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Abstract The diverse composition and structure of

extracellular matrix (ECM) interfaces encountered by

tumor cells at secondary tissue sites can influence meta-

static progression. Extensive in vitro and in vivo data has

confirmed that metastasizing tumor cells can adopt differ-

ent migratory modes in response to their microenviron-

ment. Here we present a model that uses human stromal

cell-derived matrices to demonstrate that plasticity in

tumor cell movement is controlled by the tumor-associated

collagen receptor Endo180 (CD280, CLEC13E,

KIAA0709, MRC2, TEM9, uPARAP) and the crosslinking

of collagen fibers by stromal-derived lysyl oxidase (LOX).

Human osteoblast-derived and fibroblast-derived ECM

supported a rounded ‘amoeboid-like’ mode of cell migra-

tion and enhanced Endo180 expression in three prostate

cancer cell lines (PC3, VCaP, DU145). Genetic silencing

of Endo180 reverted PC3 cells from their rounded mode of

migration towards a bipolar ‘mesenchymal-like’ mode of

migration and blocked their translocation on human

fibroblast-derived and osteoblast-derived matrices. The

concomitant decrease in PC3 cell migration and increase in

Endo180 expression induced by stromal LOX inhibition

indicates that the Endo180-dependent rounded mode of

prostate cancer cell migration requires ECM crosslinking.

In conclusion, this study introduces a realistic in vitro

model for the study of metastatic prostate cancer cell

plasticity and pinpoints the cooperation between tumor-

associated Endo180 and the stiff microenvironment

imposed by stromal-derived LOX as a potential target for

limiting metastatic progression in prostate cancer.
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EMT Epithelial to mesenchymal transition

EphA2 Ephrin type-A receptor 2

FBS Fetal bovine serum
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FMNL2 Formin-like 2

GAPDH Glyceraldehyde 3-phosphate dehydrogenase

GFP Green fluorescent protein

HRP Horse radish peroxidase

IFB Immnofluorescence buffer

LOX Lysyl oxidase

MBD Metastatic bone disease

MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide

MLC2 Myosin light chain-2

N-WASP Neuronal Wiskott–Aldrich syndrome protein

PAK2 p21 protein (Cdc42/Rac)-activated kinase 2

PBS Phosphate buffered saline

PDK1 Pyruvate dehydrogenase kinase, isozyme 1

RasGRF2 Ras protein-specific guanine nucleotide-

releasing factor 2

ROCK Rho associated protein kinase

shSCN shEndo180 scrambled control

SOX2 SRY (sex determining region Y)-box 2

TGFb1 Transforming growth factor-beta-1

TGFb1R Transforming growth factor-beta-1 receptor

uPARAP Urokinase plasminogen activator receptor

associated protein

Introduction

Metastatic bone disease (MBD) affects approximately 1

million advanced cancer patients per annum in the EU,

USA and Japan; and estimates suggest that approximately

one fifth of MBD cases result from advanced prostate

cancer [1]. MBD is normally accompanied by the presence

of additional metastatic lesions in visceral organs. How-

ever, in vitro experimental systems used to study putative

metastatic targets tend to overlook the precise composition,

organization and bioactivity of human bone and visceral

tissues. The de novo extracellular matrix (ECM) produced

by human trabecular bone osteoblasts is abundant in the

minerals, proteins and growth factors found in normal

human bone, which provides an accurate biomaterial to

study therapeutic targets in the context of MBD [2–4].

Likewise, human fibroblast-derived ECM has been used to

develop more realistic in vitro models of human cancer

localized in visceral tissue in which its influence on ther-

apeutic strategies can be considered [5, 6].

Tumor cells can adopt different modes of migration

during metastasis. Three modes of tumor cell migration

include grouped, bipolar and rounded, which respectively

involve: (a) collective ‘epithelioid-like’ cell clusters

directed by a leader cell; (b) ‘mesenchymal-like’ translo-

cation of single cells coordinated by forward protrusion

and rear retraction of the plasma membrane; and

(c) ‘amoeboid-like’ forward translocation of singular

spheroidal cells [7, 8]. Tumor cells can switch back-and-

forth between different modes of migration in response to

external and/or internal cues. This type of morphological

plasticity is a feature of the epithelial-to-mesenchymal,

mesenchymal-to-amoeboid and collective-to-amoeboid

transitions that occur during tumor progression [9, 10]. The

‘amoeboid-like’ cell phenotype predominates at the inva-

sive edge of high-grade tumors [11] and has been identified

as an escape mechanism from some anti-invasive strategies

[12]. Tumor cells engaged in this rounded mode of cell

migration do not require focal adhesion turnover as they do

for bipolar ‘mesenchymal-like’ migration [13]. Instead

rounded cell migration is driven by the spatial localization

of integrins and cytoskeletal regulators at the posterior

plasma membrane [14, 15] and generation of RhoA and

Rho kinase associated protein kinase (ROCK)-based acti-

nomyosin contractile signals [16].

The type I transmembrane collagen receptor Endo180

(CD280, CLEC13E, KIAA0709, MRC2, TEM9, uPARAP)

is as a strong prognostic indicator for prostate cancer sur-

vival [17, 18]. Within this context Endo180 functions as a

modulatory switch for epithelial-to-mesenchymal transition

(EMT), and pro-invasive behavior in normal prostate

epithelial cells triggered by increased crosslinking and

stiffness of the basement membrane following its exposure

to advanced glycation end-products (AGEs) [17, 18]. The

pro-migratory and pro-invasive role of Endo180 involving

the promotion of RhoA-ROCK-based actinomyosin con-

tractility at the cell posterior [17–19] has been confirmed in

a range of tumor and stromal cell types, both in vivo and

in vitro, using ectopic over expression, genetic silencing,

genetic ablation or targeted blockade of receptor function

[17–30]. Given the expression of Endo180 observed in

tumor cell foci in metastatic bone lesions [4], and increased

levels of soluble Endo180 in the serum of patients with

visceral and bone metastases [31], we hypothesized that

Endo180 can regulate prostate cancer cell plasticity on the

bone-like ECM derived from human osteoblasts and vis-

ceral tissue-like ECM derived from human fibroblasts.

Lysyl oxidase (LOX) is a copper-dependent amine

oxidase that is produced by osteoblasts and fibroblasts to

give tissue its structural support and mechanical stiffness

by crosslinking the adjacent collagen fibers that they

deposit as part of the ECM [32, 33]. LOX plays a funda-

mental role in metastasis [34–37], including the formation

of the pre-metastatic lesions in bone that are colonized by

circulating tumor cells and expand into occult osteolytic

metastases [38]. Considering the positive cooperation

between tumor-associated Endo180 and AGE-dependent

crosslinking and stiffness of basement membrane matrix

[18], we hypothesized that Endo180-dependent prostate
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cancer cell migration cooperates with LOX-dependent

crosslinking of the ECM derived from human osteoblasts

and fibroblasts.

Materials and methods

Cells and cell culture

For osteoblast isolation approximately fifty post-operative

human trabecular bone chips of 1–2 mm2 were washed

thoroughly in PBS to remove hematopoietic cells and

incubated for 2 h at 37 �C in 10 ml of 1.2 mg/ml type IV

collagenase diluted in DMEM (Invitrogen Ltd. Paisley,

UK). Supernatants containing digested cellular components

([107 cells) were harvested and cultured at 37 �C in 5 %

CO2 in a 1:1 mix of DMEM and F-12 medium (Invitrogen

Ltd.) supplemented with 10 % v/v FBS (First Link UK

Ltd., Birmingham, UK), 2 mM L-glutamine, 100 U/ml

penicillin, 100 mg/ml streptomycin and 0.25 mg/ml

amphotericin B (Invitrogen Ltd.). Primary human osteo-

blasts and HCA2-hTERT human fibroblasts were main-

tained in DMEM ?10 % v/v FCS, 1 mM penicillin/

streptomycin and 2 mM L-glutamine.

PC3, DU145 and VCAP cells were maintained in RPMI

medium (Invitrogen Ltd.) ?10 % v/v FBS, 1 mM peni-

cillin/streptomycin and 2 mM L-glutamine. Endo180

knockdown and control cells were generated by transfec-

tion (Qiagen Superfect) of PC3 cells with the shRNA

vector pRNATin-H1.2/Hygro containing coral GFP (Anti-

bodies-Online GmbH, Aachen, Germany) and shEndo180

or non-targeting shEndo180 scrambled control (shSCN)

sequence inserts [26, 39] that were evaluated previously to

rule out any off-target effects on other pro-migratory and

pro-invasive proteins [17, 19]. Transfected cells were

selected in fully supplemented DMEM containing hygro-

mycin-B (20 lg/ml) (Santa Cruz Biotechnology Inc.,

Heidelberg, Germany, UK). PC3 cells were transfected

with the pcDNA3-Endo180 or empty pcDNA3 vector using

lipofectamine and selected with G418 (0.5 mg/ml), as

previously described [26, 39].

Matrix preparation and analysis

Rat type I collagen derived from rat tails was commercially

sourced (#354236, BD Biosciences, Oxford, UK) and used

at a concentration of 50 lg/ml in 0.02 M glacial acetic acid

to coat wells following the manufacturers instructions. For

human cell-derived ECM production HCA2 fibroblasts and

primary human trabecular bone osteoblasts were seeded at

a density of 1.5 9 104 cells per well in 96-well plates

(#CLS3595, Corning� Costar�). Confluent cultures of

HCA2 fibroblasts were stimulated with 2 mM ascorbate to

induce the production of native ECM. Confluent cultures of

primary human trabecular bone osteoblasts were stimulated

with 100 lM ascorbate, 10 nM dexamethasone and 10 mM

b-glycerophosphate to induce mineralized ECM production

as previously described [2, 4]. Stimulation media were

replaced every 2 days. After 10 days cells were washed

with PBS (3 9 5 min) and removed by three successive

freeze–thaw cycles (in PBS) and incubation in 1 % w/v

sodium deoxycholate for 5 min. Resulting decellularized

matrices were washed with PBS (5 9 5 min) before use.

Mineralization was determined by von Kossa staining

(5 % w/v silver nitrate), as previously described [4].

BAPN (0.1–1.0 mM) was included in stimulation media

of fibroblasts and osteoblasts during the 10-day period of

matrix generation to inhibit LOX-dependent type I colla-

gen fiber crosslinking. After 10 days the matrices gener-

ated in the presence of BAPN were decellularized. The

inhibitory effect of BAPN on collagen crosslinking in

fibroblast-derived ECM and osteoblast-derived ECM was

ascertained by adapting a previously described method

[37]. In brief, decellularized ECM derived from fibroblasts

and osteoblasts (untreated or treated with BAPN) were

immunostained with rabbit anti-human type I collagen

polyclonal antibody (R1038X, Acris Antibodies GmbH,

Herford, Germany) and secondary anti-rabbit Alexa Fluor

488-conjugated IgG (Invitrogen Ltd.). Images of the type I

collagen fibers present in fibroblast-derived ECM and

osteoblast-derived ECM were acquired using Image

XpressMICRO (IXM) (Molecular Devices UK Ltd., Wok-

ingham UK) [4]. The curvature ratio (defined as x/y, where

x = the total length of each fiber and y = the linear dis-

tance between the start and end of each fiber) was calcu-

lated using Image J software (arbitrary units) in images of

type I collagen fibers. The same images were processed

using Metamorph� software (Molecular Devices UK Ltd.)

to calculate integrated fluorescent signal intensity per unit

area (lm2) using a modification of a protocol used to cal-

culate the integrated fluorescent signal intensity of type I

collagen fibers per cell [4].

Cell morphology and migration assays

Cells were seeded at a density of 2 9 103 cells per well on

plastic, type I collagen, fibroblast-derived ECM and osteo-

blast-derived ECM in 96-well Optilux Black/Clear Bottom

plates (#734-0395, VWR International Ltd., Lutterworth,

UK) and allowed to adhere prior to image acquisition at a

rate of 1 frame every 30 min for 24 h using IXM set to live

cell imaging mode (5 % v/v CO2 at 37 �C). Segmented

images were used to manually score the number of cells that

were undergoing ‘grouped’ versus ‘singular’ cell migration

at time zero (0 h) and at each 6-h time point of for the 24-h

experimental time frame. In the case of ‘singular’ cell
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migration cells were scored according to a bipolar versus

rounded mode of cell migration. The predominant mode of

cell migration was classified according to the criteria pre-

sented in Table 1. The % of cells with each phenotype was

then used to calculate the rounded/bipolar ratio at time zero

(0 h) and at each 6-h time point of the 24-h experimental

time frame. The average cell velocities (lm/h) were calcu-

lated from the cell trajectories generated from manual cell

tracking and post analysis (Metamorph� software). For all

conditions tested the tracks from C100 cells were used to

calculate the average cell velocities.

Flow cytometry

Cells were trypsinized and fixed in 4 % w/v paraformalde-

hyde (10 min), blocked and permeabilized in immunofluo-

rescence buffer (IFB: 4 % w/v BSA and 1 % v/v FBS)

containing 0.2 % w/v saponin. Cells were pelleted and

incubated with anti-human Endo180 primary monoclonal

antibody (A5/158, E1/183 or 39.10) diluted in IFB (1 h),

washed in IFB (3 9 5 min), incubated with Alexa Fluor-

555 conjugated secondary antibody diluted in IFB (1 h) and

washed IFB (3 9 5 min). Cells were pelleted, resuspended

in PBS and assessed by flow cytometry (BD FACS Canto,

BD, Oxford, UK). Gating was performed with unstained

cells and cells stained with isotype matched IgG.

Immunoblot analysis

Protein concentrations in whole cell lysates were deter-

mined using a Pierce BCA protein assay kit. Equal amounts

of protein were resolved by SDS-PAGE using 7 % w/v

polyacrylamide gels and electroblotted onto PVDF mem-

branes, which were incubated at room temperature in

blocking buffer (PBS ? 5 % w/v BSA) (1 h) then primary

antibody (anti-Endo180 A5/158 mAb; anti-GAPDH) dilu-

ted in blocking buffer at 4 �C (16 h). After washes in

PBS? 0.1 % v/v Tween�-20 (PBS-T) (5 9 5 min) blots

were incubated in HRP-conjugated goat anti-mouse or goat

anti-rabbit IgG diluted in blocking buffer (1 h). Blots were

washed in PBS-T (5 9 5 min) prior to visualization of

immunoreactive bands using chemiluminescence.

Cell adhesion assay

Cell adhesion could not be measured using crystal violet

because the fibroblast-derived and osteoblast-derived ECM

retained the stain. Instead, cells were seeded at a density of

1.5 9 104 per well of a 96-well plate onto test substrata

and incubated for 1 h before washing in PBS and addition

of culture medium containing CellTiter-Glo� buffer (Pro-

mega, UK) at a ratio of 1:1 and final volume of 200 ll.
Plates were mixed vigorously for 2 min to induce cell lysis

and the contents of each well transferred to opaque 96-well

plates (Corning� Costar�; Z37 185-8; Sigma Aldrich Ltd.,

Poole, UK). Luminescence was measured on a PHERAs-

tarPlus plate reader (BMG LabTech, Aylesbury, UK).

MTT cell proliferation assay

1.2 9 104 cells per well were seeded onto test substrata in

24-well plates and incubated for 48 h. 5 mg/ml MTT was

added and cells incubated for 3.5 h at 37 �C. Media was

removed and 300 ll of extraction buffer (0.5 M

dimethylformamide; 20 % w/v SDS) added per well fol-

lowed by incubation for 2 h. 100 ll of buffer was trans-

ferred per well to a 96-well plate. Absorbance (570 nm)

was measured using a Sunrise plate reader (Labtech

International Ltd., Ringmer, UK).

Statistical analysis

Student’s t test was performed using SPSS 15.0 software;

p\ 0.05 was considered significant.

Results

Generation of human stromal cell-derived ECM

surfaces with LOX-dependent cross links

ECM generation was induced in confluent monolayers of

primary human trabecular bone-derived osteoblasts iso-

lated from post-operative human trabecular bone and

human HCA2 dermal fibroblasts. After 10 days

Table 1 Criteria used for scoring different modes of prostate cancer cell migration

Migratory mode Cellular morphology observed during translocation Criteria used to define the predominant

mode of migration

Grouped Epithelioid; as part of a moving cell cluster or participation in frequent

interactions with adjacent cells

[80 % cells display epithelioid

morphology during translocation

Singular, bipolar Mesenchymal; movement as elongated singular cell with defined leading

edge and retraction of trailing uropod

Rounded/bipolar ratio\1.0

Singular, rounded Amoeboid; movement as spheroid without a retracting uropod Rounded/bipolar ratio[1.0

Singular, mixed Equal numbers of cells with mesenchymal and amoeboid morphologies Rounded/bipolar ratio = 1.0
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immunofluorescent staining of type I collagen fibers was

performed on decellularized osteoblast-derived ECM

(Fig. 1a) and decellularized fibroblast-derived ECM

(Fig. 1b). Image analysis revealed that inhibition of colla-

gen crosslinking with the LOX inhibitor BAPN did not

affect the total levels of type I collagen deposition by

human osteoblasts (Fig. 1c) or HCA2 fibroblasts (Fig. 1d)

but induced a significant increase in the curvature ratio of

the collagen fibers in both types of matrices (Fig. 1e, f).

Von Kossa staining of osteoblast-derived ECM indicated

that BAPN treatment does not affect mineralization

(Fig. 1g). These results confirm that human osteoblast-

derived ECM and human fibroblast-derived ECM both

require LOX to maintain their organized structure, thus

providing two physiologically relevant substrata for

studying how tumor-associated Endo180 modulates the

plasticity of prostate cancer cell migration in the presence

and absence of LOX-dependent collagen crosslinking.

Rounded metastatic prostate cancer cell migration is

favored on human bone matrix

Three prostate cancer cell lines were included in the study:

PC3 and VCaP that originate from bone metastatic lesions

located in the lumbar vertebra [40, 41] and DU145 that

originate from a soft tissue metastatic lesion in the parieto-

Fig. 1 LOX inhibition increases type I collagen fiber curvature in

matrices produced by human stromal cells. a, b Immunofluorescent

images of type I collagen fibers produced by primary human

trabecular bone osteoblasts (a) and human HCA2 dermal fibroblasts

(b) in the absence (-BAPN) or presence (?BAPN) of LOX inhibitor

(1 mM), scale bar = 50 lm. c, d Relative levels of total type I

collagen deposited by osteoblasts (c) and fibroblasts (d) in the

absence (–) or presence of BAPN (0.01–1 mM) (average ± s.d. of

integrated fluorescent intensity of immunostaining per lm2). e,
f Collagen fiber curvature ratio in the matrices deposited by

osteoblasts (e) and fibroblasts (f) in the absence (–) or presence of

BAPN (0.01–1 mM); 20 collagen fibers measured for each condition

in duplicate. e, f Average ± s.d. values for three individual exper-

iments, within which each experimental condition in duplicate, are

shown; significant differences compared to control (no BAPN

treatment) are indicated (*p\ 0.05, **p\ 0.001 and

***p\ 0.0003). g Von Kossa staining of osteoblast derived ECM

generated in the absence (-BAPN) or presence (?BAPN) of LOX

inhibitor (1 mM), scale bar = 50 lm
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occipital fissure of the cerebrum [42]. Time-lapse video

microscopywas used to compare theirmigratory behavior on

standard tissue culture plastic, commercial type I collagen,

fibroblast-derived ECM and osteoblast-derived ECM, as

seen in the videos (Online Resources 1–12) and corre-

sponding video stills (Fig. 2a). All movies were scrutinized

and the observed mode of migration for each cell in the field

of view was scored according to the criteria presented in

Table 1. In the case of the two epithelioid-like cell lines,

VCaP and DU145, the proportion of cells engaged in

grouped and singular modes of cell migration were

calculated (Fig. 2b, c). Under all other experimental condi-

tions[20 % of cells adopted a singular migratory mode,

whichwas considered sufficient for the rounded/bipolar ratio

of cell migratory mode to be calculated (Fig. 2d).

PC3 and VCaP cells, but not DU145 cells, transitioned

towards singular and bipolar modes of migration on collagen

in comparison to tissue culture plastic (Fig. 2b–d). On the

other hand, fibroblast-derived ECM supported singular

mixed bipolar/rounded modes of migration for PC3 cells, a

singular rounded mode of migration for VCaP cells and a

singular bipolar mode migration for DU145 cells (Fig. 2d).

Fig. 2 Human stromal cell-

derived surfaces promote

plasticity of movement in

metastatic prostate cancer cells.

a Stills extracted from Videos

1–12 in Online Resources 1–12

of PC3, VCaP and DU145

migrating on tissue culture

plastic, commercial rat-tail type

I collagen and native ECM

generated by human HCA2

dermal fibroblasts (fibroblast

ECM) and primary human

trabecular bone osteoblasts

(osteoblast ECM); scale

bar = 50 lm. b, c The

percentages of VCaP cells

(b) and DU145 cells

(c) participating in grouped and

singular modes of cell migration

on the four substrata. d The

rounded:bipolar ratios for

singular PC3, VCaP and DU145

cells migrating on the four

substrata; significant increases

compared to type I collagen

(*p\ 0.01) and fibroblast ECM

(?p\ 0.01) are indicated. b–
d Average ± s.d. values for

three individual experiments,

within which each experimental

condition was tested in

quadruplicate, are shown
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Moreover, for all three cell-types the predominant mode of

migration on osteoblast-derived ECM was singular and

rounded (Fig. 2d). The rounded migration of PC3 and

DU145 cells on osteoblast-derivedECMwas associatedwith

a high velocity (Fig. 3a), a decreased adhesion (Fig. 3b) and

decreased proliferation (Fig. 3c) when compared to the same

parameters on plastic. In contrast, the rounded migratory

mode of VCaP cells that predominated on both fibroblast-

derived and osteoblast-derived ECM was associated with a

low velocity (Fig. 3a), no change in adhesion (Fig. 3b) and

decreased proliferation (Fig. 3c) when compared to plastic.

These data confirm that metastatic prostate cancer cells

display plasticity in their mode of migration on human

stromal cell-derived ECM.

Endo180 is upregulated in metastatic prostate

cancer cells in contact with human ECM

Flow cytometry analysis using three anti-human Endo180

monoclonal antibodies (A5/158, E1/183, 39.10) confirmed

that the receptor is expressed in PC3, VCaP and DU145 cells

(Fig. 4a). The differential Endo180 staining profiles of the

three antibodies may reflect differences in their epitope

engagement and/or masking by ligand binding and/or the

open-closed conformational state of the receptor, as a

molecular mechanism postulated in our two recent studies

[17, 18]. Immunofluorescent staining analysis confirmed that

Endo180 levels were significantly increased in DU145 cells,

parental PC3 cells and PC3 cells that overexpress Endo180

(PC3-Endo180) cultured on human osteoblast-derived ECM

and fibroblast-derived ECM (Fig. 4b, c). Endo180 appeared

to cluster in ‘hot-spots’ in cells with a rounded phenotype

(Fig. 4b). Immunoblot analysis and densitometry confirmed

that Endo180was also upregulated inVCaP cells cultured for

6-24 h on human osteoblast-derived ECM (up to 4-fold) and

fibroblast-derived ECM (up to 9-fold) (Fig. 4d, e);

immunoblotting results were similar for PC3 and DU145

cells (Supplementary Data Figure S1). The decrease in

Endo180 levels at 48 h could be due to the depletion of

factors that promote Endo180 expression in the bone

microenvironment, such as transforming growth factor-beta-

1 (TGFb1). These findings are in accordance with results

obtained using co-cultures of human trabecular bone-

derived osteoblasts and DU145 or PC3 cells [4], Endo180

immunostaining of tumor cell foci in MBD [4] and its raised

levels in the serum of patients with osseous and/or visceral

metastases [31].

Endo180 is required for rounded prostate cancer

cell migration on human stromal ECM surfaces

To test the hypothesis that Endo180 contributes to the

plasticity of prostate cancer cell migration, PC3 cells were

transfected with a scrambled control shRNA vector (PC3-

shSCN) or targeted Endo180 shRNA vector (PC3-shEn-

do180) (Fig. 5a), which contained a previously validated

Fig. 3 The migration, adhesion and proliferation rates of metastatic

prostate cancer cells are differentially modulated on human stromal

cell-derived ECM surfaces. a–c The migratory velocities (lm/h) over

a 24 h time-frame (a), adhesion levels at 1 h (b) proliferation rates at

48 h (c) of PC3, VCaP and DU145 cells cultured on tissue culture

plastic (plastic), rat-tail type I collagen (type I collagen), human

HCA2 fibroblast-derived ECM (fibroblast ECM) and human trabec-

ular bone osteoblast-derived ECM (osteoblast ECM). a–c Aver-

age ± s.d. values for three individual experiments, within which each

experimental condition was tested in quadruplicate, are shown.

Significant increases (*p\ 0.05) and decreases (?p\ 0.05) com-

pared to plastic are indicated
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siRNA oligonucleotide sequence [17, 19, 23, 24, 26, 27, 30]

and was highly effective at silencing Endo180 (Fig. 5b, c).

PC3-shSCN cells displayed a predominantly bipolar

migratory mode on fibroblast-derived ECM and a pre-

dominantly rounded migratory mode on osteoblast-derived

ECM, as seen in time-lapse videos (Online Resources 13

and 14) and corresponding frames (Fig. 5d, e). PC3-

shEndo180 cells displayed a significant transition towards a

bipolar morphology on both fibroblast-derived ECM and

osteoblast-derived ECM, as seen in videos (Online

Resources 16 and 17) and corresponding frames (Fig. 5d,

e). Moreover, the rounded-to-bipolar transition that resul-

ted from Endo180 silencing was accompanied by a dra-

matic reduction in cell velocity (Fig. 5f) associated with

Fig. 4 Endo180 is upregulated in metastatic prostate cancer cells

cultured on human stromal cell-derived ECM surfaces. a Flow

cytometry analysis of PC3, VCaP and DU145 cells using three anti-

human Endo180 monoclonal antibodies (A5/158, E1/183, 39.10).

b Immunofluorescent staining of Endo180 (A5/158 mAb) in PC3-

Endo180 cells cultured on plastic and ECM generated by primary

human trabecular bone osteoblasts (osteoblast ECM); scale

bar = 50 lm. c Relative levels of Endo180 expression (integrated

fluorescent intensity; A5/158 mAb immunostaining) in PC3, PC3-

Endo180 and DU145 cells cultured on tissue culture plastic (plastic)

and ECM generated by primary human trabecular bone osteoblasts

(osteoblast ECM) and human HCA2 dermal fibroblasts (fibroblast

ECM); average ± s.d. values for three individual experiments, within

which each experimental condition was tested in quadruplicate, are

shown; significant differences compared to plastic are indicated

(*p\ 0.05). d Immunoblot shows Endo180 expression (A5/158

mAb) in VCaP cells cultured on plastic, rat-tail type I collagen

(collagen), osteoblast ECM and fibroblast ECM for 6, 24 and 48 h

(GAPDH = loading control). e Relative levels of Endo180 expres-

sion in (d) quantified using densitometry (n = 1)
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defective cell detachment from fibroblast-derived ECM

and osteoblast-derived ECM, as seen in videos (Online

Resources 15 and 16). The adhesion (Fig. 5g) and

proliferation (Fig. 5h) rates of PC3-shSCN and PC3-

shEndo180 cells on all substrata were similar to those for

parental PC3 cells (Fig. 3b, c). These data confirm that

Fig. 5 Silencing Endo180 inhibits metastatic prostate cancer cell

migration on human stromal-derived ECM surfaces. a Brightfield and

immunofluorescent images of PC3 cells transfected with control

shRNA vector containing a targeting Endo180 oligonucleotide

sequence (PC3-shEndo180); scale bar = 100 lm. b, c Immunoblot

analysis (A5/158 mAb) (b) and corresponding denistometric analysis

(c) confirming decreased Endo180 expression in PC3-shEndo180

cells compared to control PC3 cells transfected with a vector

containing a non-targeting (scrambled) Endo180 oligonucleotide

sequence (PC3-shSCN) (a-tubulin = loading control). d Stills

extracted from Videos 13–16 in Online Resources 13–16 of PC3-

shSCN and PC3-shEndo180 cells migrating on native ECM generated

by human HCA2 dermal fibroblasts (fibroblast ECM) and primary

human trabecular bone osteoblasts (osteoblast ECM); scale

bar = 50 lm. e The rounded:bipolar ratios of PC3-shSCN and

PC3-shEndo180 cells migrating on fibroblast ECM and osteoblast

ECM. f Migration velocities (lm/h) of PC3-shSCN and PC3-

shEndo180 cells migrating for 24 h on human fibroblast-derived

ECM and human osteoblast-derived ECM; significant decreases in the

velocity of PC3-shEndo180 cells compared to pc3-shSCN cells are

indicated (?p\ 0.01). g, f The adhesion levels at 1 h (g) and

proliferation rates at 48 h (h) of PC3-shSCN and PC3-shEndo180

cells are shown; significant increases (*p\ 0.05) and decreases

(?p\ 0.05) compared to plastic are indicated. e–h Average ± s.d.

values for three individual experiments, within which each experi-

mental condition was tested in quadruplicate, are shown
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Endo180 promotes rounded prostate cancer cell migration

on human stromal-cell derived ECM surfaces.

Endo180 cooperates with fibroblast-derived LOX

to promote metastatic prostate cancer cell migration

Given that prostate epithelial cell-associated Endo180

cooperates with AGE-mediated crosslinking of the base-

ment membrane to promote invasiveness [18], we tested

the hypothesis that Endo180-dependent metastatic prostate

cancer cell migration is promoted by LOX-dependent

crosslinking in the stromal ECM associated with bone and

visceral tissue. The migratory velocity of parental PC3 and

PC3-Endo180 cells, but not DU145 cells, was decreased on

ECM generated by confluent monolayers of human HCA2

fibroblasts treated with the LOX inhibitor BAPN

(0.01–1.0 mM) when compared to their migratory velocity

on ECM generated by untreated HCA2 fibroblasts

(Fig. 6a). The decrease in PC3 and PC3-Endo180 cell

migration on ECM generated by HCA2 fibroblasts treated

with BAPN was correlated with an increase in Endo180

expression (Fig. 6b). However, no difference in the

migratory velocity of PC3 cells (Fig. 6c), VCaP cells

(Fig. 6d) and DU145 cells (Fig. 6e) was observed on ECM

generated by untreated primary human trabecular bone-

derived osteoblasts compared to osteoblasts treated with

Fig. 6 Endo180 requires LOX-dependent ECM crosslinking of

human fibroblast-derived ECM surfaces to promote metastatic

prostate cancer cell migration. a Migration velocities (lm/h) of

DU145, PC3 and PC3-Endo180 cells for a duration of 24 h on ECM

derived from human HCA2 dermal fibroblasts in the absence (-) or

presence of the LOX inhibitor BAPN (0.01–1 mM); significant

increases (*p\ 0.05) and decreases (?p\ 0.05) compared to cells

migrating on control ECM generated by fibroblasts in the absence of

BAPN (-) are indicated. b Relative levels of Endo180 expression

(integrated fluorescent intensity; A5/158 mAb immunostaining) in

DU145, PC3 and PC3-Endo180 cells cultured for 24 h on ECM

derived from human HCA2 dermal fibroblasts in the absence (-) or

presence of BAPN (0.01–1 mM); significant increases compared to

corresponding each corresponding cell line cultured on control

fibroblast ECM (-) are indicated (*p\ 0.05). c–e Migration veloc-

ities (lm/h) of PC3 (c), VCaP (d) and DU145 (e) cells migrating for

24 h on ECM derived from primary human trabecular bone

osteoblasts in the absence (-) or presence of the LOX inhibitor

BAPN (1 mM); no significant differences were observed. a–e Aver-

age ± s.d. values for three individual experiments, within which each

experimental condition was tested in quadruplicate, are shown.

f Schematic diagram that summarizes the findings of this study and

their potential therapeutic implications in the context of bone and

visceral metastasis. Metastatic prostate cancer cells adopt a rounded

mode of cell migration on fibroblast-derived and osteoblast-derived

ECM that is associated with increased Endo180 expression. Silencing

Endo180 (-Endo180) prevents the translocation of prostate cancer

cells on fibroblast-derived ECM and osteoblast-derived ECM due to a

detachment defect and the potential loss of Endo180-dependent

mechanotransduction. Inhibition of fibroblast-derived LOX activity

(-LOX) uncouples Endo180 from its pro-migratory capacity, possibly

via loss of its capacity for mechanotransduction in the more compliant

non-crosslinked ECM. In contrast the inhibition of osteoblast-derived

LOX does not affect prostate cancer cell migration, potentially due to

the non-crosslinked mineralized ECM being stiff enough to promote

Endo180-dependent mechanotransduction and migration. This model

supports the use of anti-LOX therapy for metastasis in visceral tissue

and anti-Endo180 therapy for metastasis in bone
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1.0 mM BAPN (Fig. 6c). These data suggest that meta-

static prostate cancer cell migration involves cooperation

between tumor-associated Endo180 and LOX-dependent

crosslinking in human fibroblast-derived ECM but not

osteoblast-derived ECM.

Discussion

In this paper we explored the role of two emerging anti-

metastatic targets involved in collagen matrix homeostasis,

Endo180 and LOX, in directing the plasticity of metastatic

prostate cancer cells on human ECM surfaces. The in vitro

model developed for this purpose involved the introduction

of PC3 and VCaP cells originating from metastatic bone

lesions [40, 41] and DU145 cells originating from a

metastatic lesion in the brain [42] onto human osteoblast-

derived and fibroblast-derived ECM. VCaP cells adopted a

singular and rounded mode of cell migration, and DU145

cells a singular and bipolar mode of cell migration, on

fibroblast-derived ECM. This contrasted with their grouped

migratory mode under standard culture conditions on tissue

culture plastic or a low concentration of non-polymerized

reconstituted type I collagen. Moreover, all three prostate

cancer cell lines adopted a singular and rounded mode of

cell migration on osteoblast-derived ECM (Table 2). These

changes in prostate cancer cell migration on human stromal

cell-derived ECM closely recapitulate the ‘amoeboid-like’

mode of migration of tumor cells observed within 3-D

lattices formed by high concentrations of polymerized

reconstituted type I collagen [11, 43, 44]. These findings

suggest that the therapeutic strategies uncovered in these

earlier studies may be useful in blocking rounded tumor

cell migration and diseemination in MBD and other types

of bone cancer.

The intracellular mechanisms of rounded tumor cell

migration delineated so far have been centered upon the

suppressor and activator signals that regulate RhoA-ROCK

and myosin light chain-2 (MLC2)-dependent actino-

myosin-based contractility, cytoskeletal remodeling and

dynamic cell adhesion events. For example, it has been

demonstrated that rounded cell movement can be reversed

by Smurf-1, a E3 ubiquitin ligase that targets RhoA for

degradation, and PDK1, which antagonizes the RhoE-de-

pendent activation of ROCK [45, 46]. Rounded cell

migration is also driven by aberrant activation of RhoA

following loss of p53 and p27, the suppression of Rac1 and

SOX2, or the expression of EphA2 [43, 47–52]. The

interaction between RhoC and FMNL2, Cdc42 and its

regulators (DOCK10, RasGRF2) and effectors (N-WASP,

PAK2), also promotes rounded cell migration [44, 53–56];

whereas the dephosphorylation of stathmin (a microtubule

destabilizing protein), loss of cofilin or depletion of paxillin

can block rounded cell migration [57–59].

In this study we have pinpointed the collagen receptor

Endo180 as a novel modulator of rounded tumor cell

migration in the context of the bone (osteoblast-derived

ECM) and visceral tissue (fibroblast-derived ECM)

microenvironments. This novel pro-migratory mechanism

is consolidated by the upregulation of Endo180 expression

by up to*20-fold in PC3 cells,*9-fold in VCaP cells and

*7-fold in DU145 cells on osteoblast-derived ECM

compared to control substrata. The possible intracellular

cues that can direct this Endo180-associated tumor cell

Table 2 Migratory mode,

velocity, adhesion and

proliferation rates of human

prostate cancer cell lines on

human fibroblast and osteoblast-

derived matrices

Substratum PC3 cells VCaP cells DU145 cells

Tissue culture plastic Singular, bipolar Grouped, epithelioid Grouped, epithelioid

Commercial type I collagen Singular, Bipolar

* Velocity

, Adhesion

, Proliferation

Singular, bipolar

, Velocity

, Adhesion

, Proliferation

Grouped, epithelioid

, Velocity

+ Adhesion

+ Proliferation

Fibroblast ECM Singular, mixed

, Velocity

+ Adhesion

, Proliferation

Singular, rounded

+ Velocity

, Adhesion

+ Proliferation

singular, bipolar

* Velocity

, Adhesion

+ Proliferation

Osteoblast ECM Singular, rounded

* Velocity

+ Adhesion

+ Proliferation

Singular, rounded

+ Velocity

, Adhesion

+ Proliferation

Singular, rounded

* Velocity

+ Adhesion

+ Proliferation

Definition of migratory modes: grouped ([80 % of cells migrate as part of an epithelioid cluster); bipolar

(rounded/bipolar ratio\1.0); rounded (rounded/bipolar ratio[1.0); mixed (rounded/bipolar ratio = 1.0).

All changes shown are in comparison to plastic

ECM extracellular matrix
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plasticity include Cdc42 and Rac1 and the Rho-ROCK-

MLC2 pathway, which are activated by the spatiotemporal

localization of the Endo180 receptor to the plasma mem-

brane or constitutively recycling endosomes [18, 19, 26].

Interestingly two key Endo180 interaction partners, CD147

and urokinase-type plasminogen activator receptor (uPAR)

[17, 26], have been identified as regulators of rounded cell

migration [60, 61]. CD147-annexin II complex acts as a

molecular switch that directs rounded-to-bipolar transitions

during cell migration. It is feasible that Endo180-CD147

complex [17] also plays a modulatory role in tumor cell

plasticity on human stromal cell-derived ECM. In this

respect we hypothesize that Endo180-CD147 complex

disruption can promote rounded tumor cell migration and

Endo180-CD147 complex formation can uncouple

Endo180 and the intracellular machinery that drives roun-

ded tumor cell migration. It is also possible that the inte-

grin-dependent actomyosin contractile signals generated at

the pseudo-uropod-like structure at the rear of spheroidal

cells during rounded cell migration [14] involves the spa-

tiotemporal activation of Rho-ROCK-MLC2-based con-

tractile signals by Endo180-containing endosomes. This

prediction is supported by the fact that de-adhesion of the

uropod at the rear of MG63 osteosarcoma cells requires the

Endo180-Rho-ROCK-MLC2 signalling axis [19]. It will

also be interesting to consider if the strong Endo180

clusters in PC3-Endo180 cells on osteoblast-derived ECM

contribute to their rounded mode of migration.

The requirement of LOX-dependent ECM crosslinking

and stiffness for Endo180-dependent tumor cell migration

is aligned with the finding that non-enzymatic crosslinking

of basement membrane matrix coupled with Endo180-de-

pendent mechanotransduction triggers epithelial cell inva-

siveness [18]. When considering the design of Endo180

based anti-metastatic therapies it will be important to fully

explore the relative contributions of the two functional

C-type lectin domains (CTLDs) in the receptor, CTLD2

and CTLD4, to the migratory behavior of metastatic

prostate cancer cells in the context of human ECM lattices

that have different levels of stiffness. Our findings indicate

that where the ECM is more compliant Endo180 and

CD147 form a molecular complex that involves CTLD4

and suppresses epithelial cell invasiveness [17]. This sug-

gests that in compliant tissue it would not be desirable to

target CTLD4. On the flipside, blockade of CTLD2-de-

pendent mechanotransduction, which can inhibit the

epithelial cell invasiveness induced by non-enzymatic

crosslinking and increased stiffness of the basement

membrane [18], could be used to prevent rounded tumor

cell migration in stiff visceral tissue and bone.

In contrast to the finding that Endo180 is uncoupled

from its ability to promote tumor cell migration on com-

pliant (non-crosslinked) fibroblast-derived ECM, no

differences were observed in the migration of tumor cells

on non-crosslinked versus crosslinked osteoblast-derived

ECM. Although our findings suggest that osteoblast-

derived LOX does not affect metastatic prostate cancer cell

migration, tumor-derived LOX participates in the pro-

gression of osteolytic bone metastasis in breast cancer [38].

In the current study we did not consider the cooperative

roles of tumor-derived LOX and Endo180 in driving the

plasticity of tumor cell movement on human fibroblast-

derived and osteoblast-derived ECM surfaces. Considera-

tion of this possibility together with the evaluation of

Endo180 and LOX as targets in pre-clinical models of

osteolytic bone tumors induced by PC3 and DU145 cells

[62–64] and predominantly osteosclerotic tumors induced

by VCaP cells [65] will be prioritised in our future work.

The finding that LOX-dependent crosslinking of human

fibroblast-derived ECM is required to promote tumor cell

migration, indicates that anti-Endo180 and/or anti-LOX

therapy is a feasible therapeutic option for the treatment of

visceral tumors surrounded by a stiffened stroma (Fig. 6f).

The findings of this study provide new insight into the

consequences of Endo180 upregulation on prostate tumor

cells in contact with osteoblasts [4], positive Endo180

immunostaining of tumor cell foci in metastatic bone lesions

[4] and raised levels of soluble Endo180 in the serum of

patients with osseous and/or visceral metastases [31]. The

heterotypic interaction of osteoblasts with prostate cancer

cells was previously shown to suppress Endo180 expression

in the osteoblasts resulting in decreased mineralized colla-

gen production [4]. Here we have demonstrated that osteo-

blast-derived ECM increases Endo180 expression in tumor

cells to drive their transition to a roundedmode of migration.

Therapeutic strategies that can suppress Endo180 function in

metastatic disease (Fig. 6f), combinedwith the development

of Endo180-targeted diagnostics, could provide the oppor-

tunity tomake amajor advance in the personalized treatment

ofmenwith Endo180-positive prostate cancerwho are at risk

of, or have progressed towards, the development of

Endo180-driven bone metastasis [17, 18].
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