), is numerically evaluated,

• The output of the objective function used by the opti-
mization algorithms BAT, PSO, CS, PEO is then mod-
ified and is subsequently taken as a new distribution
of the {C1, C2, C3, C4, C5},

• This operation is repeated until the stop condition
(number of iterations) is reached. Results of this al-
gorithm is the best {C1, C2, C3, C4, C5} outputs
MFs.

4 Application of algorithms
The quadrotor model presented in Subsection II.2 is used
in simulation to test and characterize the performance of
different algorithms. In order to optimize the fuzzy con-
troller based on the PSO, BAT and CS algorithms, we must
first define the inputs and outputs of these algorithms.

The input is unique for all the cases and is considered in
the criterion to be minimized. Three criteria presented in
section III (ISE, ITAE and ITSE) are tested. The output
is the distribution of singletons of each fuzzy controller
that corresponds to the control of an angle of the quadro-
tor. The choice of the parameters of the metaheuristic
algorithms is an essential task for the improvement of the
algorithmic performance. However, this choice requires
several experiments because each problem requires a set-
ting of parameters depending on the complexity being ad-
dressed and the mean calculation. In this paper, most of
the parameters are chosen experimentally. All algorithms
start with random distributions of the MFs for each out-
put. The performance of the optimized controllers is com-
pared with two supplementary controllers, which are a
PD controller and an integral backstepping controller re-
ported in [51].
The simulation results of the application of PSO, BAT and
CS algorithms on the fuzzy controllers for the quadro-
tor attitude stabilization mainlly include the plots of an-
gles; roll (φ), pitch (θ ) and yaw (ψ). The initial values
of the roll, pitch and yaw angles are set to be 0.5 ra-
dians, 0.5 radians and 0 radians respectively, while the
desired angles are 0 radians for roll and pitch and 0.5
radians for yaw. The simulation is performed using an
intel core i7-2670QR labtop with 2.2 GHz CPU speed
and 8 GB RAM. The distributions of output MFs are ob-
tained by minimizing the criteria ISE, ITAE and ITSE, us-
ing the three algorithms. For each criterion, the corre-
sponding simulation statistics are presented. In the sec-
ond part, we will present the curves of the angles obtained
by the application of these distributions on the fuzzy con-
trollers.Since the range of the error taken into account in
the fuzzy controllers is [-1,+1] rad, the constraints con-
sidered in the optimization are :−1rad ≤ (φ,θ ) ≤1 rad
and −0.5rad ≤ψ≤ 1.5.

4.1 Parameters Selection for PSO, BAT and CS
• PSO: The optimal distribution of singletons is calcu-

lated and is recorded for each iteration using (6) and
(7). The acceleration coefficients c1 and c2, gener-
ally, range from 0-2. In this work, they are chosen as
2. In order to achieve maximum acceleration, r1 and
r2 are considered to have random values with uni-
form distribution. A population size of 20 particles
is used and the number of iterations is selected to be
40.

• BAT: BAT algorithm given by (14-16) is character-
ized by some parameters to run such as; fmin, fmax ,
initial amplitude A(0), initial frequency r(0), num-
ber of bats and number of iterations. These used pa-
rameters are set as follows: Numbero f bats = 20,
A(0) = 0.9, r(0) = 0.9, γ = σ = 0.9 and num-
ber of iterations = 40. The value of fmin has been
chosen as zero whereas the choice of fmax = 0.5
is dictated by iteration-based simulation tests. This
choice is adequate keeping in view the interval be-
tween fmin and fmax in the present control method.
The change in the distribution at each iteration in-
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Figure 6. Proposed optimization approach

fluences the search procedure. The initial amplitude
A(0) decreases with each iteration and is chosen as
its standard value of 0.9. The frequency r must have
an initial value, which in most cases is 0.9. We have
chosen a population size of 20 bats.

• CS: The CS parameters are selected arbitrarily. The
distribution singletons at each iteration are obtained
using Lévy’s flight. The initial population contains 20
cuckoos and the algorithms is executed for 40 itera-
tions during each run. The coefficient of the distri-
bution of Lévy’s flight follows the range 0 < β < 2,
for this reason we have selected β = 1.5.

• PEO: Population Extremal Optimization (PEO) is
based on Lévy’s flight method and hence uses the CS
parameters. PEO is a local search algorithm in which
the number of iteration is equal to 1000.

4.2 Application of the Algorithms for the ISE,
ITAE and ITSE Optimization

The optimized controller is applied to the quadrotor in
regulation mode. Simulation results are obtained after
performing five comparative tests using each algorithm
to obtain the best results in each case as shown in Fig-
ure 7. Five experiments are carried out to avoid the local
minimum. The figure illustrates the time evolution of the
ISE, ITAE and ITSE criteria corresponding to the three al-
gorithms PSO, CS and BAT. In order to provide compact
comparison, these algorithms are compared with a local
search method called Population Extremal Optimization
(PEO) [48]. In general, extremal optimization principle
consists of the elimination of the bad local variables using
a generation of new solution by mutation for the selected
bad variables and encourage the good ones [49]. The ob-
jective of using the PEO algorithm is to compare a local
search method with global search methods like PSO, CS
and BAT. Specifically, the number of iterations has been

selected as 40 for PSO, CS and BAT and 1000 for PEO
given the fact that the later most is a local search algo-
rithm. The results showed that BAT algorithm converged
in 22nd , 27th and 24th iterations for ISE, ITAE and ITSE
respectively in regulation mode (Figure 7). Also, in tra-
jectory tracking mode, BAT converged in 30th , 20th and
15th iterations for ISE, ITAE and ITSE respectively.

Table V and Table VI present the optimization results after
performing PSO, BAT and CS algorithms for three objec-
tive functions (ISE, ITAE and ITSE). The optimization ex-
periments have been conducted in regulation mode (Table
V) and trajectory tracking mode (Table VI) without involv-
ing perturbation terms given in (2). The superior values
are illustrated in bold form. Two simulation experiments
have been selected which present the best and worst val-
ues of the objective functions (ISE, ITAE and ITSE). These
values are superior in case of BAT algorithm compared
with those in PSO and CS algorithms. Since PEO is a local
search algorithm, it is necessary to have an adequate num-
ber of iterations (1000 iteration in this case) for its conver-
gence. The average computation time is minimal for BAT
algorithm compared to CS, PSO and PEO counterparts.
For controlling the quadrotor system, the fitness functions
are complex due to couple of reasons; Firstly, the fuzzy
Takagi-Sugeno controller (19) is a function of the error
and its variation associated with each other in a complex
relationship. Secondly, the optimization consists of simul-
taneously determining 15 parameters (five parameters for
each controller), which is not trivial. Moreover, the func-
tion complexity permits finding various combinations of
parameters corresponding to a same relative fitness value.
As confirmed through literature [34], it is possible to find
different values of parameters corresponding to the same
fitness functions. It can be seen in Table IV and V that
large differences in the values of parameters lead to simi-
lar values of fitness which suggests the flatness of the cri-
terion function.

Page 10 of 37



. .

(a)

(b)

(c)

Figure 7. Time evolution of criteria corresponding to BAT, PSO, CS and PEO algorithms: (a) ISE (b) ITAE (c) ITSE
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(a)

(b)

(c)

Figure 8. Time evolution of criteria corresponding to BAT, PSO, CS and PEO algorithms in trajectory tracking
mode: (a) ISE (b) ITAE (c) ITSE
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(a)

(b)

(c)

Figure 9. Responses of quadrotor angles using output MFs optimized by ISE: (a) φ (b) θ (c) ψ

Page 13 of 37



. .

(a)

(b)

(c)

Figure 10. Control efforts of quadrotor angles using output MFs optimized by ISE: (a) φ (b) θ (c) ψ
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(a)

(b)

(c)

Figure 11. Responses of quadrotor angles using output MFs optimized by ITAE: (a) φ (b) θ (c) ψ
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(a)

(b)

(c)

Figure 12. Control efforts of quadrotor angles using output MFs optimized by ITAE: (a) φ (b) θ (c) ψ
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(a)

(b)

(c)

Figure 13. Responses of quadrotor angles using output MFs optimized by ITSE: (a) φ (b) θ (c) ψ

Page 17 of 37



. .

(a)

(b)

(c)

Figure 14. Control efforts of quadrotor angles using output MFs optimized by ITSE: (a) φ (b) θ (c) ψ
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ISE
Ng Nm Z Pm Pg Best Medium Worst Time(s)

φ -2.6575 -0.7378 -0.2320 2.4333 4.5670 0.0890 0.0895 0.1111 1446
BAT θ -1.9784 -0.8416 0.1180 2.4920 2.7363

ψ -6.3185 -1.8812 0.0821 3.2954 8.3622
φ -1.1419 -1.0930 -0.2199 1.6349 3.2869 0.0910 0.1034 0.1176 1622

PSO θ -4.1912 -2.1897 0.2275 4.3828 5.2394
ψ -4.3356 -1.0985 -0.0249 2.2204 3.8422
φ -1.7800 -1.5771 -0.2291 1.3294 3.0320 0.0952 0.1092 0.1294 2806

CS θ -6.8459 -1.6631 0.3046 2.8121 3.2061
ψ -1.7119 -1.1955 -0.3108 2.1426 2.1660
φ -9.0438 -5.5675 0.4179 0.7069 11.622 0.1296 0.1432 0.1466 1782

PEO θ -9.6840 -8.0357 -0.1388 0.7380 9.106
ψ -1.2958 -0.4464 0.0946 0.2487 9.6693

ITAE
Ng Nm Z Pm Pg Best Medium Worst Time(s)

φ -2.9742 -2.3939 0.0006 1.5876 3.2798 0.0660 0.0839 0.1083 1398
BAT θ -4.7722 -3.2269 0.0517 3.8716 7.8843

ψ -19.1999 -1.3784 0.0464 1.1444 2.214
φ -3.6573 -2.2501 -0.1389 2.2450 3.6834 0.0819 0.0844 0.0937 1603

PSO θ -11.547 -8.6925 0.3164 3.5046 4.9529
ψ -5.5697 -1.8934 0.0700 0.8830 7.1436
φ -1.1947 -0.6325 -0.0077 0.8444 2.7686 0.1077 0.1302 0.1475 3064

CS θ -1.6655 -1.4598 0.0780 0.6682 1.2969
ψ -0.9497 -0.8636 0.0534 0.3954 1.1319
φ -1.2698 -1.0269 0.1051 1.0841 8.7210 0.1340 0.1388 0.1582 1695

PEO θ -6.2907 -3.4333 0.2998 0.7615 2.0024
ψ -12.259 -1.5727 -0.1148 3.7499 8.928

ITSE
Ng Nm Z Pm Pg Best Medium Worst Time(s)

φ -1.6931 -1.5276 0.0037 1.0686 3.8598 0.0064 0.0093 0.0099 1430
BAT θ -2.7691 -2.2412 0.1156 2.3560 4.5540

ψ -2.2445 -1.9483 0.0584 3.9401 4.8000
φ -1.8713 -1.4582 -0.3217 5.8608 10.491 0.0071 0.0099 0.0106 1588

PSO θ -9.1344 -1.0687 -0.2727 1.706 12.207
ψ -1.1258 -0.8304 -0.0716 4.4275 8.3682
φ -4.2465 -1.4388 -0.0127 0.4265 4.2587 0.0092 0.0145 0.0199 3126

CS θ -12.221 -1.5471 0.1955 1.0594 2.899
ψ -25.560 -0.0818 -0.0167 1.3547 1.5723
φ -6.1276 -1.3008 -0.0079 0.5691 0.9104 0.0085 0.0166 0.0179 1706

PEO θ -3.3234 -0.5194 0.1562 8.1039 10.514
ψ -3.6146 -0.8501 -0.0330 0.6688 1.950

Table 5. Optimal values of tuning parameters of the FLC with BAT, PSO, CS and PEO algorithms in regulation
mode

Table VIII presents results of some performance param-
eters such as, Rise Time (RT), Settling Time (ST), Over-
Shoot (OS) and Steady State Error (SSE) achieved using
the optimized controllers.
From values of %OS given in Table VII, we can notice that
the maximum values are offered by the PEO and CS algo-
rithms, however these values are still in acceptable range.
Therefore, further performance comparison includes cal-
culations of mean values of other transient parameters
and SSE as given in (21-23) .

RTmean =
(RTISE + RTI TAE + RTI TSE)

3
(21)

STmean =
(STISE + STI TAE + STI TSE)

3
(22)

SSEmean =
(SSEISE + SSEI TAE + SSEI TSE)

3
(23)

where RTmean, STmean and SSEmean are respectively the
mean values of performance metrics RT, ST and SSE using
ISE, ITAE and ITSE. Obtained results are summarized in
Table IX.
It can be seen that BAT algorithm offers the best perfor-
mance (shown in bold) and CS and PSO cannot compete
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ISE
Ng Nm Z Pm Pg Best Medium Worst Time(s)

φ -4.2380 -4.0518 -0.1773 4.9948 7.8007 0.0403 0.0666 0.0865 1723
BAT θ -5.6264 -1.3738 -0.0859 4.8518 30.2715

ψ -8.1547 -1.2549 0.0274 4.3221 12.9975
φ -10.686 -3.6258 -0.0302 1.4376 3.9623 0.0475 0.0603 0.0909 1904

PSO θ -3.6467 -3.1171 -2.2500 9.3346 18.3859
ψ -10.4762 -4.7786 0.1324 3.0861 8.7258
φ -6.2359 -5.8333 0.3056 1.1822 7.6763 0.0535 0.0791 0.0896 3925

CS θ -4.5420 -1.0922 -0.1348 0.5412 4.3258
ψ -2.0409 -1.3905 0.1516 2.5016 3.1208
φ -15.263 -3.9231 0 4.3264 10.200 0.0921 0.107 0.1190 2210

PEO θ -0.4698 -0.4032 0.0867 0.1849 2.9273
ψ -5.3304 -1.0375 -0.2368 0.3990 10.1084

ITAE
Ng Nm Z Pm Pg Best Medium Worst Time(s)

φ -10.9092 -1.8654 -0.2535 7.6460 31.736 0.2765 0.3746 0.3947 1800
BAT θ -3.3619 -2.2317 -0.2550 6.2953 8.187

ψ -6.7041 -5.0994 0.0699 2.0404 2.0991
φ -21.9113 -3.4139 0.0360 1.0073 1.4765 0.2863 0.3916 0.4195 1896

PSO θ -6.9647 -5.8079 0.0372 1.8132 2.7990
ψ -11.1037 -1.9044 0.1115 0.3171 2.2307
φ -12.6897 -7.5886 0.2216 1.8588 7.2020 0.3579 0.4960 0.5167 3621

CS θ -4.1795 -0.3651 -0.0768 2.4803 3.1174
ψ -1.2485 -1.2349 -0.2516 4.0880 9.8809
φ -4.3315 -2.5050 0.0201 0.5903 0.7773 0.5458 0.5888 0.6548 2236

PEO θ -1.7094 -0.2596 -0.0442 0.4995 4.5958
ψ -1.9557 -0.1520 -0.0022 0.9450 2.6988

ITSE
Ng Nm Z Pm Pg Best Medium Worst Time(s)

φ -11.9873 -6.5219 0.2100 3.5536 11.693 0.0051 0.0074 0.0085 1900
BAT θ -11.2445 -7.8307 0.8329 1.3004 5.0401

ψ -6.3045 -0.1158 -0.0212 2.4890 8.0757
φ -1.3645 -0.8586 -0.0310 1.6132 2.6919 0.0069 0.0086 0.0090 2274

PSO θ -6.8461 -0.7587 -0.0316 0.5797 15.5532
ψ -1.3103 -0.4037 -0.0174 2.2969 4.5436
φ -2.6687 -1.7225 0.0519 0.3826 1.0869 0.0073 0.0079 0.0100 3852

CS θ -3.0136 -2.3838 0.0544 1.4889 1.4970
ψ -1.6863 -0.7100 0.0464 1.9283 12.2456
φ -1.1979 -0.9245 0.0284 0.7254 0.9516 0.0081 0.0108 0.0127 2409

PEO θ -0.3742 -0.3283 -0.0231 0.9583 1.4421
ψ -1.4376 -0.8663 -0.0085 1.1838 1.6208

Table 6. Optimal values of tuning parameters of FLC with BAT, PSO, CS and PEO algorithms in trajectory tracking
mode

with it in most cases. The best results offered by BAT al-
gorithm are more evident in case of ITAE, which can op-
timize the transient behavior as well as steady state re-
sponse. PSO is the second best optimizer demonstrating
best performance in some cases, specially corresponding
to ITSE. However, even in this case, the results given by
BAT algorithm are very near to that of PSO. In terms of
precision in performance, as indicated by the mean val-
ues of SSE, BAT algorithm demonstrates superiority com-
pared to the other algorithms closely followed by PSO al-
gorithm. PEO stands as the last algorithm from perfor-
mances point of view. We can conclude that PEO is not

a good choice for this type of fuzzy controllers used in
quadrotor systems.

4.3 Robustness Tests
The robustness of the proposed optimized controllers has
been tested in the presence of time-varying external dis-
turbances as given in (24).







ζ(φ) = −0.06230sin(0.5t + 50) + ds1
ζ(θ ) = −0.09345sin(0.8t + 30) + ds2
ζ(ψ) = −0.05600cos(t + 20) + ds3

(24)
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ISE
Algo RT (sec) ST (sec) OS (%) SSE
BAT 0.2054 0.2975 3.0301 0.01455
PSO 0.1980 0.2747 3.2908 0.01505

φ CS 0.1885 0.3340 7.3102 0.02497
PEO 0.2886 0.3467 4.4422 0.005
BAT 0.2120 0.6715 8.4956 0.01480
PSO 0.1823 0.2367 3.0683 0.01490

θ CS 0.1688 0.2196 6.1501 0.0250
PEO 1.3642 2.6615 0 0.03021
BAT 0.1727 0.2387 1.3490 0.0035
PSO 0.2792 0.3464 0 0.0050

ψ CS 0.3215 0.4037 0 0.0155
PEO 0.2291 0.4936 8.9696 0.0250

ITAE
Algo RT (sec) ST (sec) OS (%) SSE
BAT 0.2682 0.3460 0.7742 0.0029
PSO 0.2063 0.2819 1.2305 0.0050

φ CS 0.2904 0.3988 3.2354 0.0050
PEO 0.3067 0.4055 0.4552 0.0150
BAT 0.2533 0.3368 1.0538 0.0043
PSO 0.2047 0.3202 1.5297 0.0040

θ CS 0.2691 0.3811 1.1737 0.0050
PEO 0.1965 0.2993 1.3847 0.0049
BAT 0.2340 0.3358 1.0905 0.0007
PSO 0.2292 0.3885 1.1154 0.0045

ψ CS 0.2464 0.3502 1.2071 0.0052
PEO 0.2666 0.3200 0.2184 0.0035

ITSE
Algo RT (sec) ST (sec) OS (%) SSE
BAT 0.2729 0.3536 2.2974 0.0045
PSO 0.1819 0.3853 1.1751 0.0037

φ CS 0.2619 0.5979 8.5539 0.0048
PEO 0.2667 0.6312 9.5000 0.0048
BAT 0.2218 0.3011 1.2129 0.0047
PSO 0.3208 0.4057 0.1320 0.0050

θ CS 0.2093 0.2877 3.0420 0.014
PEO 0.1812 0.2661 6.2559 0.0063
BAT 0.1604 0.2243 1.3788 0.0042
PSO 0.1968 0.2405 2.8998 0.0043

ψ CS 0.2677 0.3287 3.0186 0.0049
PEO 0.2981 0.4001 0 0.0050

Table 7. Performance parameters in transient and in
steady state using ISE, ITAE and ITSE

where ds1, ds2 and ds3 are uniformly distributed ran-
dom signals over the interval [-0.05, 0.05]. ζ(φ), ζ(θ )
and ζ(ψ) are time-varying external disturbances affecting
roll, pitch and yaw respectively. The disturbances consid-
ered include nonlinear dynamics as well as noise. Figure
15 shows the disturbances corresponding to the three an-
gles for testing and comparing the designed controllers in
regulation and trajectory tracking modes. Simulation re-
sults in both modes are illustrated in Figures 16-27 with
the discussion presented in Section V.

Fitness Algorithm RT (sec) ST (sec) SSE
function

BAT 0.196 0.402 0.010
PSO 0.219 0.285 0.011

ISE CS 0.226 0.319 0.021
PEO 0.627 1.167 0.020
BAT 0.251 0.339 0.002

ITSE PSO 0.213 0.330 0.004
CS 0.268 0.376 0.005
PEO 0.256 0.341 0.007
BAT 0.218 0.293 0.004

ITAE PSO 0.233 0.343 0.004
CS 0.246 0.404 0.007
PEO 0.248 0.432 0.005

Table 8. Means of performance parameters in tran-
sient and in steady state using ISE, ITAE and ITSE

5 Discussion
According to Tables V and VI, the worst result in terms of
minimum convergence speed is demonstrated by CS al-
gorithm in all cases while the minimum fitness value is
offered by BAT algorithm. In terms of processing time,
PSO, PEO and BAT algorithms offered nearly the same
time. However, CS algorithm consumed more process-
ing time. BAT algorithm demonstrated an optimal con-
vergence time with a fast processing time. Moreover, it is
also able to reach the minimum value of the fitness func-
tions. PSO algorithm involved a reasonable processing
while demonstrating an average value of the fitness. The
worst of the four algorithms is the CS, which offers longer
processing time and slower convergence. The highest of
minimum fitness function is given by PEO and CS algo-
rithms. Based on that, we can confirm that BAT algorithm
demonstrated relatively superior performance compared
with PSO, PEO and CS algorithms. In overall, BAT algo-
rithm gives uniform MFs distributions in case of tuning in
regulation and trajectory tracking modes.
Quantitatively, BAT algorithm demonstrated 50% less
computation time compared to CS algorithm and 10% less
than PSO and PEO algorithms. In terms of fitness, BAT al-
gorithm over-performs than PSO, CS and PEO algorithms
by a factor of 5%, 15‘% and 50% respectively. According
to these results, the BAT-based FLC is found to be superior
to the other algorithms.
In order to find the appropriate and optimized controller,
PSO, CS, PEO and BAT algorithms have been implemented
on the quadrotor controller in software. Simulation re-
sults of applying optimized FLC are shown in Figures 9-
14. From results of ISE-based optimized FLC (see Figure
8), it is clear that the accuracy offered by BAT algorithm is
superior than demonstrated by the other three algorithms.
This is consistent with results shown in Table VII, where in
most cases, BAT algorithm showed better results in terms
of RT, ST and OS. Figure 10 illustrates the results of the
convergence speed of the controllers, as indicated by the
ITAE criteria. It is evident that BAT algorithm was able
to significantly accelerate the convergence. The results
of ITSE fuzzy based PSO, PEO, CS and BAT algorithms
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(a)

(b)

(c)

Figure 15. External disturbances affecting the attitude dynamics of the quadrotor: (a) φ (b) θ (c) ψ
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(a)

(b)

(c)

Figure 16. Responses of quadrotor angles in regulation mode using optimized MFs by ISE in the presence of
disturbance: (a) φ (b) θ (c) ψ
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(c)

Figure 17. Control efforts of quadrotor angles in regulation mode using optimized MFs by ISE in the presence
of disturbance: (a) φ (b) θ (c) ψ

Page 24 of 37



. .

(a)

(b)

(c)

Figure 18. Responses of quadrotor angles in regulation mode using optimized MFs by ITAE in the presence of
disturbance: (a) φ (b) θ (c) ψ
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(c)

Figure 19. Control efforts of quadrotor angles in regulation mode using optimized MFs by ITAE in the presence
of disturbance: (a) φ (b) θ (c) ψ
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(c)

Figure 20. Responses of quadrotor angles in regulation mode using optimized MFs by ITSE in the presence of
disturbance: (a) φ (b) θ (c) ψ
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(c)

Figure 21. Control efforts of quadrotor angles in regulation mode using optimized MFs by ITSE in the presence
of disturbance: (a) φ (b) θ (c) ψ
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(c)

Figure 22. Responses of quadrotor angles using optimized MFs by ISE in the presence of disturbance: (a) φ (b)
θ (c) ψ
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(c)

Figure 23. Control efforts of quadrotor angles using optimized MFs by ISE in the presence of disturbance: (a) φ
(b) θ (c) ψ
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(a)

(b)

(c)

Figure 24. Responses of angles quadrotor in trajectory tracking mode using optimized MFs by ITAE in the pres-
ence of disturbance: (a) φ (b) θ (c) ψ
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(b)

(c)

Figure 25. Control efforts of angles quadrotor in trajectory tracking mode using optimized MFs by ITAE in the
presence of disturbance: (a) φ (b) θ (c) ψ
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(b)

(c)

Figure 26. Responses of quadrotor angles in trajectory tracking mode using optimized MFs by ITSE in the
presence of disturbance: (a) φ (b) θ (c) ψ
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(b)

(c)

Figure 27. Control efforts of quadrotor angles in trajectory tracking mode using optimized MFs by ITSE in the
presence of disturbance: (a) φ (b) θ (c) ψ
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(Figure 13 and 20) demonstrate that the best response
is offered by BAT algorithm compared with those of the
other optimized controllers. Figure 13 indicates the com-
promise between speed and accuracy. e.g. CS algorithm
offered best speed in case of roll control however, with de-
teriorated accuracy. Same remark holds true for pitch con-
trol using PSO. In contrast, in case of BAT algorithm, this
compromise is taken into account. Comparing the perfor-
mance of the optimized fuzzy controller with that of PD
and backstepping controllers confirmed the superior per-
formance exhibited by BAT based fuzzy controller. PD and
backstepping showed a significant overshoot while requir-
ing more settling time. The existence of oscillations in all
the control signals of PD and Integral backstepping is also
remarked. Results of both modes in the presence of distur-
bances are illustrated in Figures 13-18. These results dic-
tate that the designed controllers are robust against per-
turbations and noise. BAT-based FLC gave the best results
compared to FLC algorithms based on CS, PSO and PEO
in majority of the responses. BAT-based FLC also demon-
strated superior robustness compared with the integral
backstepping and PD control counterparts. Some results
of BAT-based FLC present usual oscillations around the de-
sired responses (Figures 16c, 18c, 20c, 22c,24c and 26c),
indicating the difficulty to control the quadrotor yaw an-
gle.

6 Conclusion
The work presented in this paper consists of metaheuris-
tic optimization of FIS to control a quadrotor system. The
objective was to determine the advantages of the meta-
heuristic algorithms for different objective functions and
to evaluate the best metaheuristic to control attitude of
a quadrotor in the presence of uncertainties and distur-
bances. The outputs MFs distributions of the fuzzy con-
trollers have been optimized by three metaheuristic algo-
rithms; PSO, PEO, BAT and CS. The dynamic quadrotor
model is used in simulation to test the developed com-
mands. The application of the optimized FLC using BAT,
CS, PEO and PSO and comparative results revealed that
BAT algorithm has offered better performance compared
with PSO, PEO and CS algorithms.
In near future, we plan to realize the algorithms under
discussion on a real quadrotor platform. Although the
present work considers the controller design as the sin-
gle problem, however, it is planned to use multi-objective
methods by choosing non-contradictory objective func-
tions for a highly nonlinear and multivariable system like
a quadrotor. Another possible avenue is to focus on BAT
and its variants to control a quadrotor attitude with the fi-
nal objective of designing a full-fledge trajectory tracking
system of a quadrotor.
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7 Appendix

Symbol Nomenclature
ξ Quadrotor’s positions vector
m Total mass
Ω Angular velocity expressed in the fixed frame
F f Total force generated by the four rotors
Fd Drag forces
Fg Gravitational force
Γ f Moment caused by thrust and drag forces
Γa Moment resulting from aerodynamic friction
Γg Moment caused by gravitational force
J Symmetrical inertia matrix

Kax ,Ka y ,Kaz coefficients of aerodynamic friction
Ix ,I y ,Iz , inertia moments

Jr rotor inertia

Table 9. Quadrotors’ nomenclature

The quadrotor’s physical parameters are

m= 1.5 kg; g = 9.81 N ×m; l = 0.45 m;
b = 192.3208× 10−7 N × S2;
d = 4.003× 10−7 N × S2;
Jr = 6.01× 10−5 kg ×m2;
Ix = 15.646× 10−3 kg ×m2;
I y = 15.646× 10−3 kg ×m2;
Iz = 17.175× 10−3 kg ×m2;
kax = 5.5670× 10−4 kg/S;
ka y = 5.5670× 10−4 kg/S;
kaz = 6.3540× 10−7 kg/S.
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