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Abstract: Despite recent advances in therapies including immunotherapy, patients with acute
myeloid leukaemia (AML) still experience relatively poor survival rates. The Inhibition of Apop-
tosis (IAP) family member, survivin, also known by its gene and protein name, Baculoviral IAP
Repeat Containing 5 (BIRC5), remains one of the most frequently expressed antigens across AML
subtypes. To better understand its potential to act as a target for immunotherapy and a biomarker for
AML survival, we examined the protein and pathways that BIRC5 interacts with using the Kyoto
Encyclopedia of Genes and Genomes (KEGG), search tool for recurring instances of neighbouring
genes (STRING), WEB-based Gene Set Analysis Toolkit, Bloodspot and performed a comprehensive
literature review. We then analysed data from gene expression studies. These included 312 AML
samples in the Microarray Innovations In Leukemia (MILE) dataset. We found a trend between
above median levels of BIRC5 being associated with improved overall survival (OS) but this did not
reach statistical significance (p = 0.077, Log-Rank). There was some evidence of a beneficial effect in
adjusted analyses where above median levels of BIRC5 were shown to be associated with improved
OS (p = 0.001) including in Core Binding Factor (CBF) patients (p = 0.03). Above median levels of
BIRC5 transcript were associated with improved relapse free survival (p < 0.0001). Utilisation of
a second large cDNA microarray dataset including 306 AML cases, again showed no correlation
between BIRC5 levels and OS, but high expression levels of BIRC5 correlated with worse survival
in inv(16) patients (p = 0.077) which was highly significant when datasets A and B were combined
(p = 0.001). In addition, decreased BIRC5 expression was associated with better clinical outcome
(p = 0.004) in AML patients exhibiting CBF mainly due to patients with inv(16) (p = 0.007). This study
has shown that BIRC5 expression plays a role in the survival of AML patients, this association is not
apparent when we examine CBF patients as a cohort, but when those with inv(16) independently
indicating that those patients with inv(16) would provide interesting candidates for immunotherapies
that target BIRC5.
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1. Introduction

Acute Myeloid Leukaemia (AML) is defined as a malignant disorder of the bone
marrow (BM) characterised by the clonal expansion and differentiation arrest of myeloid
progenitor cells [1]. AML is difficult to treat, mostly due to its heterogeneity and the
older age group it arises in. AML is now diagnosed in accordance with the World Health
Organisation (WHO) criteria, which was revised in 2016 to integrate new methods of
diagnosis such as updates in genetic data, biomarkers, morphology and immunotherapy [2].
Patient outcomes can be predicted by the cytogenetic abnormalities detected in their
blasts with t(8;21), t(15;17), inv(16), and t(16;16) or biallelic CCAAT/enhancer-binding
protein alpha (CEBPA), a transcription factor that controls proliferation and granulocytic
differentiation, all being associated with favourable prognosis (60% overall survival (OS)
and 90% remission rate) [3,4]. Poor prognostic markers include inv(3), t(3;3), t(6;9), −5,
5q-, −7, 7q- or complex karyotype as these patients are highly resistant to induction
chemotherapy, have higher relapse rates and an OS of just 5–15% [5].

Despite treatments such as maximally intensive chemotherapies and allogeneic stem
cell transplantation, survival rates have remained mostly unchanged for AML patients until
recent years when there has been a significant shift towards the use of novel and effective,
targeted therapies including inhibitors of mutant FMS-like tyrosine kinase 3 (FLT3) [6]
and isocitrate dehydrogenase (IDH), the B cell lymphoma 2 inhibitor venetoclax and the
hedgehog pathway inhibitor glasdegib (reviewed in [7]). Although unique cytogenetic
abnormalities occur in many AML patients, most account for less than 10% of all patients
and few have been found to be suitable targets for therapy with few exceptions [8].

Baculoviral IAP Repeat Containing 5 (BIRC5) is expressed in 60% of adult AML pa-
tient samples and is more frequently expressed than FLT-3 [9], PRAME [10] or Wilms’
Tumour gene 1 (WT1) [11]. It is an apoptosis inhibitor [12] normally found in embryonic
development and absent from normal differentiated tissues. BIRC5 is commonly upreg-
ulated within tumours [13] and its overexpression is associated with a worse prognosis
in a number of different cancer types [14–16], likely due to a failure of programmed cell
death in the affected cells. BIRC5 plays an essential role in mitosis and secures bipolar
chromosome segregation with its molecular partners, Aurora B, Borealin and the inner
centromere protein, playing a key role in chromosomal instability when overexpressed [17].
BIRC5 has been shown to be transcriptionally repressed by wild-type p53 [18] and when
p53 is absent or mutated, BIRC5 overexpression leads to polyploidy.

In 2020, Davis et al. [19] described the identification of genes that were differentially
expressed between adult AML risk subgroups following analysis of The Cancer Genome
Atlas (TCGA-LAML) dataset. Only risk subgroups that included more than 10 patients
were reported on. We found that genes altered in AML were involved in key processes
such as the evasion of apoptosis (BIRC5, WNT1) or the control of cell proliferation (SSX2IP,
AML1-ETO). On this basis, and its relatively high frequency of expression in AML, we
examined BIRC5, its molecular interactions, its potential as a biomarker and target for
therapy in AML, further.

2. Results
2.1. BIRC5 Expression in Healthy Blood Cells

Using BloodSpot [20] we found that BIRC5 was predominantly expressed in the early
promyelocyte lineage, common myeloid progenitors megakaryocyte/erythroid precursor
(MEP) and multipotent progenitors (Figure 1A).

2.2. Pathway Analysis

We examined the pathways that BIRC5 engages in using in silico searches and RNA-
seq data based on our own previous studies [19]. We found that BIRC5 directly engages
with genes involved in pathways associated with the hallmarks of cancer [21] (Figure 1B;
Table S1) including apoptosis and mitosis.
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Figure 1. BIRC5 expression in health and disease. (A) BIRC5 expression was analysed in healthy FACs sorted blood cells and
analysed using the BloodSpot dataset (accessed on 27 March 2021; [20]). Expression was shown to be highest in myelocytes
(MY), late promyelocytes (late_PM), early promyelocytes (early_PM), common myeloid progenitors (CMP), megakaryocyte/
erythroid precursor (MEP) and multipotent progenitors (MPP). No expression was detected in haematopoietic stem cells
(HSC) and metamyelocytes (MM) with decreased expression in band cells (BC) and polymorphonuclear cells (PMN);
(B) interactions between BIRC5 and other proteins in adult AML based on peer-reviewed published data (caspases [23–25];
p53 [22,26,27]; C-Myc [28]; Wnt/β-catenin [29]; CDK4; [30]; mitotic spindle formation [31,32]; BAC/BAX/DIABLO [24,33]).
Values above the arrows indicate the p-values of the relationships between the two gene probesets following analysis using
the Microarray Innovations In Leukemia (MILE) dataset [34] (Table S1).

BIRC5 is periodically expressed during the cell cycle, with weak expression in G1,
multiplied by six in the S phase and by more than 40 in G2/M. During mitosis BIRC5 is
involved in spindle assembly checkpoint and cytokinesis. BIRC5 is downregulated by p53
to allow apoptosis to occur and in this way regulates cell proliferation and cell death [22].

2.3. Gene Expression Analysis
2.3.1. BIRC5 Expression and Clinical Features of AML

Examination of the relationship between each BIRC5 probesets and the clinical features
of adult AML (MILE; dataset A) showed a significant difference in BIRC5 expression
between genders, Nucleophosmin 1 (NPM1) mutation and wild type (WT), M6 and all other
French American British (FAB) subtypes (M0–M5, M7), and M7 and all other FAB subtypes
(M0–M6) (Figures 2A and 3). Analysis of BIRC5 transcription showed elevated levels in M6
and decreased levels in the M7 FAB subtypes. M6 is also known as erythroleukaemia or Di
Guelielmo Syndrome and is typified by the myeloprofileration of erythrocyte precursors
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while M7, also known as acute megakaryocytic leukaemia, accounts for only 1% of all adult
AML cases and arises from immature platelet precursors, unlike the other FAB subtypes
(M0–M5) which occur in immature leukocytes. In addition, patient numbers in the M6 and
M7 FAB subgroups were very low (n = 3 each) (Figure 2A) making this data observationally
interesting but in need of more patient numbers for verification.
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Figure 2. BIRC5 expression in disease. BIRC5 expression was (A) elevated in the FAB M6 subtype of AML and decreased in
the M7 subtype in comparison to all other FAB subtypes although patient numbers in rare subgroups were small (n = 3 per
group). BIRC5 expression was (B) elevated in patients with complex cytogenetic abnormalities when compared to all other
cytogenetic groups in the BloodSpot dataset. Y-axis shows log2 expression in each graph.
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Figure 3. Association as indicated by p-values between BIRC5 and patient clinical features in adult AML (MILE; dataset A).
NS: not significant.

2.3.2. BIRC5 Expression Correlates with Poor Outcome Cytogenetics

BloodSpot data indicated that the highest expression of BIRC5 was in AML patients
with complex cytogenetic abnormalities compared (Figure 2B) with all other cytogenetic
abnormalities while MILE data indicated a correlation between higher levels of BIRC5 and
poor prognosis cytogenetics (p = 0.02).

2.3.3. BIRC5 Expression Correlates with Genes Involved in Cell Cycle

Expression of BIRC5 correlated with a number of genes involved in cell cycle regu-
lation (Figure 4A) as demonstrated through gene expression analysis of the MILE data
and using the search tool for recurring instances of neighbouring genes (STRING) analysis
(Figure 5A). The highest correlation between BIRC5 expression was with cyclin B2 (CCNB2)
which showed elevated expression in AML patients with 11q23 and t(15;17) (Figure 5B).
Inverse correlations were also found with myelin protein zero-like 1 expression (MPZL1),
Never in mitosis gene a-related kinase 11 (NEK11) and protocadherin gamma subfamily B,
4/8 (PCDHGB4/A8) (Figure 4B). Although not in the top 10 associations shown, there was a
close association between BIRC5 and SSX2IP (Figure 5C) expression. SSX2IP has previously
been shown to be associated OS in AML patients that are cytogenetically normal (CN) [35],
with cell cycle, and specifically CDC20 [36] and downregulated in t(8;21) patients [36].
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Probeset Gene  Symbol r p value 
210210.at myelin protein zero-like 1  MPZL1 −0.44 z.55e-19 
219542_at NIMA (never in mitosis gene a)- related kinase 11  NEK11 −0.43 5.62e-19 
210368_at protocadherin gamma subfamily B, 4/8 PCDHGA8 /// PCDHGB4 −0.43 1.16e-18 
213936_x_at surfactant pulmonary-associated protein B  SFTPB −0.43 1.24e-18 
214815_at Tripartite motif-containing 33  TRIM33 −0.43 2.33e-18 
216682_s_at family with sequence similarity 48, member A  FAM48A −0.43 3.50e-18 
220036_s_at limb region 1 homolog (mouse)-like  LMBR1L −0.43 3.96e-18 
214650_x_at myelin oligodendrocyte glycoprotein  MOG −0.42 6.65e-18 

 
(B)

Figure 4. Genes with the greatest (A) positive and (B) negative correlation with BIRC5 expression (202095_s_at).
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Figure 5. BIRC5 molecular interactions (A) STRING analysis indicated that BIRC5 was co-expressed with a number of
cell cycle related proteins, including Cyclin B2 (CCNB2); (B) Cyclin B2 (202705_at) was found to be elevated in 11q23
patients (p = 0.002); (C) SSX2IP (203015_s_a5; y-axis) and BIRC5 (202095_s_at; x-axis) expression were associated (r = 0.301);
(D) BIRC5 showed a correlation with WT (green balls) rather than mutated FLT3 (blue balls) in patients from the MILE
study (p = 0.03). Probe 202095_s_at expression is shown in each panel but represents the results with each BIRC5 probe.

2.3.4. BIRC5 Expression Correlates with WT but Not Mutated FLT3

BIRC5 has previously been shown to mediate blast cell proliferation in mice with
Flt3-ITD [37], however, in the MILE dataset, BIRC5 expression was found to show a corre-
lation with WT rather than mutated FLT3 (Figure 5D).

2.3.5. BIRC5 Is Associated with Disease/Relapse Free Survival, but Not OS, in Adults
with AML

When examining the MILE data/dataset A there were no correlations between above
and below median levels of BIRC5 and trial, age, sex, cytogenetics, performance status,
secondary disease or white blood cell counts. However OS showed a trend with BIRC5
present calls (Figure 6Ai) while relapse/disease free survival was significantly associated
with BIRC5 present calls (Figure 6Bi) although this association was not found in CBF
patients when examined alone (Figure 6Aii,Bii).
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Figure 6. Above median levels of BIRC5 is associated with increased OS rates and disease-free survival (MILE/dataset A).
(A) There was a trend towards above median levels of BIRC5 being associated with improved OS but this did not reach
statistical significance (i) for the whole cohort or (ii) when examining CBF patients alone; (B) examination of disease free
survival and its association with above and below median BIRC5 levels reached significance when examining (i) the whole
MILE dataset but (ii) was not indicated when examining CBF patients alone; (C) there was no association between above or
below BIRC5 levels and relapse for either (i) the whole MILE dataset or (ii) CBF patients alone. p-values from Log-Rank
analysis. Black line absent; red line present.

In adjusted analyses neither level nor present calls associated with complete remission
(CR) rates. However, there was no difference in BIRC5 levels between those patients who
relapsed and those who did not (Figure 6Ci) even when examining the CBF group alone
(Figure 6Cii). BIRC5 levels did not correlate with overall remission (OR) hazard ratio
(HR) 0.85 (0.52–1.37) p = 0.5 and similarly BIRC5 present calls did not correlate with OR,
0.74 (range 0.39–1.40) p = 0.4 in the whole cohort or when examining Core Binding Factor
(CBF) patients alone, 1.09 (range 0.05–22.45), p = 0.9.

There was some evidence of a beneficial effect, in adjusted analyses, where above
median levels of BIRC5 were shown to be associated with OS 0.65 (0.51–0.84) p = 0.001
which was maintained when CBF patients were analysed alone HR 0.16 (0.03–0.90) p = 0.03.
There was a beneficial effect, in adjusted analyses, between above median BIRC5 levels
and relapse free survival HR 0.51 (0.37–0.70) p < 0.0001 which was not significant when the
CBF patients were examined alone 0.30 (0.08–1.20) p = 0.08.

Below median levels of BIRC5 were associated with elevated relapse rates in AML
patients in adjusted analyses HR 0.54 (0.38–0.76) p = 0.0005 but this was not observed
maintained when the CBF group of AML patients were analysed alone HR 0.37 (0.09–1.49)
p = 0.15.
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In order to further address the impact of BIRC5 expression on AML patient sur-
vival, we evaluated its expression in a second independent microarray data set (referred
to as the cDNA/data set B). This microarray data derived from AML cases compris-
ing all cytogenetic AML subgroups [38] and again showed there was no correlation be-
tween BIRC5 expression levels and age, BM blasts, lactate dehydrogenase (LDH), pre-
ceding malignancy or OS. However, we observed a correlation with distinct cytogenetic
groups with significantly higher expression levels of BIRC5 in AML cases with mono-
somy 7/loss of 7q or a t(15;17) (one-way analysis of variance, p < 0.001; data not shown).
In 138 CN-AML cases [39] we found no significant correlation with the prognostically
relevant genotype NPM1-mutated/FLT3-ITD-negative. However, in Core Binding Factor
(CBF)-AML cases [40] lower BIRC5 expression was associated with better clinical outcome
(p = 0.004, Figure 7A). Notably, this was mainly due to inv(16) cases with low BIRC5
expression (p = 0.007, Figure 7B). For AML cases with t(8;21) we found no significant dif-
ference (data not shown), despite the fact that BIRC5 seems to be a critical regulator of
AML1/ETO-induced oncogenicity in AML [41]. In data set B we found an association
between BIRC5 and FLT3 wild-type status (p = 0.041) and with days in remission (p = 0.028).
In dataset A/MILE, high expression levels of BIRC5 correlated with worse survival in
inv(16) patients too (p = 0.077, Figure 7C) with highly significant findings when data from
both studies were combined (p = 0.001, Figure 7D).
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Figure 7. Correlation of BIRC5 mRNA expression with OS in patients with CBF-AML. (A) Correlation of BIRC5 mRNA
expression levels with OS in 93 CBF cases (data set B, log-rank test, p = 0.004); (B,C) correlation of BIRC5 expression with
OS in 55 (data set B, Log-Rank test, p = 0.004) and 22 inv(16) cases, respectively (dataset A, Log-Rank test, p = 0.077);
(D) correlation of BIRC5 expression with OS in the combined inv(16) data set (data sets A and B, Log-Rank test, p = 0.001).
The terms “high” or “low” BIRC5 expression refer to an expression greater and lower than the median expression across all
AML samples, respectively.

3. Discussion

BIRC5 has been shown to play essential roles in cell cycle progression and mitosis.
It binds with the chromosomal passenger complex (CPC) and Aurora-B kinase in the
nucleus, leading to correct mitotic spindle formation [32]. Conversely, BIRC5 depleted cells
have been shown to exit mitosis with incorrect chromosomal alignment [31] and this is
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supported by the gene correlations between BIRC5 and other gene products involved in the
formation of the mitotic spindles identified in this study. Although Bloodspot showed that
the highest levels of BIRC5 were present in patients with complex karyotypic abnormalities,
it also showed there was no significant difference in the levels of BIRC5 expression in
haematopoeitic stem cells and patients with inv(16), t(8;21), 11q23 or t(15;17). We have
previously shown that BIRC5 was associated with different 11q23/MLL abnormalities
in adults with B-cell acute lymphocytic leukaemia [42] and in this study elevated BIRC5
expression was found in adult AML patients with complex cytogenetic abnormalities.

Our findings support data already generated in solid tumours showing a strong
correlation between BIRC5 expression and AURKB, PLK1, TPX2, KIF2C and cyclin A2
expression [43–45]. Several clinical studies are ongoing with the therapeutic aim of inhibit-
ing AURKB [46] in an effort to target genes involved in the “BIRC5 cancer network” and
clinical responses indicate a central role of this pathway in proliferating leukaemic cells.
Indeed, many of the genes that BIRC5 has been shown to interact with are cell cycle related
and for exemplification, the most significant association between BIRC5 and any other gene,
in this study, was with Cyclin B2. Cyclin B2 has been shown to stimulate the proliferation
of triple negative breast cancer cells [47] and to alter mitotic spindle checkpoint control
leading to the genomic instability seen in cancer [48]. In addition, Cyclin B2 has been shown
be an independent prognostic biomarker in invasive breast cancer [49]. Using selective
siRNA-mediated silencing to decrease the expression of BIRC5 has been shown to increase
the sensitivity of colon epithelial cells to CDK inhibitors suggesting a mechanistic basis for
the preclinical development of future CDK inhibitor-based therapeutic strategies [50].

We also found a correlation between increased BIRC5 expression and FLT3 WT, a
correlation that has not been identified in AML patient samples previously, with other
studies of the interactions between BIRC5 and FLT3-internal tandem duplication (ITD)
being made predominantly through cell line studies and mouse models. For example
other investigators have shown that BIRC5 mediates acute leukaemia in mice induced by
Flt3-ITD [37] and that BIRC5 confers resistance to FLT3 inhibitors [51]. In addition, FLT3
inhibitors have been shown to cause anti-proliferative activity, in leukaemia cell lines with
FLT3-ITD, through the downregulation of MCL-1 and BIRC5, the latter via the STAT3/5
pathway [52].

We have previously described the role of many leukaemia associated antigens (LAAs)
in cell cycle [53] and the association between BIRC5 and the expression of LAAs such as
Synovial Sarcoma X breakpoint 2 interacting protein (SSX2IP) and hyaluronan-mediated motility
receptor (HMMR; RHAMM) expression (p < 0.001) has been described [35,54,55]. Indeed,
we have described a better outcome in AML patients co-expressing LAAs such as HMMR,
CA9, PRAME and SSX2IP which are associated with cell proliferation in vitro [36,56].

CBF is a heterodimeric protein complex involved in the transcriptional regulation of
normal haematopoiesis. Mutations in CBF-encoding genes (such as t(8;21) and inv(16))
result in leukaemia-associated proliferative advantages. CBF-AML accounts for around
20% of all AML patients and is often associated with improved outcomes compared to
other subtypes of AML. However, it should be noted that although modern therapies
may improve remission rates, they often lead to relapse, meaning the development of
targeted therapies is still needed for improved outcomes. There was an association between
decreased BIRC5 expression and improved clinical outcomes due to inv(16) but this same
association was not seen with t(8;21) patients despite AML-ETO being a critical regulator
of BIRC5 in AML [41]. Although we did not find that above or below median expression of
BIRC5 correlated with OS, we did find that above median expression of BIRC5 correlated
with relapse-free survival (MILE dataset) and while inv(16) correlated with low BIRC5
levels in the cDNA/Dataset B, the correlation between inv(16) and above median levels of
BIRC5 and poorer survival were more obvious following the combination of both datasets
in this study. This may reflect the higher percentage of inv(16) patients in the CBF cohort
in dataset B compared with dataset A.
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BIRC5 has been targeted by immunotherapy in a number of ways (recently reviewed
in [57]) including through combined treatment with YM155, a novel small molecule tran-
scriptional inhibitor of BIRC5 which when used with chemotherapeutic agents can increase
drug efficacy on AML cells [58]. Although BIRC5 is an intracellular protein and therefore
not a good target for CAR-T therapies, BIRC5-peptide mediated immunotherapy has been
shown to exhibit low toxicity in clinical trial and can increase BIRC5 peptide-specific CTLs
that kill cancer cells [59]. Alternatively genetically modified TCRs could be used to tar-
get BIRC5 expressing cancer cells [60], especially because of its wide overexpression in a
number of tumour types including leukaemia and with regard to this study AML.

In summary, BIRC5 expression appears to be able to predict better outcomes at least
in a subset of CBF-AML cases (those with inv(16)) suggesting that this LAA may provide
an immunologically relevant personalised target for a sub-group of AML patients.

4. Materials and Methods
4.1. BIRC5 Expression in Healthy Haematopoietic Cells

The BloodSpot database [20] includes 23 high-quality curated data sets relevant to
normal and malignant blood formation and, in addition, includes a unique integrated
data set, called BloodPool. The effect expression had on the OS, was observed via the use
of Bloodspot [20] an online microarray database containing expression and clinical data.
The MILE study is a multi-laboratory database containing more than 3000 whole genome
microarray analysis [34]. It was headed by the European Leukemia Network (ELN) and
sponsored by Roche Molecular Systems, Inc. (Pleasanton, CA, USA).

4.2. BIRC5 Protein Interaction Analyses

Relationships between BIRC5 and other genes/proteins were established using Kyoto
Encyclopedia of Genes and Genomes (KEGG; www.kegg.jp), STRING (https://string-
db.org/ accessed on 27 March 2021 [61]), WEB-based Gene Set Analysis Toolkit and a
comprehensive literature was performed searching for the interactions between proteins
with BIRC5. Confirmation of the correlation between gene transcripts and BIRC5 was
determined using the MILE dataset (GSE13159). When multiple probe sets were available
for BIRC5 the following were used: 202094, 208052 and 212399.

4.3. Association between Genes and Clinical Features

Examination of the relationship between each BIRC5 probeset and the clinical features
of adult AML was performed using data generated by the TCGA research network:
http://www.cancer.gov/tcga (accessed on 27 March 2021). The association between BIRC5
levels in samples from patients with NPM mutation and WT, FLT3-ITD and FLT-WT, and
all FAB subtypes were examined.

The MILE/Data set A comprised 312 AML samples including 180 CN-AML and
63 CBF samples including 31 cases with t(8;21) and 32 with inv(16). Samples were analysed
using Affymetrix human genome U133A 2.0 or human genome U133 Plus 2.0 microarrays
(Cardiff/MILE/data set A, [34]). cDNA/Dataset B comprised 306 AML samples including
168 CN cases and 93 CBF leukaemias including 38 cases with t(8;21) and 55 with inv(16),
each analysed by 40k cDNA microarrays [39,40].

With regard to both datasets, gene expression profiling (GEP) was performed as
previously described [38] using Affymetrix microarray technology in accordance with the
manufacturer’s recommendations. Fluorescence ratios were normalised by applying the
RMA Log2 values and any batch effect removed using Partek Genomics Suite (St Louis,
MO, USA). In selected cases, BIRC5 GEP data was validated by quantitative RT-PCR as
previously reported [56].

For the correlation with survival data, expression values were dichotomised by the
median expression of the respective gene across all AML samples and statistical analyses
were performed as described previously [38,56].

www.kegg.jp
https://string-db.org/
https://string-db.org/
http://www.cancer.gov/tcga
http://www.cancer.gov/tcga


Int. J. Mol. Sci. 2021, 22, 10482 11 of 14

5. Conclusions

Analysis of independent AML datasets using different microarray platforms showed
that in AML BIRC5 mRNA expression is strongly associated with the expression of AURKB,
PLK1, TPX2, HMMR and SSX2IP as well as other important cell cycle associated genes.
Downregulation of this complex system involved in tumorigenesis might provide impor-
tant targets for tumour cell control in acute leukaemias. We also showed that patients with
CBF AML, and particularly patients with inv(16), who have above median levels of BIRC5,
have poorer survival outcomes. This indicates that those AML patients with inv(16) would
provide interesting candidates for immunotherapies that target BIRC5.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms221910482/s1, Table S1: Significance of the relationship between BIRC5 and the expres-
sion of other genes in AML patients (DOI:10.5281/zenodo.4923749).
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