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Abstract 

 

1. Understanding the genomic basis of adaptation to different abiotic environments is important 

in the context of climate change and resulting short-term environmental fluctuations.  

2. Using functional and comparative genomics approaches, we here investigated whether 

signatures of genomic adaptation to a set of environmental parameters are concentrated in 

specific subsets of genes and functions in lacertid lizards and other vertebrates.  

3. We first identify 200 genes with signatures of positive diversifying selection from 

transcriptomes of 24 species of lacertid lizards and demonstrate their involvement in 

physiological and morphological adaptations to climate. To understand how functionally 

similar these genes are to previously predicted candidate functions for climate adaptation and 

to compare them with other vertebrate species, we then performed a meta-analysis of 1100 

genes under selection obtained from -omics studies in vertebrate species adapted to different 

abiotic environments. 

4. We found that the vertebrate gene set formed a tightly connected interactome, which was 23% 

enriched in previously predicted functions of adaptation to climate, and to a large part (18%) 

involved in organismal stress response. We found a much higher degree of identical genes 

being repeatedly selected among different animal groups (43.6%), a higher degree of functional 

similarity, and posttranslational modifications than expected by chance, and no clear functional 

division between genes used for ectotherm and endotherm physiological strategies. 171 out of 

200 genes of Lacertidae were part of this network.  

5. These results highlight an important role of a comparatively small set of genes and their 

functions in environmental adaptation and narrows the set of candidate pathways and markers 

to be used in future research on adaptation and stress response related to climate change. 

 

Keywords: environmental adaptation, functional genomics, comparative genomics, constraint, 

repeated positive diversifying selection  
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Introduction 

 

The sheer number of genes and alleles within a genome (Futuyma, 2010), the fact that many traits are 

polygenic (Turelli, 1985) and that genomes can evolve via alternative pathways (Salverda et al., 2011) 

theoretically provide infinite possibilities for adaptations to evolve. Because of this, genomes are 

expected to reflect a high degree of evolutionary unpredictability (Blount et al., 2018; Therkildsen et 

al., 2019). However, many realized adaptations seem less infinite than expected, which means that 

constraints at the genome level could lead to more predictable outcomes (Blount et al., 2018; Futuyma, 

2010). One such element of constraint may be explained through the interaction of genes that perform 

a common function upon which selection acts, called gene functional constraint (Han et al., 2004; 

Pavlicev & Wagner, 2012; Wollenberg Valero, 2020). This question of which subsets of protein-coding 

genes within a genome are realized to perform specific functions has practical relevance for 

understanding the genomic basis of response to a changing climate, which targets “physiology” as a 

multi-gene multi-function concept. In this paper, we address which functional subsets of the genome 

are used in different vertebrate species in adaptation to aspects of the abiotic environment, whether 

events of such adaptation are concentrated in a specific subset of genes, and to which extent these genes 

have known involvement in different aspects of the stress response, both at organismal and cellular 

levels. For this study, we include under the term “abiotic environment” different environmental 

conditions comprising thermal differences, gradients of latitudinal climate, altitude or season, sulfidic 

water, osmotic differences, desiccation, hypoxia, or wet-dry environmental gradients. The answers to 

these questions will help narrow down candidate genes and pathways that can serve as targets for future 

studies of climate change adaptation and stress response.  

Under complete relaxation of gene functional constraint during macroevolution, any genes could 

perform climate adaptation-related functions across different organisms –and would have an equal 

chance of being under climate-mediated selection– but this is not a likely scenario (cf. Wollenberg 

Valero 2020). In contrast, adaptation to different or novel abiotic environments involves changes in 

traits, which, in similar environments, often converge (Losos, 2011). We expect to find adaptations to 

similar selective pressures to be concentrated in a subset of genes performing a limited set of functions 
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across different organisms, due to ontogenetic constraints and common descent (Babonis & Martindale, 

2017; Han et al., 2004). Selection operating on a constrained set of genes (due to links with specific 

functions), is in this scenario more likely to act on the same genes repeatedly in independent selection 

events. For example, adaptation to climate in vertebrate ectotherms may be directed through a specific 

set of gene functions, with some evidence that similar genes are involved (Porcelli et al., 2015; 

Rodríguez et al., 2017; Wollenberg Valero, 2020; Wollenberg Valero et al., 2014). Under strong 

constraint, this can lead to repeated selection on the same genes in adaptation to similar environments 

in different species. One of the best-known examples of repeated selection through modification of 

identical genes in different species is altitude adaptation in the Himalayas. High-altitude yak, Tibetan 

humans and their dogs all show adaptations in the ADAM17 gene related to the physiological function 

of hypoxia tolerance (Qiu et al., 2012; Simonson, 2015) compared to their low-altitude relatives. 

Another example for repeated selection in distantly related lineages are the antifreeze glycoprotein 

genes in Antarctic notothenioid fish and Arctic cod. Notothenioids re-purposed the glycoprotein 

sequence from a different ancestral function (Chen et al., 1997), whereas the same functional gene 

sequence in Arctic cod evolved de novo from a non-coding genomic region (Zhuang et al., 2019).  

While endothermic vertebrates (including humans) have been well studied from an -omics perspective 

(Hancock et al., 2008), the genomic basis of environmental adaptation in vertebrate ectotherms is 

generally understudied (Diele-Viegas & Rocha, 2018). Only a few studies incorporated genome-wide 

scans for environmental adaptation-relevant genes to date (Campbell-Staton et al., 2017; Rodríguez et 

al., 2017; Sun et al., 2018; Wollenberg Valero et al., 2019; Yang et al., 2014). Where development in 

the majority of taxa occurs outside the parental body, climate can be a strong selective force for both 

cold (Feiner et al., 2018; Rodríguez et al., 2017) and heat (Sanger et al., 2018) stress adaptation, during 

early development. In vertebrate ectotherms, these functions contain genes involved in the conserved 

stress response (Denver, 2009), e.g., heat shock proteins (HSPs, Logan & Buckley, 2015), but it is not 

yet known how general this involvement of genes adapting to environmental changes is in the 

organismal response to abiotic stressors. Other candidates for environmental adaptation are genes active 

in cancer due to their involvement in pathways that usually regulate homeostasis in response to abiotic 

environmental stressors (Hayes et al., 2020; Plotnikov et al., 2011; Tan et al., 2019). Furthermore, 
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oxidative cellular stress often ends in apoptosis (Buttke & Sandstrom, 1994) and consequently, genes 

related to the cellular pathways of apoptosis, stress and inflammation (dubbed “Zombie genes''; 

(Pozhitkov et al., 2017) could also be candidates for environmental adaptation. Functionally similar 

genes, such as those involved in homeostasis, can further be recognized through similar epiproteomic 

signals, such as protein post-translational modifications (PTMs;  Jensen et al., 2002; J. Yu & Auwerx, 

2010).  

In this study we first focus on the genomic basis of latitudinal climate adaptation in squamate reptiles 

of Old-World lizards (family Lacertidae). We use an RNA sequencing (RNAseq) data set we previously 

generated for phylogenomic analysis of this group (Garcia-Porta et al., 2019) to identify genes with 

signatures of positive diversifying selection across 24 species representing the lacertid phylogenetic 

diversity. This group of lizards shows physiological adaptations to a (partly latitudinal) climate gradient 

in preferred body temperature (Tpref) and evaporative water loss (IWL), as well as aligned variation in 

genome-wide substitution rates, which serves as evidence for latitudinal climate adaptation (Garcia-

Porta et al., 2019). In this study, we identify genes with signatures of selection in Lacertidae and identify 

how these genes are related to parameters of climate as well as climate-related phenotypic variables. 

Secondly, to identify the extent of constraint in function and repeated events of selection on the same 

genes in adaptation to the abiotic environment across vertebrates, we compare the functions of genes 

putatively involved in environmental adaptation (in the following called “putative environmental 

adaptation genes”, pEAGs) across vertebrates, mined from 22 -omics studies of adaptation in 

vertebrates. Under the premise of gene functional constraint, we expect that pEAGs identified in 

different vertebrate lineages are tightly functionally connected and fall within predefined functions for 

climate adaptation (Porcelli et al., 2015; Rodríguez et al., 2017; Wollenberg Valero et al., 2014). We 

infer whether these genes are also up- or downregulated in the organismal response to abiotic stressors 

(by evaluating 75 mostly -omics studies of the response to stress in animals including non-vertebrates). 

We further explore the functions of pEAG through inferring whether they are expressed or modified in 

cellular functions related to homeostasis under stressful conditions (here: posttranslational 

modifications, apoptosis, cancer). We expect functional similarity of both lacertid and other vertebrate 

pEAGs to be high, showing functional constraint. 
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Lastly, we aim to understand the extent of repeated positive diversifying selection on the same genes 

in different species and settings. We identify the genes that are repeatedly selected in response to abiotic 

changes in more than one species and compare the number of such events against simulations to infer 

functional constraint. Here, we expect to find both functional similarity as well as evidence for 

constraint in the modification of pEAGs across different taxa. 

  

 

Material and Methods 

 

Analysis of positive diversifying selection of genes adapting to latitudinal climate in Lacertidae 

RNAseq data of 24 lacertid taxa were obtained from Garcia-Porta et al. (Garcia-Porta et al., 2019) 

(collection and ethics permits listed therein). The final alignment contained 6,269 gene sequences. Gene 

sequences obtained from RNAseq with no missing taxa were further checked for alignment errors 

including HMMCleaner for false negatives to pre-empt including artefacts in nucleotide-level analyses. 

Ten sequences were found to contain such potential artifacts and were removed from this data set, 

resulting in transcriptomes annotated to 5,498 unique gene symbols. A maximum likelihood tree was 

generated from the concatenated alignment, which is also published in the same study (Garcia-Porta et 

al., 2019). From this final dataset for 24 lacertids (22 nominal species; two species with two divergent 

populations at subspecies level each) and one outgroup, we selected a subset of 695 genes with no 

missing sequences in any of the species to analyze for signatures of positive diversifying selection. The 

aBSREL (Smith et al., 2015) random-effects branch site model as implemented in HyPhy (Kosakovsky 

Pond et al., 2005) was used to find genes and lineages subject to episodic positive diversifying selection. 

The full model was run in exploratory mode for all branches with Holm-Bonferroni correction. 

Summary statistics of dN/dS (ω) were computed across all genes, and for each branch where episodic 

positive diversifying selection was identified.  

In order to establish a possible relationship between genes found to be under positive diversifying 

selection and aspects of climate, beyond the exome-wide assessment performed in Garcia-Porta et al. 

(Garcia-Porta et al., 2019), we tested for correlations between their relative evolutionary rate rho and a 
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set of “traits'' using the package RERconverge in R (Kowalczyk et al., 2019). Continuous “traits'' 

comprised annual habitat hours above 30°C, median preferred temperature (Tpref, species medians 

measured experimentally), median evaporative water loss (IWL, species medians measured 

experimentally), and the first multidimensional metric scaling variable of osteomorphology 

(morph1mds1, 89 morphological characters measured with CT-scans). All continuous trait data are 

available in the Supplementary Materials of Garcia-Porta et al. (Garcia-Porta et al., 2019). A Principal 

Component Analysis was performed to better understand correlative relationships among the 

continuous “trait” variables. 

Binary “traits” analyzed were sets of species inhabiting hot, warm, or cold environments as test 

branches against the rest of the phylogeny as reference branches. “Hot”-adapted species whose habitats 

experience more than 3000 annual hours above 30℃ were the tropical lizards Takydromus sexlineatus 

and Holaspis guentheri. “Warm”-adapted species whose habitats have more than 1300 annual hours 

above 30°C were Apathya cappadocica, Algyroides nigropunctatus, Dalmatolacerta oxycephala, 

Hellenolacerta graeca, Holaspis guentheri, Mesalina olivieri, Phoenicolacerta laevis, Scelarcis 

perspicillata, Takydromus sexlineatus, and Timon pater. “Cold”-adapted species whose habitats have 

less than 700 annual hours above 30°C were Archaeolacerta bedriagae, Dinarolacerta mosorensis, 

Iberolacerta bonnali, Lacerta agilis, Podarcis muralis, and Zootoca vivipara. 

Signatures of selection in genes measured by ω can, in addition to positive diversifying selection, 

also be an outcome of relaxation of prior selective constraint (Lahti et al., 2009; Wertheim et al., 2015), 

which may lead to misidentification of selective forces at play especially in high ω genes. We therefore 

additionally ran RELAX (Wertheim et al., 2015) in HyPhy in full mode, specifying taxa inhabiting 

warm or cold environments as test branches against the rest of the phylogeny as reference branches. A 

functional genetic network of all genes found to harbor signatures of selection was then generated with 

Cytoscape v.3 (Shannon et al., 2003) using the STRING app against the Anolis carolinensis genome as 

background, the closest related lizard with a sequenced and comprehensively annotated genome. The 

network was then tested for functional enrichment in Cytoscape using the ClueGO app v.2.5.0 (Bindea 

et al., 2009), with the CluePedia plugin (Bindea et al., 2013).  
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Meta-analysis of pEAGs and their functions across vertebrates 

We compiled a matrix of pEAGs in other vertebrate endotherms and ectotherms, adding the 200 

genes under positive diversifying selection here identified for Lacertidae (original studies were 

identified through searching online publication repositories PubMed and Google Scholar for keywords 

and are listed in Supplementary Table S1). Support for performing comparative functional genomics 

comes from the fact that orthologs across taxa are, despite their phylogenetic definition, commonly 

identified by conserved sequence and function (Altenhoff & Dessimoz, 2009). In addition, to ensure 

that genes could be compared across vertebrate taxa, we verified that all identified genes had orthologs 

across representative vertebrate genomes using OrthoDB (Kriventseva et al., 2019). The STRING 

database plugin within the Cytoscape (Shannon et al., 2003) software was then used to generate a 

functional genomic PPI (Protein-Protein Interaction) network from these genes, using human PPI 

databases (Altenhoff & Dessimoz, 2009). We recorded and visualized whether single pEAGs (nodes) 

within this network additionally were identified to have adapted to environmental changes in more than 

one species, whether they were responsive to stress, and which of the Lacertidae genes under positive 

diversifying selection were part of this network. Gene functions in the form of Gene Ontologies (GO), 

for pEAGs that in addition to being repeatedly selected in different species were part of the resulting 

vertebrate network (N=902 genes, Supplementary Table S1), were generated and grouped by function 

in ClueGo within Cytoscape (Bindea et al., 2009). Significance was based on false discovery rate-

corrected p-values of overrepresented GOs obtained with ClueGo. We then grouped the resulting GO 

terms by functional categories for climate adaptation as previously defined (Porcelli et al., 2015; 

Rodríguez et al., 2017; Wollenberg Valero et al., 2014). GO functions which did not fall into these 

previously predicted categories were recorded separately. We subsequently repeated this analysis for 

only those genes under positive diversifying selection in Lacertidae that were additionally part of the 

functional network (pEAGs, N=171), and for those genes that were under positive diversifying 

selection in Lacertidae but were not part of the functional network (less likely to be EAGs, N=29).  

  

Analysis of functional similarity and repeated events of selection on identical genes 
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The 695 genes in our RNAseq alignment of Lacertidae represent a subset of genes of the entire 

aligned transcriptomes that were selected for analysis of positive diversifying selection based on the 

absence of paralogs and presence of transcripts in all 24 lacertid taxa, as explained above. 

Consequently, the 200 genes under positive diversifying selection found within this dataset might 

represent a non-random subset of the transcriptome dataset consisting of 5,498 annotated genes, with 

genes related to fundamental metabolic cell processes possibly being overrepresented as they would be 

more likely found in the transcriptomes of all studied lacertid species. To test to what extent the 

functional properties of Lacertidae genes under positive diversifying selection are similar to 

housekeeping genes and whether they are different from a random subset of genes, we generated 

comparison groups in the form of replicates of 200 randomly drawn gene sets. These were drawn from 

the total sequenced exomes (20 sets), and from the genes not found under positive diversifying selection 

(20 sets), as well as from 451 human housekeeping genes expressed in different types of healthy cells 

(brain, kidney, prostate, liver, muscle, lung, vulva, 10 sets, Hsiao et al., 2001). Functional similarity of 

genes repeatedly selected in more than one species among the set of vertebrate pEAGs was compared 

against 20 sets of 902 genes randomly drawn from 9,840 genes with identical functions obtained via 

AmiGO, and genes randomly drawn from the human genome (20 sets, obtained via 

www.molbiotools.com). GO terms are a hierarchical semantic classification method for gene functions 

(Wang et al., 2007). Functional similarity of gene products can therefore be quantitatively estimated 

through the semantic similarity of GO terms (Wang et al., 2007). We compared the mean semantic 

similarity of gene sets to populations of randomized gene sets using ±95% prediction intervals and Z-

tests.  

We additionally tested whether the number of 480 genes found to be repeatedly positively selected 

in different vertebrates was higher or lower than if all genes with the same functions had been randomly 

sampled in the same way. For this purpose, we simulated the number of draws that must be made from 

the set of all genes with identical functions to the vertebrate pEAGs (N=9,840) to yield the same number 

(a modified Birthday problem, see Supplementary Methods). We tested for differences between the 

observed number of genes and the simulated distribution using a Z-test.  
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Relationship between of pEAGs and functions with involvement in organismal stress response as 

well as cellular homeostasis 

A range of -omics studies of the organismal stress response as well as other targeted studies of 

invertebrate and cellular responses to abiotic stressors (cold, heat, hypoxia, desiccation, detoxification 

hibernation and hypersalinity) were manually compiled and queried for the appearance of pEAGs (a 

full list of studies can be found in Supplementary Table S2). We acknowledge that such studies are 

being continually published but have attempted a complete inventory at the time of analysis. For the 

cellular-level data, we first included involvement of pEAGs in cellular pathways active in cancer. For 

this purpose, gene expression data for 813 pEAGs were obtained from microarray experiments of 89 

cancers (Lukk et al., 2010) and from universal reference tissue. To explore involvement of pEAGs in 

apoptosis events, “zombie genes” were then identified in our data matrix (Pozhitkov et al., 2017). Data 

on presence and type of experimentally confirmed PTMs of pEAGs was obtained from the PhosphoSite 

database (www.phosphosite.org, last accessed February 2019), and counts compared against the 

previously described 20 replicates of 200 randomly drawn genes from the human genome using Mann-

Whitney U test and Z-statistic of randomized Mann-Whitney W statistic. To investigate differences 

between ectotherm and endotherm species, pEAGs expressed during embryonic development for 

zebrafish as an ectotherm model species (White et al., 2017) and humans as an endotherm model species 

(Yi et al., 2010) were also binary coded. pEAGs were binary coded for their association with pre-

defined candidate functions for environmental adaptation. The resulting gene/function matrix was 

subsequently analyzed via multiple correspondence analysis (MCA) in R (package FactoMineR, Lê et 

al., 2008) to align genes into functional clusters. Statistical support for MCA dimension groupings were 

obtained from 100,000 multiscale bootstrap replicates in the R package pvclust (Suzuki & Shimodaira, 

2006). For further details, see Supplementary Methods. 
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Fig. 1. Phylogenetic and functional properties of lacertid and vertebrate pEAGs. (a) Visualization 
of median selection coefficient (ω) on an RNAseq maximum likelihood phylogram of 24 lacertid species 
for 200 genes under episodic positive diversifying selection. Genes with 10>ω>1 and ω>10 are shown 
along the branches as circles. (b) Box and jitter plots showing genes with significant evidence for 
relaxation (K≤1) and intensification (K≥1) of selective pressure among cold and warm-adapted clades. 
(c) Network of significantly enriched functions for these genes in Lacertidae (circles - biological 
process; diamond - molecular function; octagon - cellular component; size of circles - number of genes 
per category). (d) Functional genomic network containing 902 pEAGs across endotherm and ectotherm 
vertebrates (blue –genes that adapted to environmental parameters more than once in different species; 
ochre –genes that are stress responsive, maroon –genes that adapted in more than one species and are 
stress responsive). (e) Graph of functional categories of significantly overrepresented ClueGo Gene 
Ontology groups, for the 902 pEAGs, categorized by candidate functions (Cf) and additional functions. 
Numbers in labels refer to numbers of Gene Ontology terms within each category. 
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Results 

 

Genes under episodic positive diversifying selection in Lacertidae 

Among 5,498 ortholog genes compiled from the transcriptomes of 24 lacertid taxa (Garcia-Porta et 

al., 2019), we identified 200 genes to have evolved under episodic positive diversifying selection. The 

estimated median ω (dN/dS ratio) per branch for these 200 genes was plotted onto a maximum 

likelihood RNAseq phylogeny (Figure 1a). Branches splitting from basal nodes, except Podarcis, 

showed the highest median values of ω. The majority of 10>ω>1 genes were located on the (long) 

terminal branches. In contrast, ω ≥ 10 genes were concentrated both along the phylogeny backbone and 

on specific terminal branches. To assess whether genes with high ω values could, instead of being a 

result of positive selection, alternatively have resulted from relaxation of prior selection, we performed 

relaxation tests between phylogenetic models of the selection relaxation/intensification parameter K 

for species adapted to warm and cold environments (Wertheim et al., 2015). We found evidence for 

selection relaxation in 47 genes, and evidence for selection intensification in 18 genes in response to 

cold environments. We also found ten genes with evidence for selection relaxation and evidence for 

selection intensification in 45 genes in response to warm environments (Figure 1b, Supplementary 

Table S3). However, only two of these genes had both evidence for (weak) relaxation of selection in 

cold environments, combined with a ω value of more than 1.4 (gene RBM5 with K=0.763, LR = 4.286, 

p = 0.038 and ω = 5.09; and gene NPEPPS with K= 0.703, LR = 5.406, p = 0.02 and ω = 10). NPEPPS 

also was the only gene with evidence for both strong selection intensification in response to warm 

environments combined with high ω (K=10, LR = 8.316, p = 0.004 and ω = 10). The remaining genes 

with evidence for either relaxation or intensification of selection all had ω ≤ 1.4, see Supplementary 

Table S3.    

To test whether the 200 genes identified to be under positive diversifying selection were adapting 

to climate in Lacertidae, we tested whether they convergently increased or decreased their relative 

evolutionary rates rho in response to different habitat and physiological characteristics across different 

branches of the phylogeny. We identified sets of genes which showed significant rate accelerations in 

“hot” (N=22), “warm” (N=21), and “cold” (N= 12) -adapted species (Figure 2a-c). Overall, there were 
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similar amounts of genes with rates being associated positively vs. negatively to the respective habitat 

types. With regards to continuous characters, we found a positive but non-significant correlation 

between the evolutionary rate correlations of annual hours above 30°C and Tpref (Figure 2d, Kendall’s 

rank correlation tau = 0.08, z = 1.733, p = 0.083). We found significant negative correlations between 

the relative evolutionary rates of annual hours above 30°C and (i) evaporative water loss (Figure 2e, 

iwl, tau = -0.305, z = -6.525, p = 6.793e-11) and (ii) general osteomorphology (Figure 2f, morph1mds1, 

tau = -0.243, z = -5.202, p = 1.969e-07). Principal Component Analysis revealed that three of the four 

continuous “trait” predictors (annual hours above 30°C, Tpref, and morphology) were correlated and 

formed a Principal Component explaining 48.5% of total variance. IWL comprised the second Principal 

Component explaining 29.2% of total variance (in total, 77.7% explained by both Principal 

Components). We therefore explored how the relative evolutionary rates of this temperature-associated 

first Principal Component differed between genes under positive selection vs. not under selection. We 

found that genes under selection had significantly lower median relative evolutionary rates than genes 

not under selection (Figure 3a, Mann-Whitney U test MW-U = 2901, p <0.0001), indicating that 

overall, genes under selection are under higher constraint than genes not under selection.  

 

 

Fig. 2. Association of climate with evolutionary rates and convergence in genes under positive 
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diversifying selection in Lacertidae. (a-c) show genes with highest association between relative evolutionary 
rate (rho) and habitat types (hot, warm, and cold). The gene PMPCB (Mitochondrial processing peptidase beta 
subunit) shows accelerated evolutionary rate in taxa adapted to hot habitats, indicating positive selection (a). The 
gene EIF2AK4 (Eukaryotic Translation Initiation Factor 2 Alpha Kinase 4) shows accelerated evolutionary rate 
in taxa adapted to warm habitats, indicating positive selection (b). The gene MRPL48 (Mitochondrial ribosomal 
protein L48) shows decelerated evolutionary rate in taxa inhabiting cool habitats, indicating purifying selection 
and increased evolutionary constraint (c). Tick marks at the base of plots (a-c) represent untested interior nodes 
of the tree. Lacertid species are abbreviated with first initial of genus and first three initials of species. Across all 
200 genes found under positive diversifying selection in the lacertid phylogeny, the association parameter rho of 
relative evolutionary rate with habitat hours above 30℃ was (d) only weak positively correlated with the rho of 
median preferred temperature (Kendall’s rank correlation tau = 0.08, z = 1.733, p = 0.083), indicating positive 
selection for high Tpref in warm habitats. In contrast, (e) the rho of habitat hours above 30°C was significantly 
negatively correlated with the rho of evaporative water loss (iwl, tau = -0.305, z = -6.525, p = 6.793e-11), and 
likewise (f) to general morphology (morph1mds1, tau = -0.243, z = -5.202, p = 1.969e-07), indicating positive 
selection of IWL and general morphology in cooler habitats. 

 

Based on literature meta-analyses and experimental confirmation of genes adapting to climate, a set 

of candidate functions related to climate adaptation had previously been defined in vitro and in silico, 

and verified in natural populations (Porcelli et al., 2015; Rodríguez et al., 2017; Wollenberg Valero et 

al., 2014). We tested whether newly identified and compiled pEAGs were enriched in these functions. 

The lacertid genes were significantly enriched (Figure 1c) in several previously defined candidate 

functions potentially related to climate adaptation (Porcelli et al., 2015; Rodríguez et al., 2017; 

Wollenberg Valero et al., 2014), and in cytoskeletal processes as additional, not predicted functional 

category (Tables S4-S5 showing allocations of candidate functions and GOs enriched with p<0.05 in 

the gene set per candidate function).  

 

Functional analysis of vertebrate pEAGs and their repeated selection in different species for abiotic 

environmental adaptation  

1,100 pEAGs across ectotherm and endotherm vertebrates were compiled from -omics studies of 

adaptation to different or novel abiotic environments. These genes resulted from statistical comparisons 

of evolutionary lineages such as we have done here for the Lacertidae dataset. Including the 200 

Lacertidae genes, the set of 1,100 genes were involved in adaptation to different environmental 

conditions comprised of thermal differences, latitudinal climate, altitude or season, sulfidic water in 

streams, osmotic differences, desiccation, hypoxia, or wet-dry environmental gradients (see Table S1). 

To ensure that these genes were comparable across these different species, we manually verified that 

all 1,100 pEAGs were orthologs in Vertebrata with OrthoDB (Kriventseva et al., 2019) which enabled 
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these cross-species comparisons (doi:10.6084/m9.figshare.15010887). Of the 1,100 pEAGs, 902 or 

83% were part of a large PPI network characterized by short path lengths and consisting of only one 

connected component (Figure 1d). Among these, 480 genes or 43.6% were repeatedly positively 

selected in response to environmental adaptation in multiple, not closely related vertebrate clades 

(Figure 1d, Table S6). The Gene Ontology (GO) terms for this network covered all except one a priori 

predicted function potentially related to climate adaptation, which was muscle use and -development 

(Figure 1e, Table S4, S7). Additional significantly enriched GO terms within this network were related 

to the cytoskeleton, apoptosis, and localization and transport (Table S4, S7, Figure 1e). The latter 

function encompassed 68 related GO terms and 459 genes (45%). 86% or 171 of the 200 selected genes 

in Lacertidae were also part of this functional network (Figure S1, Table S4). We consider it likely that 

at least these 902 genes (171 of Lacertidae) connected to each other by climate adaptation-relevant 

functions and by evidence for repeated positive diversifying selection represent true EAGs, while this 

is less likely for the 29 Lacertidae genes not connected to this network.  

Fifty of the Lacertidae genes found to be under selection were shared by more than one (between two 

and ten each) terminal taxa in the lacertid phylogeny. Five of these contained an RNA recognition motif 

(TIAL1, U2SURP, ZCRB1, NCL; STRING-determined PPI enrichment p-value = 0.0506 with Anolis 

carolinensis as background). Fifteen genes were under selection in both Lacertidae and other 

vertebrates including endotherms. Among these, two genes were enriched in Rad60/SUMO like domain 

(HIPK2, UBA2), and two were ribosomal proteins (MRPL15, MRPS31, STRING-determined PPI 

enrichment p-value = 0.014 with Anolis carolinensis as background). We tested whether the number of 

480 repeatedly selected genes out of 1,843 genes drawn from all datasets in this study (accounting for 

some of the 1,100 individual genes being repeatedly selected, sometimes in more than two species), 

was higher than expected under regular gene functional constraint. In 100,000 simulations, we found 

that to obtain an identical number of more than once repeatedly selected genes solely by chance, on 

average 3,447 (± 63.8) genes would have to be drawn from the set of 9,840 genes with identical GO 

terms to obtain 480 genes at least twice. This is significantly higher than the empirical number of draws 

performed in this study (1,843 draws, Figure 3b, Z=-2493, p ≤ 0.00001). This shows that the high 

percentage of 43.6% repeatedly selected genes across vertebrate climate adaptation events is an 
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outcome of functional constraint that is higher than if genes with the same function were randomly 

selected at least twice from the genes with similar functions in response to abiotic selection.  

When lacertid pEAGs were separately subjected to GO enrichment analysis, two additional 

previously defined candidate functions for climate adaptation were recovered (cell signalling and 

muscle-related processes; Table S4, S5). For the 29 Lacertidae genes under positive diversifying 

selection that were not part of the network (and less likely constituting true EAGs), no functional GO 

term enrichment could be detected (Table S4). Lacertid pEAGs also had higher semantic similarity of 

GO terms than those 29 not part of the network, and higher semantic similarity than randomized 

replicates of all other comparison groups (29 genes not under positive diversifying selection Z = 2.5, p 

= 0.012, all other annotated orthologs in transcriptomes Z = 5, p ≤ 0.00001, randomly drawn genes Z 

= 3.6, p = 0.0003, Figure 3c), except human “housekeeping” genes. (Figure 3c, Z = 1, p = 0.159).  

 

Fig. 3. Comparison of lacertid genes under positive diversifying selection and vertebrate pEAG. (a) Box 
plot showing relative evolutionary rates rho of the first Principal Component of temperature-associated variables 
(habitat hours above 30℃, median Tpref, and general morphology, PC1) for genes under positive diversifying 
selection being significantly lower than those not under selection in Lacertidae (***). This indicates constraint in 
evolutionary rates of genes under selection. (b) Number of genes that was drawn in this study (1,843) to find 480 
repeatedly selected genes (red bar) is significantly lower than the number of genes obtained in N=100,000 
simulations of random draws from a set of 9,840 genes with identical GOs to draw the same 480 genes at least 
twice (histogram, ***). (c) Comparisons of functional (semantic) similarity of GO terms between genes under 
positive diversifying selection in Lacertidae and comparison gene sets (A-F), and between vertebrate pEAGs and 
comparison gene sets (G-K). Boxes show medians, 25-75 quartiles, and jittered raw data. Transparent bands 
indicate modelled ±95% prediction intervals. The plot shows that the 200 lacertid genes under positive 
diversifying selection (A) have the highest functional similarity. Their semantic similarity is higher than that of 
29 genes under positive diversifying selection not part of the network (B), of 20 random subsets of 200 genes 
drawn from the 495 genes not under positive diversifying selection (C,**); of 20 random subsets of 200 genes 
drawn from 5,498 annotated ortholog genes with incomplete taxon sampling obtained from RNAseq (D, ***), of 
20 replicates of 200 random human genes (E, ***), but not higher than 10 replicates of 451 human housekeeping 
genes (F) 902 vertebrate pEAGs of the vertebrate functional genomic network (G) split up into repeatedly selected 
(H) and not repeatedly selected (I) gene sets that overlap with the 95% prediction intervals of 20 replicates of 902 
random subsets of genes with identical GOs (J). Gene sets G and J significantly differ in Z-tests (***). Vertebrate 
pEAGs, however, have significantly higher functional similarity than 20 random subsets of 902 random vertebrate 
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genes (K, ***). p-values are denoted as  * ≤  0.05; ** ≤ 0.01; *** ≤ 0.001.   
 

We next tested whether the functions of vertebrate pEAGs were more similar than different 

comparison gene sets. The vertebrate pEAG network had significantly more interactions between the 

genes than expected if they were randomly drawn from the genome, with a PPI enrichment p-value of 

2e-13. It also had significantly higher functional similarity than random networks of comparable size 

(Figure 4, Z = 137.69, p = 0.00001). Its functional similarity was, however, within the 95% prediction 

intervals of randomized networks belonging to genes with the same GO terms, but still was significantly 

more similar than genes belonging to these same GO terms (Z=34.37, p=0.00001).  

 

 

Figure 4. PTMs of proteins encoded by pEAGs and random gene lists. (a) A randomized distribution of 
Mann-Whitney W statistic across random and environmental adaptation PTM values (N=520), obtained by 999 
permutations, yielded a maximal W-value of 365 and shows that the boundaries of this distribution do not overlap 
with the test W-values of either pEAGs against housekeeping genes or pEAGs against randomly drawn genes 
(black bars). PTM data obtained for humans were first normalized by PTM type. PTM counts were then 
compared by (b) type between 20 random gene sets, 20 random subsets of pEAGs, and 20 random subsets of 
human housekeeping genes. Overall, pEAGs encoded proteins with significantly more PTMs than random genes 
and less PTMs than housekeeping genes (see right plot labelled “ALL”).  

 

Evidence for involvement in different cellular functions  

We subsequently tested whether all pEAGs, and repeatedly selected pEAGs, have common 
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characteristics with respect to by (i) a priori defined candidate functions for climate adaptation, (ii) 

relatedness to the organismal stress response, (iii) aspects of cellular homeostasis (cancer and 

apoptosis), and (iv) enrichment in specific post-translational modifications (PTMs).  

One hundred ninety-eight pEAGs or 18% had “stress response” as a significant GO term (Table S6). 

Furthermore, we found empirical evidence in the literature (not restricted to vertebrates) for 329 

(29.9%) genes being differentially expressed in response to abiotic environmental stress (including cold 

stress, heat stress, hypoxia stress, and others including hibernation, desiccation and detoxification, 

Table S6, the complete data is provided in doi:10.6084/m9.figshare.15010887). Of these, 125 (38.0%) 

were upregulated and 74 (22.5%) were downregulated (Figure S2). The top three candidate functions 

for climate adaptation represented by these genes were “cellular component biogenesis”, 

“morphogenesis”, and “response to oxidative stress / stress response (incl. thermal stress)” (Table S8-

S9). All these genes were part of the functional network. Several of them were heat shock proteins; 

however, the two most recorded genes responding to all analyzed aspects of stress response across 

different species were the less-well studied genes BAG3 and AHSG. AHSG furthermore responded to 

all four groups of stressors, together with PKLR and SQOR (Figure S3a).  

Concerning cellular pathways active in cancer as possible pEAG candidate function, we found that 

pEAGs used by selection in more than one species have lower expression values in both cancer and 

healthy tissues, compared to genes only selected with respect to environmental changes in one species 

(Figure S3b), whilst ratios of pEAG gene expression between cancer and reference conditions did not 

differ (Table S10). Five genes (COL3A1, NCAN, EDNRB, SLC6A1, FCGBP and SYT11) of the data 

set however, were involved in more than 80 cancer types (Figure S4, Table S11).  

With respect to PTMs, evidence for human gene product PTMs was present in 19% of pEAGs, and 

21% genes furthermore had the function “gene regulation - protein modification” (Table S2). The gene 

products of pEAGs overall had significantly more PTMs than randomly drawn genes (Table S2, Mann-

Whitney W = 19572, p ≤ 2.2e-16), and significantly less PTMs than randomly drawn human 

housekeeping genes (W = 8599, p = 2.57e-15). These results remain significant after comparison with a 

randomized distribution of the W statistic (pEAG to random genes Z = 443.726, p ≤ 0.001; pEAG to 

housekeeping genes Z = 192.44, p ≤ 0.001, Figure 4).  
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To visually align pEAGs to candidate functions as well as other cellular functions (ii-iv mentioned 

above), six functional dimensions of pEAGs were extracted by Multiple Correspondence Analysis. 

Figure 5 shows the dendrogram obtained by pvclust following 100,000 bootstrap replicates. Eleven 

hierarchical clusters were supported with bootstrap values >95%. Other than expected, genes were not 

partitioned into clusters that could be identified as clearly ectothermic or endothermic (for more details 

see Supplementary Results). Instead, genes were clustered by function and various other evolutionary 

aspects.  

 

 

Fig. 5. Results of Multiple Correspondence Analysis (MCA), represented as a dendrogram, to scale 
pEAGs by different organismal and cellular functional and evolutionary aspects. Statistical support 
was obtained via multiscale bootstrap (N=100,000 replicates; Suzuki & Shimodaira, 2013). Recurrence 
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events - events where the same gene is under repeated environmental selection in two or more species. 
11 functional clusters were obtained with combined bootstrap support (alpha>0.9, red numbers on 
nodes), and standard error of estimate <0.01 (not shown). 

 

Discussion 

In this contribution, we investigated whether the genomic basis of environmental adaptation in 

lacertid lizards and other vertebrates is characterized by specific functions and gene subsets, and 

whether these genes play a part in the response to stress both experienced at the organismal level 

(abiotic environmental stress) and at the cellular level (PTMs, activation in cancer, embryonic 

development or during apoptosis “Zombie genes”). We here found evidence for higher than random 

levels of identity and functional similarity among genes that have adapted to abiotic selective regimes 

among different vertebrate taxa and physiological strategies, as well as involvement in the stress 

response.  

We found 200 genes that show signatures of positive diversifying selection in Lacertidae, a group 

of lizards inhabiting a wide climatic gradient. Taxa that inhabit hot or cold areas for a long time may 

experience relaxation of selective pressure in genes first used to adapt to such environments (Lahti et 

al., 2009). Conversely, selection in genes which supported heat adaptation in ancestral branches could 

be relaxed if a clade expands northwards into cooler climate and selection pressure is shifted to genes 

that predominantly promote cold adaptation (Lahti et al., 2009). In Lacertidae, we found evidence for 

strong relaxation in selective pressure with respect to cold environments combined with high ω in only 

two genes, NPEPPS and RBM5. However, the large ω value in NPEPPS was identified only in Podarcis 

liolepis, a species which was neither a member of the cold-adapted nor warm-adapted comparison 

groups, and it is still feasible to conclude that the high ω in P. liolepis was due to an episodic event of 

positive diversifying selection along its branch. In contrast, it is possible that RBM5 experienced a 

period of relaxation of selective pressure in correlation with the expansion into colder climate, as its 

only high ω value is located on an interior branch separating Timon pater (warm adapted) and Lacerta 

agilis (cold adapted). A range of other genes had smaller ω values combined with K values closer to 1, 

which may indicate a more complicated interplay between episodes of positive diversifying selection 

and relaxation. Overall, an interesting pattern emerges showing that lacertids in warm environments 
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experience an overall intensification of selection, and lacertids diversifying into cooler climates a 

relaxation of selection pressure. This pattern is consistent with prior predictions that selection is 

stronger in response to heat than in response to cold, due to the asymmetry of the thermal fitness curve 

(Martin & Huey, 2008).  

Nonetheless, we here found evidence for evolutionary rates of genes with signatures of selection 

being correlated with physiological adaptations to abiotic parameters. A previous study using the same 

lacertid dataset with species as data points (Garcia-Porta et al., 2019), found that species with more 

yearly hours above 30°C have higher evolutionary rates, higher preferred temperature, and lower 

evaporative water loss. With respect to correlations of these predictors amongst each other at the species 

level, previous phylogenetic linear and second order polynomial regression models (PRM) did not find 

any of the other predictors to be correlated (cf. Supplementary Table S6 in Garcia-Porta et al., 2019). 

Results from this current work overall agree with such climate-mediated evolution of phenotypes at the 

gene level, as relative evolutionary rates of the 200 genes found to be under selection were marginally 

higher in species with both more habitat hours above 30℃ and higher median preferred temperature. 

This indicates positive selection for high Tpref in warm habitats. Aligned to Garcia-Porta et al. (Garcia-

Porta et al., 2019), evolutionary rates of these genes were also negatively correlated between habitat 

hours above 30°C and evaporative water loss. In addition, we observed a significant negative 

correlation of the evolutionary rate correlations of genes of habitat hours above 30°C and of 

osteomorphology. These results indicate positive selection of evaporative water loss and bone 

morphology in cooler habitats. Two genes under selection accelerating evolutionary rates in clades 

inhabiting hot and warm habitats, respectively, were PMPCB (Peptidase, mitochondrial processing 

subunit beta) and EIF2AK4 (Eukaryotic translation initiation factor 2 alpha kinase 4) - these genes 

could be associated with key innovations enabling adaptation to such habitats. One gene under selection 

significantly slowing down its rate of evolution in clades inhabiting cold areas is MRPL48 

(mitochondrial ribosomal protein L48), indicating the presence of purifying selection or constraint 

(following interpretations in Kowalczyk et al., 2020). 

pEAGs of different species form a tight network with more functional connections among the genes 

than expected by chance. Across the different species and environmental factors considered, almost 
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half of all genes in this functional network (43.6%) were repeatedly selected in different species in 

response to changes in the abiotic environment. This percentage was significantly higher than if genes 

had been randomly recruited from the same functions. For example, 16 pEAGs of Lacertidae under 

selection in response to a climatic gradient (in both latitude and elevation) have been independently 

recruited for environmental adaptation in other vertebrates. Other ectotherms use these same genes to 

adapt to desiccation and anoxia (killifish Austrofundulus limnaeus Wagner et al., 2018), altitude 

(Himalayan Nanorana frogs, Himalayan Phrynocephalus lizards, Sun et al., 2018). Some endotherm 

species use the same genes to adapt to latitudinal climate (Yakutian horse, woolly mammoth, minke 

whale, polar bear, Yudin et al., 2017), deserts (camel and dromedary, Wu et al., 2014), and altitude 

(Himalayan marmot, Bai et al., 2018). Different than expected, aspects of environmental adaptation 

and stress response were not clearly separated between vertebrate endotherms and ectotherms, which 

indicates that the genomic mechanisms and functions of adaptation to abiotic parameters seem to be 

constrained even among these two, very different physiological strategies. This constitutes another 

indicator for the presence of genomic constraint in environmental adaptation. For example, Lacertidae 

adapted to a temperature gradient shared in total five genes under positive diversifying selection with 

the extinct woolly mammoth adapted to Arctic environments (ETFA, MRPS31, PFAS, PHKB, and 

SENP5).  

In lacertid lizards, terminal branches with very high values of episodic positive diversifying 

selection were identified mainly in species inhabiting cooler, more seasonal and partially montane 

environments such as Podarcis muralis and Zootoca vivipara. In contrast, they were absent in hot-arid 

adapted species such as Mesalina olivieri and species living in tropical environments (Takydromus 

sexlineatus, Holaspis guentheri).  

Adaptation in genes linked to mitochondrial cell respiration and oxidative stress response 

(proteasome component genes and the chaperone HSP90B1), could facilitate adaptation to cold 

environments via influencing the metabolic rate (Sokolova, 2018; White et al., 2012). This corroborates 

previous assumptions that due to biochemical and cell physiological limitations at high temperatures, 

lower preferred temperatures are more likely to evolve than higher thermal preferences in lizards 

(Araújo et al., 2013; Munoz et al., 2014). In Lacertidae, genes under positive diversifying selection but 
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not part of the vertebrate functional network of pEAGs did not show any functional enrichment and 

could have evolved in response to positive diversifying selection pressures other than abiotic climate-

related factors. Our comparative genomic approach thus may help disentangle environmental 

adaptation from covarying factors such as locomotor performance or reproduction (Bourgeois et al., 

2019).  

The results concerning gene function are in alignment with the hypothesis of evolutionary constraint 

as well. First, genes under selection in Lacertidae had overall lower relative rates of evolution with 

regards to changes in habitat temperature, preferred temperature and morphology than genes not under 

selection. This seems counterintuitive at first but matches results of a previous study which found that 

increased relative longevity in mammals is also catalyzed in the majority by genes with higher levels 

of constraint (Kowalczyk et al., 2020). Increased constraint of many genes can be interpreted as trait-

enabling whereby certain existing biological pathways become increasingly important after new traits 

have evolved (Kowalczyk et al., 2020). In contrast, a relatively lower number of genes may be involved 

in catalyzing key innovations, such as the genes we identified to be under positive selection and having 

faster relative evolutionary rates in response to hot and cold climates. In agreement with this hypothesis, 

high functional connectedness and comparatively higher values of GO semantic similarity of the 

pEAGs analyzed in our study indicated that they were indeed drawn from a non-random set of very 

similar functions (Yu et al., 2010). Many pEAGs fell within predicted candidate functions for climate 

adaptation which had been proposed for species across the tree of life, independently for Metazoans 

(Porcelli et al., 2015) and ectothermic vertebrates and invertebrates (Wollenberg Valero et al., 2014), 

and that had been previously verified in elevational adaptation of Anolis lizard populations (Rodríguez 

et al., 2017). Due to their universal nature, these functions are quite general which may predispose them 

for higher similarity in cross-taxon comparisons, but further studies may be able to narrow them down 

for specific taxonomic groups and type of abiotic selection. We can show that functional enrichment of 

genes under selection in these candidate functions was not just due to their generality, as we found less 

semantic similarity in groups of genes randomly drawn from the genome, which would be expected to 

have similarly general functions. Besides these predefined functions, involvement in cytoskeletal and 

apoptotic processes, as well as localization and transport emerged as novel environmental adaptation-
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related functions. Both apoptosis and transport-related genes have previously been associated with 

death-related processes, during which transport genes may become activated attempting to restore 

homeostasis (Pozhitkov et al., 2017). The cytoskeleton is remodelled through stress and involved in 

HSP phosphorylation (Dalle-Donne et al., 2001) which in turn protects cytoskeletal integrity (Klose & 

Robertson, 2004). Stress furthermore induces changes in cytoskeleton-regulated cell volume (Pedersen 

et al., 2001).  

PTMs have previously been related to regulation of torpor as an environment-induced metabolic 

process (Morin & Storey, 2009). Surprisingly, we found that specific PTMs were present in almost all 

functional clusters associated with environmental adaptation. Genes that were involved in climate 

adaptation were enriched in various types of PTMs such as serine O-GlcNAc (serine-β-linked N-

acetylglucosamine modification) which are associated with transcription, metabolism, apoptosis, 

organelle biogenesis, and transport and disease including metabolic syndrome and cancer (Bond & 

Hanover, 2015). Moreover, 89% of all pEAGs were involved in at least one human cancer, and a subset 

of which had cancer involvement as predominant function - e.g. FCGBP and SYT11, which also adapt 

to latitudinal climate in polar bear and woolly mammoth (Yudin et al., 2017). This reinforces the 

previously suggested relationship between abiotic environmental adaptation and homeostasis 

disturbance via disease (Pozhitkov et al., 2017). Many such “Zombie genes” repeatedly adapted to 

altitude. These genes are both activated in dying cells, and involve localization and transport processes, 

which supports these functions as emerging cellular candidate processes for environmental adaptation. 

Adaptation to hypoxia and desiccation is furthermore associated with the PTM lysine trimethylation 

(Niu et al., 2015). Lastly, lysine succinylation was linked to genes involved in environmental adaptation 

in lacertids and other ectotherms, possibly related to UV radiation tolerance (Xu et al., 2016).  

The subset of orthologs with presence in all lacertid species could be biased for genes with high 

expression (that are more likely recovered from all species in a transcriptome-based alignment), and 

for genes needed for regular cellular functions. Adaptation to the abiotic environment is also likely 

mediated through genomic elements other than protein-coding genes or differences in gene expression. 

We therefore likely only analysed a subset of the “true EAG” landscape in lacertid genomes. Evidence 

from lacertid pEAGs being functionally similar due to abiotic environmental selection, and not just 
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because they were a subset based on common properties of expression, comes from their significantly 

higher functional similarity compared to not selected genes. Secondly, they were functionally more 

similar to each other than the 5,498 ortholog genes which were missing transcripts for one or more 

lacertid species and could thus not be analysed for selection – but which also came from the same 

population of transcripts.  

Compared across all vertebrates, pEAGs had higher expression values, higher numbers of PTM 

sites, and higher functional similarity than other partitions of the transcriptomes, but random sets of 

housekeeping genes had similar properties. However, only eight housekeeping genes were identified 

in our data set. A further 277 genes (or 25%) were included in 3,804 “wider definition” housekeeping 

genes, which are expressed at a more baseline or mid-level across all tissues and conditions (Eisenberg 

& Levanon, 2013). Genes with frequent expression in several tissues could expand the range of life 

stages and situations where natural positive diversifying selection can modify allele frequencies in 

response to abiotic selection. Genes that are only expressed during embryonic development are aligned 

with thermal adaptation across latitudinal climate, elevation, and recurrent adaptation, pinpointing early 

development as a vulnerable stage for environmental positive diversifying selection (Sanger et al., 

2018).  

Whilst 18% of pEAGs were involved in the response to stress in experimental studies, we did not 

find evidence for an alignment between specific axes of environmental adaptation to specific types of 

stress response such as desert adaptation to heat stress response. This result supports the idea that 

functional genetic networks are partitioned into different types of functions covered by distinct gene 

sets, which then interlink with others for information exchange (Pancaldi et al., 2012), and supports the 

necessity of a generality of the organismal stress response to ensure viability in the face of multiple 

stressors (López-Maury et al., 2008). In general, while about 100-150 genes can be differentially 

expressed in response to any single stressor, the number of genes which responds to more than one 

stressor is much lower - genes responding to specific environmental stressors in comparison to total 

numbers of protein-coding genes are 0.5%-1.4% in Drosophila melanogaster and 0.4-0.7% in 

mammals, while genes responding across stressors are much lower with 0.5% in D. melanogaster and 

0.14%-0.23% in mammals (de Nadal et al., 2011). These numbers also show that the 18% of stress-
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responsive genes found in our network must represent a large portion of the environmental stress 

response. As expected, HSPs were differentially expressed under all stressors (Feder & Hofmann, 

1999), and so were other genes functionally involved in the heat shock response. Besides HSPs, we 

here identified further little-studied pEAGs, that ubiquitously responded to all analyzed stressors 

(PKLR, AHSG, SQOR). Such genes may deserve further attention as possible biomarkers for 

environmental stress-related adaptation, as will be required under climate change conditions.  

To conclude, we have shown that adaptations to abiotic environmental parameters are characterized by 

a high degree of genomic re-use and functional similarity, in line with the hypothesis of genomic 

constraint. Some interesting follow-on questions could include, whether selection in pEAGs in response 

to one type of environmental change happens via similar or different mutations, whether these 

mutation/selection events have the same effect size, and whether they are also conveying adaptation to 

different environmental conditions. As these genes typically have pleiotropic effects on the phenotype, 

it would also be interesting to study pEAGs in the context of linked traits. For example, an increase of 

cortisol can enhance the orange coloration in Zootoca vivipara, which is used in courtship (Andrade et 

al., 2019; Fitze et al., 2009). Although Lacertidae are thought to be excellent thermoregulators (Ortega 

et al., 2016; Sannolo et al., 2018), many lacertid lizard populations, especially those in humid montane 

localities, are currently undergoing population declines linked to climate change (Carneiro et al., 2017; 

Romero-Diaz et al., 2017). Studies are already underway that assess the future adaptive potential or 

“evolvability” of extant populations based on physiological parameters and distribution areas (Somero, 

2010), and new genomic and transcriptomic datasets are rapidly accumulating (for Lacertidae, see 

Andrade et al., 2019; Kolora et al., 2019; Yurchenko et al., 2019). The genes identified in this study 

deserve concerted focus in future research aimed at evaluating current climate stress on populations at 

the molecular level, and whether it may lead to evolutionary adaptation in the future similar to, for 

example, Bay and colleagues’ (Bay et al., 2017) approach to determine the likelihood of future heat 

adaptation in corals. We recommend that similar efforts in vertebrates focus on the genes and functions 

outlined in this contribution, and on the specific functional mutations of different alleles within these 

candidate genes.   

 



28 
 

 

Acknowledgements 

This work was partially supported by the Deutsche Forschungsgemeinschaft (DFG) to M.V. and 

J.M. (VE 247/11-1 / MU 1760/9-1). The University of Hull is thanked for funding the Molecular Stress 

in changing aquatic environments (MolStressH2O) research cluster (supporting K.W.V., P.B.A., and 

L.F.); other cluster members are thanked for helpful discussions. KWV is supported by the Royal 

Society (RGS\R2\180033). Hervé Philippe (Station d’Ecologie Expérimentale CNRS, Moulis, France) 

is thanked for help with sequence analysis. Hernando Valero is thanked for assistance with OrthoDB. 

We acknowledge the Viper High Performance Computing facility of the University of Hull and its 

support team, specifically Seif Elnawasany (Microsoft) and Chris Collins (Hull). S.S. acknowledges an 

Allam PhD studentship and A.B. acknowledges a PhD scholarship within the Endothelial cells in 

chronic disease research cluster at UoH. 

 

Author contributions   

KWV, MV, JM, KBS designed research, KWV, JGP, II, SK performed research, OJG, PP, APT 

contributed new reagents, or analytic tools, KWV, JGP, II, LF, AB, SFS, APT, PBA analyzed data, 

KWV and all co-authors wrote the paper 

 

  



29 
 

References 

Altenhoff, A. M., & Dessimoz, C. (2009). Phylogenetic and functional assessment of orthologs 

inference projects and methods. PLoS Computational Biology, 5, e1000262. 

Andrade, P., Pinho, C., Pérez I de Lanuza, G., Afonso, S., Brejcha, J., Rubin, C.-J., Wallerman, O., 

Pereira, P., Sabatino, S. J., Bellati, A., Pellitteri-Rosa, D., Bosakova, Z., Bunikis, I., Carretero, 

M. A., Feiner, N., Marsik, P., Paupério, F., Salvi, D., Soler, L., … Carneiro, M. (2019). 

Regulatory changes in pterin and carotenoid genes underlie balanced color polymorphisms in the 

wall lizard. Proceedings of the National Academy of Sciences of the United States of America, 

116(12), 5633–5642. 

Araújo, M. B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P. A., Valladares, F., & Chown, S. L. (2013). 

Heat freezes niche evolution. Ecology Letters, 16, 1206–1219. 

Babonis, L. S., & Martindale, M. Q. (2017). Phylogenetic evidence for the modular evolution of 

metazoan signalling pathways. Philosophical Transactions of the Royal Society of London. 

Series B, Biological Sciences, 372(1713). https://doi.org/10.1098/rstb.2015.0477 

Bai, L., Liu, B., Ji, C., Zhao, S., Liu, S., Wang, R., Wang, W., Yao, P., Li, X., Fu, X., Yu, H., Liu, 

M., Han, F., Guan, N., Liu, H., Liu, D., Tao, Y., Wang, Z., Yan, S., … Enqi Liu. (2018). 

Hypoxic and Cold Adaptation Insights from the Himalayan Marmot Genome. iScience. 

https://doi.org/10.1016/j.isci.2018.11.034 

Bay, R. A., Rose, N. H., Logan, C. A., & Palumbi, S. R. (2017). Genomic models predict successful 

coral adaptation if future ocean warming rates are reduced. Science Advances, 3(11), e1701413. 

Bindea, G., Galon, J., & Mlecnik, B. (2013). CluePedia Cytoscape plugin: pathway insights using 

integrated experimental and in silico data. Bioinformatics, 29(5), 661–663. 

Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W.-H., 

Pagès, F., Trajanoski, Z., & Galon, J. (2009). ClueGO: a Cytoscape plug-in to decipher 

functionally grouped gene ontology and pathway annotation networks. Bioinformatics , 25(8), 

1091–1093. 

Blount, Z. D., Lenski, R. E., & Losos, J. B. (2018). Contingency and determinism in evolution: 



30 
 

Replaying life’s tape. In Science (Vol. 362, Issue 6415, p. eaam5979). 

https://doi.org/10.1126/science.aam5979 

Bond, M. R., & Hanover, J. A. (2015). A little sugar goes a long way: the cell biology of O-GlcNAc. 

The Journal of Cell Biology, 208(7), 869–880. 

Bourgeois, Y., Ruggiero, R. P., Manthey, J. D., & Boissinot, S. (2019). Recent secondary contacts, 

linked selection and variable recombination rates shape genomic diversity in the model species 

Anolis carolinensis. Genome Biology and Evolution. https://doi.org/10.1093/gbe/evz110 

Buttke, T. M., & Sandstrom, P. A. (1994). Oxidative stress as a mediator of apoptosis. Immunology 

Today, 15(1), 7–10. 

Campbell-Staton, S. C., Cheviron, Z. A., Rochette, N., Catchen, J., Losos, J. B., & Edwards, S. V. 

(2017). Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole 

lizard. Science, 357(6350), 495–498. 

Carneiro, D., Garcia-Munoz, E., Zagar, A., Pafilis, P., & Carretero, M. A. (2017). Is ecophysiology 

congruent with the present-day relictual distribution of a lizard group? Evidence from preferred 

temperatures and water loss rates. The Herpetological Journal, 27(1), 47–56. 

Chen, L., DeVries, A. L., & Cheng, C. H. (1997). Convergent evolution of antifreeze glycoproteins in 

Antarctic notothenioid fish and Arctic cod. Proceedings of the National Academy of Sciences of 

the United States of America, 94(8), 3817–3822. 

Dalle-Donne, I., Rossi, R., Milzani, A., Di Simplicio, P., & Colombo, R. (2001). The actin 

cytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in 

the redox state of actin itself. Free Radical Biology & Medicine, 31(12), 1624–1632. 

de Nadal, E., Ammerer, G., & Posas, F. (2011). Controlling gene expression in response to stress. 

Nature Reviews. Genetics, 12(12), 833–845. 

Denver, R. J. (2009). Structural and functional evolution of vertebrate neuroendocrine stress systems. 

Annals of the New York Academy of Sciences, 1163, 1–16. 

Diele-Viegas, L. M., & Rocha, C. F. D. (2018). Unraveling the influences of Climate Change in 

Lepidosauria (Reptilia). Journal of Thermal Biology. 

https://doi.org/10.1016/j.jtherbio.2018.11.005 



31 
 

Eisenberg, E., & Levanon, E. Y. (2013). Human housekeeping genes, revisited. Trends in Genetics: 

TIG, 29(10), 569–574. 

Feder, M. E., & Hofmann, G. E. (1999). Heat-shock proteins, molecular chaperones, and the stress 

response: evolutionary and ecological physiology. Annual Review of Physiology, 61, 243–282. 

Feiner, N., Rago, A., While, G. M., & Uller, T. (2018). Signatures of selection in embryonic 

transcriptomes of lizards adapting in parallel to cool climate. Evolution; International Journal of 

Organic Evolution, 72(1), 67–81. 

Fitze, P. S., Cote, J., San-Jose, L. M., Meylan, S., Isaksson, C., Andersson, S., Rossi, J.-M., & 

Clobert, J. (2009). Carotenoid-based colours reflect the stress response in the common lizard. 

PloS One, 4(4), e5111. 

Futuyma, D. J. (2010). Evolutionary constraint and ecological consequences. Evolution; International 

Journal of Organic Evolution, 64(7), 1865–1884. 

Garcia-Porta, J., Irisarri, I., Kirchner, M., Rodríguez, A., Kirchhof, S., Brown, J. L., MacLeod, A., 

Turner, A. P., Ahmadzadeh, F., Albaladejo, G., Crnobrnja-Isailovic, J., De la Riva, I., Fawzi, A., 

Galán, P., Göçmen, B., Harris, D. J., Jiménez-Robles, O., Joger, U., Jovanović Glavaš, O., … 

Wollenberg Valero, K. C. (2019). Environmental temperatures shape thermal physiology as well 

as diversification and genome-wide substitution rates in lizards. Nature Communications, 10(1), 

4077. 

Hancock, A. M., Witonsky, D. B., Gordon, A. S., Eshel, G., Pritchard, J. K., Coop, G., & Di Rienzo, 

A. (2008). Adaptations to climate in candidate genes for common metabolic disorders. PLoS 

Genetics, 4(2), e32. 

Han, J.-D. J., Bertin, N., Hao, T., Goldberg, D. S., Berriz, G. F., Zhang, L. V., Dupuy, D., Walhout, 

A. J. M., Cusick, M. E., Roth, F. P., & Vidal, M. (2004). Evidence for dynamically organized 

modularity in the yeast protein-protein interaction network. Nature, 430(6995), 88–93. 

Hayes, J. D., Dinkova-Kostova, A. T., & Tew, K. D. (2020). Oxidative Stress in Cancer. Cancer Cell, 

38(2), 167–197. 

Hsiao, L. L., Dangond, F., Yoshida, T., Hong, R., Jensen, R. V., Misra, J., Dillon, W., Lee, K. F., 

Clark, K. E., Haverty, P., Weng, Z., Mutter, G. L., Frosch, M. P., MacDonald, M. E., Milford, E. 



32 
 

L., Crum, C. P., Bueno, R., Pratt, R. E., Mahadevappa, M., … Gullans, S. R. (2001). A 

compendium of gene expression in normal human tissues. Physiological Genomics, 7(2), 97–

104. 

Jensen, L. J., Gupta, R., Blom, N., Devos, D., Tamames, J., Kesmir, C., Nielsen, H., Staerfeldt, H. H., 

Rapacki, K., Workman, C., Andersen, C. A. F., Knudsen, S., Krogh, A., Valencia, A., & Brunak, 

S. (2002). Prediction of human protein function from post-translational modifications and 

localization features. Journal of Molecular Biology, 319(5), 1257–1265. 

Klose, M. K., & Robertson, R. M. (2004). Stress-induced thermoprotection of neuromuscular 

transmission. Integrative and Comparative Biology, 44(1), 14–20. 

Kolora, S. R. R., Weigert, A., Saffari, A., Kehr, S., Walter Costa, M. B., Spröer, C., Indrischek, H., 

Chintalapati, M., Lohse, K., Doose, G., Overmann, J., Bunk, B., Bleidorn, C., Grimm-Seyfarth, 

A., Henle, K., Nowick, K., Faria, R., Stadler, P. F., & Schlegel, M. (2019). Divergent evolution 

in the genomes of closely related lacertids, Lacerta viridis and L. bilineata, and implications for 

speciation. GigaScience, 8(2). https://doi.org/10.1093/gigascience/giy160 

Kosakovsky Pond, S. L., Frost, S. D. W., & Muse, S. V. (2005). HyPhy: hypothesis testing using 

phylogenies. Bioinformatics , 21(5), 676–679. 

Kowalczyk, A., Meyer, W. K., Partha, R., Mao, W., Clark, N. L., & Chikina, M. (2019). 

RERconverge: an R package for associating evolutionary rates with convergent traits. 

Bioinformatics (Oxford, England), 35(22), 4815–4817. 

Kowalczyk, A., Partha, R., Clark, N. L., & Chikina, M. (2020). Pan-mammalian analysis of 

molecular constraints underlying extended lifespan. eLife, 9. https://doi.org/10.7554/eLife.51089 

Kriventseva, E. V., Kuznetsov, D., Tegenfeldt, F., Manni, M., Dias, R., Simão, F. A., & Zdobnov, E. 

M. (2019). OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and 

viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Research, 

47(D1), D807–D811. 

Lahti, D. C., Johnson, N. A., Ajie, B. C., Otto, S. P., Hendry, A. P., Blumstein, D. T., Coss, R. G., 

Donohue, K., & Foster, S. A. (2009). Relaxed selection in the wild. Trends in Ecology & 

Evolution, 24(9), 487–496. 



33 
 

Lê, S., Josse, J., Husson, F., & Others. (2008). FactoMineR: an R package for multivariate analysis. 

Journal of Statistical Software, 25(1), 1–18. 

Logan, C. A., & Buckley, B. A. (2015). Transcriptomic responses to environmental temperature in 

eurythermal and stenothermal fishes. The Journal of Experimental Biology, 218(Pt 12), 1915–

1924. 

López-Maury, L., Marguerat, S., & Bähler, J. (2008). Tuning gene expression to changing 

environments: from rapid responses to evolutionary adaptation. Nature Reviews. Genetics, 9(8), 

583–593. 

Losos, J. B. (2011). Convergence, adaptation, and constraint. Evolution; International Journal of 

Organic Evolution, 65(7), 1827–1840. 

Lukk, M., Kapushesky, M., Nikkilä, J., Parkinson, H., Goncalves, A., Huber, W., Ukkonen, E., & 

Brazma, A. (2010). A global map of human gene expression. Nature Biotechnology, 28(4), 322–

324. 

Martin, T. L., & Huey, R. B. (2008). Why “suboptimal” is optimal: Jensen’s inequality and ectotherm 

thermal preferences. The American Naturalist, 171(3), E102–E118. 

Morin, P., Jr, & Storey, K. B. (2009). Mammalian hibernation: differential gene expression and novel 

application of epigenetic controls. The International Journal of Developmental Biology, 53(2-3), 

433–442. 

Munoz, M. M., Stimola, M. A., Algar, A. C., Conover, A., Rodriguez, A. J., Landestoy, M. A., 

Bakken, G. S., & Losos, J. B. (2014). Evolutionary stasis and lability in thermal physiology in a 

group of tropical lizards. Proceedings of the Royal Society of London B: Biological Sciences, 

281(1778), 20132433. 

Niu, Y., DesMarais, T. L., Tong, Z., Yao, Y., & Costa, M. (2015). Oxidative stress alters global 

histone modification and DNA methylation. Free Radical Biology & Medicine, 82, 22–28. 

Ortega, Z., Mencía, A., & Pérez-Mellado, V. (2016). The peak of thermoregulation effectiveness: 

Thermal biology of the Pyrenean rock lizard, Iberolacerta bonnali (Squamata, Lacertidae). 

Journal of Thermal Biology, 56, 77–83. 

Pancaldi, V., Saraç, O. S., Rallis, C., McLean, J. R., Převorovský, M., Gould, K., Beyer, A., & 



34 
 

Bähler, J. (2012). Predicting the fission yeast protein interaction network. G3 , 2(4), 453–467. 

Pavlicev, M., & Wagner, G. P. (2012). A model of developmental evolution: selection, pleiotropy and 

compensation. Trends in Ecology & Evolution, 27(6), 316–322. 

Pedersen, S. F., Hoffmann, E. K., & Mills, J. W. (2001). The cytoskeleton and cell volume regulation. 

Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 130(3), 

385–399. 

Plotnikov, A., Zehorai, E., Procaccia, S., & Seger, R. (2011). The MAPK cascades: signaling 

components, nuclear roles and mechanisms of nuclear translocation. Biochimica et Biophysica 

Acta, 1813(9), 1619–1633. 

Porcelli, D., Butlin, R. K., Gaston, K. J., Joly, D., & Snook, R. R. (2015). The environmental 

genomics of metazoan thermal adaptation. Heredity, 114(5), 502–514. 

Pozhitkov, A. E., Neme, R., Domazet-Lošo, T., Leroux, B. G., Soni, S., Tautz, D., & Noble, P. A. 

(2017). Tracing the dynamics of gene transcripts after organismal death. Open Biology, 7(1). 

https://doi.org/10.1098/rsob.160267 

Qiu, Q., Zhang, G., Ma, T., Qian, W., Wang, J., Ye, Z., Cao, C., Hu, Q., Kim, J., Larkin, D. M., 

Auvil, L., Capitanu, B., Ma, J., Lewin, H. A., Qian, X., Lang, Y., Zhou, R., Wang, L., Wang, K., 

… Liu, J. (2012). The yak genome and adaptation to life at high altitude. Nature Genetics, 44(8), 

946–949. 

Rodríguez, A., Rusciano, T., Hamilton, R., Holmes, L., Jordan, D., & Wollenberg Valero, K. C. 

(2017). Genomic and phenotypic signatures of climate adaptation in an Anolis lizard. Ecology 

and Evolution, 7, 6390–6403. 

Romero-Diaz, C., Breedveld, M. C., & Fitze, P. S. (2017). Climate effects on growth, body condition, 

and survival depend on the genetic characteristics of the population. The American Naturalist, 

190(5), 649–662. 

Salverda, M. L. M., Dellus, E., Gorter, F. A., Debets, A. J. M., van der Oost, J., Hoekstra, R. F., 

Tawfik, D. S., & de Visser, J. A. G. M. (2011). Initial mutations direct alternative pathways of 

protein evolution. PLoS Genetics, 7(3), e1001321. 

Sanger, T. J., Kyrkos, J., Lachance, D. J., Czesny, B., & Stroud, J. T. (2018). The effects of thermal 



35 
 

stress on the early development of the lizard Anolis sagrei. Journal of Experimental Zoology. 

Part A, Ecological and Integrative Physiology. https://doi.org/10.1002/jez.2185 

Sannolo, M., Barroso, F. M., & Carretero, M. A. (2018). Physiological differences in preferred 

temperatures and evaporative water loss rates in two sympatric lacertid species. Zoology, 126, 

58–64. 

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, 

B., & Ideker, T. (2003). Cytoscape: a software environment for integrated models of 

biomolecular interaction networks. Genome Research, 13(11), 2498–2504. 

Simonson, T. S. (2015). Altitude Adaptation: A Glimpse Through Various Lenses. High Altitude 

Medicine & Biology, 16(2), 125–137. 

Smith, M. D., Wertheim, J. O., Weaver, S., Murrell, B., Scheffler, K., & Kosakovsky Pond, S. L. 

(2015). Less is more: an adaptive branch-site random effects model for efficient detection of 

episodic diversifying selection. Molecular Biology and Evolution, 32(5), 1342–1353. 

Sokolova, I. (2018). Mitochondrial adaptations to variable environments and their role in animals’ 

stress tolerance. Integrative and Comparative Biology. https://doi.org/10.1093/icb/icy017. 

Somero, G. N. (2010). The physiology of climate change: how potentials for acclimatization and 

genetic adaptation will determine “winners” and “losers.” The Journal of Experimental Biology, 

213(6), 912–920. 

Sun, Y.-B., Fu, T.-T., Jin, J.-Q., Murphy, R. W., Hillis, D. M., Zhang, Y.-P., & Che, J. (2018). 

Species groups distributed across elevational gradients reveal convergent and continuous genetic 

adaptation to high elevations. Proceedings of the National Academy of Sciences of the United 

States of America, 115(45), E10634–E10641. 

Suzuki, R., & Shimodaira, H. (2006). Pvclust: an R package for assessing the uncertainty in 

hierarchical clustering. Bioinformatics , 22(12), 1540–1542. 

Suzuki, R., & Shimodaira, H. (2013). pvclust: An R package for hierarchical clustering with p-values. 

Bioinformatics , 22, 1–7. 

Tan, Z., Chan, Y. J. A., Chua, Y. J. K., Rutledge, S. D., Pavelka, N., Cimini, D., & Rancati, G. 

(2019). Environmental stresses induce karyotypic instability in colorectal cancer cells. 



36 
 

Molecular Biology of the Cell, 30(1), 42–55. 

Therkildsen, N. O., Wilder, A. P., Conover, D. O., Munch, S. B., Baumann, H., & Palumbi, S. R. 

(2019). Contrasting genomic shifts underlie parallel phenotypic evolution in response to fishing. 

In Science (Vol. 365, Issue 6452, pp. 487–490). https://doi.org/10.1126/science.aaw7271 

Turelli, M. (1985). Effects of pleiotropy on predictions concerning mutation-selection balance for 

polygenic traits. Genetics, 111(1), 165–195. 

Wagner, J. T., Singh, P. P., Romney, A. L., Riggs, C. L., Minx, P., Woll, S. C., Roush, J., Warren, W. 

C., Brunet, A., & Podrabsky, J. E. (2018). The genome of Austrofundulus limnaeus offers 

insights into extreme vertebrate stress tolerance and embryonic development. BMC Genomics, 

19(1), 155. 

Wang, J. Z., Du, Z., Payattakool, R., Yu, P. S., & Chen, C.-F. (2007). A new method to measure the 

semantic similarity of GO terms. Bioinformatics , 23(10), 1274–1281. 

Wertheim, J. O., Murrell, B., Smith, M. D., Kosakovsky Pond, S. L., & Scheffler, K. (2015). 

RELAX: detecting relaxed selection in a phylogenetic framework. Molecular Biology and 

Evolution, 32(3), 820–832. 

White, C. R., Alton, L. A., & Frappell, P. B. (2012). Metabolic cold adaptation in fishes occurs at the 

level of whole animal, mitochondria and enzyme. Proceedings of the Royal Society B: 

Biological Sciences, 279(1734), 1740–1747. 

White, R. J., Collins, J. E., Sealy, I. M., Wali, N., Dooley, C. M., Digby, Z., Stemple, D. L., Murphy, 

D. N., Billis, K., Hourlier, T., Füllgrabe, A., Davis, M. P., Enright, A. J., & Busch-Nentwich, E. 

M. (2017). A high-resolution mRNA expression time course of embryonic development in 

zebrafish. eLife, 6. https://doi.org/10.7554/eLife.30860 

Wollenberg Valero, K. C. (2020). Aligning functional network constraint to evolutionary outcomes. 

BMC Evolutionary Biology, 20(1), 58. 

Wollenberg Valero, K. C., Pathak, R., Prajapati, I., Bankston, S., Thompson, A., Usher, J., & 

Isokpehi, R. D. (2014). A candidate multimodal functional genetic network for thermal 

adaptation. PeerJ, 2, e578. 

Wu, H., Guang, X., Al-Fageeh, M. B., Cao, J., Pan, S., Zhou, H., Zhang, L., Abutarboush, M. H., 



37 
 

Xing, Y., Xie, Z., Alshanqeeti, A. S., Zhang, Y., Yao, Q., Al-Shomrani, B. M., Zhang, D., Li, J., 

Manee, M. M., Yang, Z., Yang, L., … Wang, J. (2014). Camelid genomes reveal evolution and 

adaptation to desert environments. Nature Communications, 5, 5188. 

Xu, H., Chen, X., Xu, X., Shi, R., Suo, S., Cheng, K., Zheng, Z., Wang, M., Wang, L., Zhao, Y., 

Tian, B., & Hua, Y. (2016). Lysine Acetylation and Succinylation in HeLa Cells and their 

Essential Roles in Response to UV-induced Stress. Scientific Reports, 6, 30212. 

Yang, W., Qi, Y., & Fu, J. (2014). Exploring the genetic basis of adaptation to high elevations in 

reptiles: a comparative transcriptome analysis of two toad-headed agamas (genus 

Phrynocephalus). PloS ONE, 9(11), e112218. 

Yi, H., Xue, L., Guo, M.-X., Ma, J., Zeng, Y., Wang, W., Cai, J.-Y., Hu, H.-M., Shu, H.-B., Shi, Y.-

B., & Li, W.-X. (2010). Gene expression atlas for human embryogenesis. FASEB Journal: 

Official Publication of the Federation of American Societies for Experimental Biology, 24(9), 

3341–3350. 

Yudin, N. S., Larkin, D. M., & Ignatieva, E. V. (2017). A compendium and functional 

characterization of mammalian genes involved in adaptation to Arctic or Antarctic 

environments. BMC Genetics, 18(Suppl 1), 111. 

Yu, G., Li, F., Qin, Y., Bo, X., Wu, Y., & Wang, S. (2010). GOSemSim: an R package for measuring 

semantic similarity among GO terms and gene products. Bioinformatics , 26(7), 976–978. 

Yu, J., & Auwerx, J. (2010). Protein deacetylation by SIRT1: an emerging key post-translational 

modification in metabolic regulation. Pharmacological Research: The Official Journal of the 

Italian Pharmacological Society, 62(1), 35–41. 

Yurchenko, A. A., Recknagel, H., & Elmer, K. R. (2019). Chromosome-level assembly of the 

common lizard (Zootoca vivipara) genome. In Cold Spring Harbor Laboratory (p. 520528). 

https://doi.org/10.1101/520528 

Zhuang, X., Yang, C., Murphy, K. R., & Cheng, C.-H. C. (2019). Molecular mechanism and history 

of non-sense to sense evolution of antifreeze glycoprotein gene in northern gadids. Proceedings 

of the National Academy of Sciences of the United States of America. 

https://doi.org/10.1073/pnas.1817138116 


