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ABSTRACT

The Schmidt number, defined as the ratio of scalar to momentum diffusivity, varies by multiple orders of magnitude in real-world flows,
with large differences in scalar diffusivity between temperature, solute, and sediment driven flows. This is especially crucial in gravity cur-
rents, where the flow dynamics may be driven by differences in temperature, solute, or sediment, and yet the effect of Schmidt number on
the structure and dynamics of gravity currents is poorly understood. Existing numerical work has typically assumed a Schmidt number near
unity, despite the impact of Schmidt number on the development of fine-scale flow structure. The few numerical investigations considering
high Schmidt number gravity currents have relied heavily on two-dimensional simulations when discussing Schmidt number effects, leaving
the effect of high Schmidt number on three-dimensional flow features unknown. In this paper, three-dimensional direct numerical simula-
tions of constant-influx solute-based gravity currents with Reynolds numbers 100 � Re � 3000 and Schmidt number 1 are presented, with
the effect of Schmidt number considered in cases with ðRe; ScÞ ¼ ð100; 10Þ; ð100; 100Þ; and (500, 10). These data are used to establish the
effect of Schmidt number on different properties of gravity currents, such as density distribution and interface stability. It is shown that
increasing Schmidt number from 1 leads to substantial structural changes not seen with increased Reynolds number in the range considered
here. Recommendations are made regarding lower Schmidt number assumptions, usually made to reduce computational cost.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0064386

I. BACKGROUND

Gravity currents are primarily horizontal flows arising from a
density difference between the current and surrounding ambient flu-
ids. This density difference occurs with variation in concentration of
solutes or suspended sediments or temperature difference between the
current and the ambient fluids.1,2 Gravity currents are a common class
of flow, with examples including thunderstorm outflows and powder
snow avalanches,1,3 and are one of the primary mechanisms of sedi-
ment transport in oceans.4,5 There exists extensive research into the
dynamics of gravity currents, including numerical investigations.6–13

The typical structure of gravity current flows as described by Kneller
and Buckee14 is presented in Fig. 1 and consists of a head region
followed by a body. This body can be divided into a dense lower

layer overlaid by a less-dense layer of mixed current and ambient
fluids. Despite the body typically forming by far the largest part of
gravity current flows,15–17 the existing research has primarily focused
on the head of the flow. Additionally, numerical work has typically
assumed a Schmidt number of 1 to investigate flows with
Sc ¼ Oð1000Þ.6,9,11–13,18–24 Therefore, characteristics such as the effect
of Schmidt number on the flow, and the nature of large-scale struc-
tures within the body, remain poorly understood.

Gravity current properties are characterized using a small num-
ber of dimensionless parameters:14 the Reynolds, densimetric Froude
(affected by the bed slope26), gradient Richardson, and Schmidt num-
bers. The Reynolds number is defined as the ratio of inertia to viscous
forces (Re ¼ UcLc

� , where Uc and Lc are velocity and length scales that
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are characteristic of the flow, and � is the kinematic viscosity of the
fluid), and increasing Reynolds number reduces the size of the smallest
length scales within the flow that must be resolved while conducting
direct numerical simulations (DNS).27 Decreasing Reynolds number,
below the point of similarity (Re � 1000),1 also changes the nature of
the current head including the formation of Kelvin–Helmholtz billows
and the over-riding of ambient fluid leading to lobe-and-cleft struc-
tures.1,28,29 Re significantly affects rates of mixing and entrainment,
with increasing Re dictating whether the primary mixing mechanism
is Holmboe waves, Kelvin–Helmholtz vortex rolls, or Kelvin–
Helmholtz billows.30,31 The Schmidt number, analogous to the Prandtl
number, is defined as the ratio of momentum and mass diffusivities
(Sc ¼ �=D, where D is mass diffusivity) and is a key parameter in
understanding mixing on the molecular level.32,33 As Schmidt number
increases, diffusion decreases and momentum becomes the dominant
mass transfer mechanism.

Increasing the Schmidt number from 1 reduces the length scales
associated with mixing within the flow, reducing the smallest lengths
that must be captured from the Kolmogorov scale (gK) to the
Batchelor scale (gB ¼ gKSc

�1=2),34,35 and mixing is expected to
decrease.32,36 It has been demonstrated that the finer-scale structures
that develop with increasing Schmidt number may cause larger scale
structural changes in the flow, such as increased plume length in tur-
bulent jets,32 and stronger three-dimensional motions resulting from
changes to density profiles and stronger density gradients.36–38

The value of Schmidt number varies dramatically depending on
the source of the density difference, for example being Oð1Þ for
temperature-driven flows, Oð1000Þ for solutes in water, and being
strongly dependent on grain size but often much larger for sediment
in water [for example, being Oð109Þ for 100 lm sand].8,33,34,39–41

Despite this, existing numerical investigations into gravity current
structure typically assume Sc¼ 1.6–10,33,42,43 The large computational
cost involved in resolving the Batchelor scale (the cost of direct numer-
ical simulation scaling with Re3Sc2)27,34 means that few works have so
far considered the effect of Schmidt number on gravity current flows.
Birman et al.42 and Necker et al.43 justify their use of Sc¼ 1 through
test calculations that suggest Schmidt number has little influence on
gravity current structure for Sc ¼ 0:2! 5, while H€artel et al.44 claim
that Schmidt number dependence is weak unless Sc is very small
(�1). Ooi et al.45 use comparison of two two-dimensional large-eddy
simulations of lock-exchange type flows, with a similar comparison of
two three-dimensional large-eddy simulations in Ooi et al.,46 to con-
clude that Schmidt number has only a small effect on properties such
as current front velocity and shape. The effect of Schmidt number on
other flow features is not considered, nor the combined effects of
Reynolds and Schmidt number. Deepwell and Stastna,47 in their study

of flows consisting of a gravity current traveling along a pycnocline(s),
conclude that the mass transport capability of internal solitary-like
waves increases as Schmidt number is increased between 1 and 20, but
does not continue to change when Schmidt number is further
increased to 40 (suggesting that exact Schmidt number matching may
not be required to capture flow dynamics). To date, the only research
including a parametric study investigating the effect of Schmidt num-
ber on gravity current flows is the work of Bonometti and
Balachandar.33

Bonometti and Balachandar33 use a combination of a pseudo-
spectral method and a finite-volume/volume of fluid interface captur-
ing method to investigate the parameter space 1 � Sc � 1 and
100 � Re � 10 000. For Re¼ 10 000, they conclude that neither the
front velocity nor the level of mixing is strongly dependent on Sc,
though decreasing Sc does increase the thickness of the layer of mixed
ambient and current fluids. For the lower Reynolds number flows,
they observe that increasing Sc changes head shape, with a depression
separating head from body appearing as Sc increases, and that the
effect of Sc on front velocity in these flows is highly dependent on the
density contour chosen to define the front. They also claim that while
the pattern of lobe-and-cleft structures is not strongly dependent on
the Schmidt number, the formation of vortices along the body is. A
scatterplot based on a table from Bonometti and Balachandar33 is pre-
sented in Fig. 2, showing the distribution of stable/unstable interfaces
between the current and ambient fluids based on a bulk Richardson
number for their work and a few other investigations. This suggests
that the interface stability is only weakly dependent on Schmidt num-
ber, with the interface becoming slightly more stable with increased Sc.
However, these data are based almost entirely on two-dimensional
direct numerical simulation (DNS) datasets. The flow structure result-
ing from two- and three-dimensional simulation of gravity currents
with Reynolds numbers 317 and 104 from the work of Bonometti and
Balachandar33 is presented in Fig. 3. While the two-dimensional work
captures some features well, others require consideration of three-
dimensional flow. Two-dimensional DNS of gravity currents is not
able to reproduce large-scale coherent motions and three-dimensional
flow features, such as the formation of lobe-and-cleft structures and
the breakdown of interfacial billows, capture the spanwise dissipation
of energy, or accurately estimate the energy budget of the
flow.8,9,20,22,48–50 Therefore, three-dimensional simulations are needed
to establish the effect of Schmidt number on three-dimensional flow

FIG. 2. Scatterplot showing the distribution of stable/unstable interfaces based on a
bulk Richardson number as a function of Sc and Re. Data from the work of
Bonometti and Balachandar.33

FIG. 1. Flow visualization from the work presented in Marshall et al.,25 overlaid by
a gravity current structure as described by Kneller and Buckee.14
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features and to confirm the relationship between interface stability and
Schmidt number.

In this work, three-dimensional direct numerical simulation
(DNS) is used to investigate the structure and dynamics of constant-
influx solute-based gravity current flows by providing the instanta-
neous density and velocity fields. As well as considering the effect of
Reynolds number, the impact of varying the Schmidt number on both
the head and body of gravity current flows will be investigated. The
work addresses some of the remaining questions regarding how rea-
sonable an assumption of Sc¼ 1 is for such flows, specifically the key
aims are to discuss: (i) how Reynolds and Schmidt numbers affect the
structure of the head, in particular, the formation of lobe-and-cleft
structures, (ii) how Reynolds and Schmidt numbers affect the structure
of flow behind the head, in particular, the stability of the current–
ambient interface, (iii) which of the changes observed with increased
Schmidt number also occur with increased Reynolds number, and (iv)
when assuming a low Schmidt number to reduce the computational
cost of numerical investigations may be justified.

II. METHODOLOGY

The spectral element solver Nek500051 is used to simulate three-
dimensional gravity current in the domain illustrated in Fig. 4. This
domain is designed to closely reproduce the experimental domain
presented in Marshall et al.,25 Marshall,52 with a simplified outlet.

The governing equations are the nondimensional, incompressible,
Boussinesq Navier–Stokes, salinity, and continuity equations,

@ ~U
@~t
þ ~U � r ~U ¼ �r~P þ 1

Re
r:~s þ 1

Fr2d
D~Sĝ ;

@~S

@~t
þ ~U � r~S ¼ 1

ReSc
r � r~S;

r � ~U ¼ 0;

(1)

where U is the velocity vector, t time, P ¼ pþ qagY where P is the
kinematic pressure field, s the stress tensor, Re ¼ UcLc=� the Reynolds
number, � the kinematic viscosity, Frd ¼ Uc=

ffiffiffiffiffiffiffiffi
g 0Lc

p
the densimetric

Froude number, Sc ¼ �=D the Schmidt number, D the mass diffusiv-
ity, g and ĝ ¼ ðsin h; cos h; 0Þ the magnitude and direction of the
gravitational acceleration, h bed slope, S salinity [with DS ¼ ðS� SaÞ],
ð�Þa indicates a property of the ambient fluid, and ~ð�Þ indicates a
dimensionless variable. As described in McWilliams,53 here a simpli-
fied linear dependence of density on salinity has been employed,

q � qað1þ bDSÞ; (2)

where q is density, and b ¼ 1
q
@q
@S the haline contraction coefficient. The

dimensionless variables are defined relative to the characteristic length,
velocity, and time scales as shown in Table I. Time advancement is

FIG. 3. Contours of density from (a) and (c) two- and (b), (d), and (e) three-dimensional simulation of gravity current flows with (a) and (b) Re¼ 317 and (c)–(e) Re ¼ 104

from Bonometti and Balachandar.33 (b) and (d) show spanwise averaged data from three-dimensional investigations. Reproduced with permission from T. Bonometti and S.
Balachandar, Theor. Comput. Fluid Dyn. 22, 341 (2008). Copyright 2008 Springer-Verlag.

FIG. 4. The experimental setup of Marshall et al.,25 Marshall,52 used to investigate the structure of the gravity current body, here used to define the DNS domain.
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performed using a semi-implicit scheme that combines the implicit
third-order backward difference and the explicit third-order extrapola-
tion schemes, as described in Mittal et al.54 Spatial discretization is based
on the high-order spectral element method.55–57 To ensure sufficient
resolution, the wall yþ; xþ; and zþ values (defined as yþ¼uwy=�
where y is the distance to the nearest wall, and uw the wall friction
velocity with equivalent statements for the other spatial dimensions)
are kept below 0.05 for the nearest grid point to the wall, and the first
ten points are within yþ<10.58,59 Additionally, decay of several orders
of magnitude is observed in the energy spectrum for all variables.6,60

The characteristic length Lc, velocity Uc, and time tc scales are
defined a priori. The characteristic length scale for all cases is chosen
to be the height of the internal fitting to limit initial flow height, Lc
¼ 0:05m (refer to Fig. 4). For the highest Reynolds number case, the
viscosity is chosen to match that of the experimental work in Marshall
et al.,25 Marshall,52 � ¼ 1:09� 10�6 m2 s�1, and the characteristic
velocity, Uc ¼ 0:065ms�1, is chosen to give the desired input
Reynolds number ReI ¼ 3000. This represents an average velocity
under the initial internal fitting. The characteristic timescale Tc

¼ Lc=Uc ¼ 0:77 s. To reduce the Reynolds number, the characteristic
velocity scale is kept constant and the fluid viscosity varied. Schmidt
number is varied by changing mass diffusivity, D. The input densimet-
ric Froude number, FrD;I ¼ Uc=

ffiffiffiffiffiffiffiffi
g 0Lc

p
¼ 0:54, is the same for all

cases, as is the source Froude number calculated using the inlet veloc-
ity (UI ¼ 0:22ms�1) and inlet diameter (LI ¼ 0:0254m) as character-
istic velocity and length scales, FrD;S ¼ UI=

ffiffiffiffiffiffiffiffi
g 0LI

p
¼ 2:54. The input

parameters for each case are shown in Table II.
The inlet flow is matched to Marshall et al.25 and Marshall.52 The

maximum inlet velocity in this work, UI, is approximated by dividing
the lowest influx value from Marshall et al.25 (7� 10�5 m3 s�1) by the
inlet area (3:34� 10�4 m2). The inlet has a dimensionless radius of

0.254 and is covered with a coarse mesh with holes of dimensionless
radius 0.078. These holes are centered at locations,

~Y ; ~Z
� �

¼ 0:350; 1:000ð Þ; 0:531; 1:000ð Þ; 0:169; 1:000ð Þ;
0:441; 1:150ð Þ; 0:260; 1:150ð Þ; 0:441; 0:850ð Þ;
0:260; 0:850ð Þ; (3)

with the inlet velocity approximated by

~U ¼ ~U I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ðð0:5þ 0:5r2ÞpÞ

p
; (4)

where r varies from 0 to 1 from the center to the edge of each small cir-
cle. Where the velocity on the inlet is nonzero the salinity ~S ¼ 1:03,
compared to ~S ¼ 1:00 in the rest of the domain, and therefore DSI
¼ 0:03 with a haline contraction coefficient of b ¼ 1 to achieve a den-
sity difference of 3% between the current and ambient fluids. The out-
let is approximated by a square outlet placed in the bottom right
corner of the domain, with a special boundary condition implementa-
tion that matches the total outflow to the net inflow into the domain.
In this work, X, Y, and Z correspond to downstream, vertical, and
cross-stream directions with corresponding downstream, vertical, and
cross-stream velocities U, V, andW.

III. THE EFFECT OF REYNOLDS AND SCHMIDT
NUMBERS
A. Density

The effect of Schmidt number on the density structure of the
flow can be established by considering contours of proportional excess
density (D~S). Figure 5 shows contours of D~S at ~t ¼ 23:4 at a central
cross-stream location. The rightmost column of this figure shows two
contours for each case—that with density just above the ambient den-
sity, D~S ¼ 0:03, and that with density halfway between the densities of
the ambient fluid and that pumped in at the inlet, D~S ¼ 0:48. The
contour with D~S ¼ 0:03 is considered to be the current boundary.
Increasing Schmidt number has little impact on current front velocity
over the short time frame considered here, though increasing
Reynolds number increases front velocity as expected. Increasing
either Reynolds number or Schmidt number leads to a depression
behind the head, angled toward the current front.

For each case, the current height (defined as the height of the
D~S ¼ 0:03 contour at the left-most point in Fig. 5), the thickness of
the mixed region (defined as the difference in height of the D~S ¼ 0:03
and D~S ¼ 0:48 contours at the left-most point of the figure), and the
difference in front positions of the D~S ¼ 0:03 and D~S ¼ 0:48

TABLE I. Definition of nondimensionalizations used in this work, where X is position,
t is time, tc ¼ Lc=Uc a characteristic time, DS ¼ S� Sa, and DSI ¼ SI � Sa.

Parameter Nondimensionalization

Length ~X ¼ X=Lc
Velocity ~U ¼ U=Uc

Time ~t ¼ ðUc=LcÞt ¼ t=tc
Pressure r ~P ¼ ðLc=qaU

2
c ÞrP

Stress tensor r � ~s ¼ ðL2c=Uc�qaÞr � s
Salinity D~S ¼ ðS� SaÞ=ðSI � SaÞ ¼ DS=DSI

TABLE II. Parameters for the various simulations conducted in this work, along with a bed slope of h ¼ 0:1�, and a haline contraction coefficient of b ¼ 1 and SI � Sa ¼ 0:03
to achieve a 3% density difference.

ReI Sc Pe Lc (m) � ðm2 s�1Þ Uc ðms�1Þ FrD;I UI ðms�1Þ tc (s) D ðm2 s�1Þ

100 1 100 0.05 3:26� 10�5 0.065 0.54 0.22 0.77 3:26� 10�5

100 10 1000 0.05 3:26� 10�5 0.065 0.54 0.22 0.77 3:26� 10�6

100 100 10 000 0.05 3:26� 10�5 0.065 0.54 0.22 0.77 3:26� 10�7

500 1 500 0.05 6:53� 10�6 0.065 0.54 0.22 0.77 6:53� 10�6

500 10 5000 0.05 6:53� 10�6 0.065 0.54 0.22 0.77 6:53� 10�7

1000 1 1000 0.05 3:26� 10�6 0.065 0.54 0.22 0.77 3:26� 10�6

3000 1 3000 0.05 1:09� 10�6 0.065 0.54 0.22 0.77 1:09� 10�6
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contours are estimated by inspecting Fig. 5, and listed in Table III. The
height of the head is approximately constant across cases with con-
stant Schmidt number. For Sc¼ 1 the head height is ~Y � 1:1, reduc-
ing to ~Y � 0:8 for Sc¼ 10. Increasing Schmidt number consistently
reduces body height, the thickness of the mixed layer as a proportion
of total flow height (Fig. 6), and the difference in the front position of
the two contours (illustrating that increasing Schmidt number leads to
dense fluid reaching closer to the front of the flow).

The height of the D~S ¼ 0:48 contour, however, is not strongly
affected by increasing Schmidt number, suggesting that evidence of
the effect of Schmidt number on quantities such as current height or
front velocity is highly dependent on the contour chosen to define the
current boundary. In fact, the height of this contour is the same across

all cases except ReI ¼ 3000, suggesting a greater degree of mixing in
this case. This is likely an artifact of relatively short simulation dura-
tion. Longer simulation time will result in changes in contours further
from the interface. Increasing Schmidt number reduces current height,
with a 33% decrease between the ðReI ; ScÞ ¼ ð100; 1Þ and (100, 10)
cases [with a further decrease of 25% between ðReI ; ScÞ ¼ ð100; 10Þ
and (100, 100)], though this decrease is reduced to 25% between
ðReI ; ScÞ ¼ ð500; 1Þ and (500, 10). Similarly increasing Schmidt num-
ber reduces the percentage of the current height taken up by the mixed
layer, from 67% to 38% between the ðReI ; ScÞ ¼ ð100; 1Þ and (100,
10) cases [to only 17% in the ðReI ; ScÞ ¼ ð100; 100Þ case], and from
50% to 33% between ðReI ; ScÞ ¼ ð500; 1Þ and (500, 10). Dense fluid
reaches closer to the front of the flow as Schmidt number is increased,
with the percentage of the flow covered by the D~S ¼ 0:48 contour
increasing from 58% to 88% between the ðReI ; ScÞ ¼ ð100; 1Þ
and ðReI ; ScÞ ¼ ð100; 10Þ cases [further increasing to 100% in the (100,
100) case] and from 80% to 88% between the ðReI ; ScÞ ¼ ð500; 1Þ and
(500, 10) cases. This demonstrates that increasing Reynolds number
reduces the influence of increased Schmidt number on some flow fea-
tures, with increasing Schmidt number beyond ten having less impact
than increasing from 1 to 10. Additionally, this Sc¼ 100 case has dense
fluid reaching the very front of the flow. This suggests that a further
increase to Sc ¼ Oð1000Þ to match real-world solute-based flows would
likely result in only minor changes in these parameters.

The effect of Reynolds number is more complex (see Fig. 6). While
increasing Reynolds number consistently reduces current height (in this
case, the decrease at Sc¼ 1 is proportional to Re�0:5) and increases the
percentage of flow length, the distance between inlet and flow front, cov-
ered by the D~S ¼ 0:48 contour, the percentage of current height covered
by the mixed layer increases in the ReI ¼ 3000 case compared with ReI
¼ 1000, perhaps a result of increased mixing by the Kelvin–Helmholtz
structures that form with increased Reynolds number (see Fig. 7).

FIG. 5. Contours of D~S on a central cross-stream slice within the domain at ~t ¼ 23:4. From top to bottom, the inlet Reynolds number ReI ¼ 100; 500; 1000; 3000 and from
left to right Sc ¼ 1; 10; 100 with the rightmost column showing density contours at D~S ¼ 0:03 and D~S ¼ 0:48 for each case.

TABLE III. Estimates of the current height (determined by the D~S ¼ 0:03 contour),
the mixed layer thickness as a percentage of current height (defined as the differ-
ence in heights of the D~S ¼ 0:03 and D~S ¼ 0:48 contours), and the percentage of
flow length covered by the D~S ¼ 0:48 contours. These are based on inspection of
Fig. 5. (Brown text indicates the % decrease from the Sc¼ 1 case with the same
ReI, magenta text the % decrease from the Sc¼ 10 case with the same ReI, and
cyan text the % decrease from the ReI ¼ 100 case with the same Sc).

ðReI ; ScÞ D~S
height
0:03 D~S

height
0:48

D~S
height
0:03 �D~S

height
0:48

D~S
height
0:03

D~S
front
0:48

D~S
front
0:03

(100, 1) 1.20 0.40 67% 58%
(100, 10) 0.77 (36%) 0.48 38% 88%
(100, 100) 0.60 (50%/22%) 0.48 17% 100%
(500, 1) 0.77 (36%) 0.39 50% 80%
(500, 10) 0.60 (22%/22%) 0.40 33% 88%
(1000, 1) 0.67 (44%) 0.39 43% 81%
(3000, 1) 0.63 (48%) 0.21 67% 83%
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FIG. 6. Scatterplots showing the effect of Reynolds number on (left) current height (where ~h is the dimensionless current height) and (right) mixed layer size as a percentage
of current height, determined by (left) the height of the D~S ¼ 0:03 contour, and (right) the difference in the heights of the D~S ¼ 0:03 and D~S ¼ 0:48 contours at the left-most
point of Fig. 5.

FIG. 7. Three-dimensional isosurfaces of D~S at ~t ¼ 23:4 for cases with inlet Reynolds numbers (a)–(c) ReI ¼ 100, (d) and (e) ReI ¼ 500, (f) ReI ¼ 1000, and (g) ReI
¼ 3000, and with Schmidt numbers (a), (d), (f), and (g) Sc¼ 1, (b) and (e) Sc¼ 10, and (c) Sc¼ 100. The isosurfaces shown are (blue to red)
D~S ¼ 0:02; D~S ¼ 0:25; D~S ¼ 0:48, and D~S ¼ 0:71.
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These structures are also present in the ReI ¼ 1000 case and may be
emerging in the ðReI ; ScÞ ¼ ð500; 10Þ case, in which the mixed layer
thickness decreases as a proportion of current height compared with
the lower ReI cases. However, the rate of decrease between ReI ¼ 500
and ReI ¼ 1000 is slower than that between ReI ¼ 100 and ReI ¼ 500,
which may also be a result of the Kelvin–Helmholtz structures.

The three-dimensional density isosurfaces (Fig. 7) indicate that
these trends extend across the width of the tank. These isosurfaces
show signs of structural change with increasing Reynolds and Schmidt
numbers. At ReI ¼ 100, the isosurfaces from the cases with Sc¼ 1 and
Sc¼ 10 are completely smooth. At Sc¼ 100, ridges appear in the high-
est density isosurface. In the ðReI ; ScÞ ¼ ð1000; 1Þ case, the lowest
density isosurface has oscillations behind the head. By ðReI ; ScÞ
¼ ð3000; 1Þ, all isosurfaces have lost the smoothness of the ðReI ; ScÞ
¼ ð100; 1Þ case, as expected owing to the increase in turbulence.
Therefore, depending on the flow Reynolds and Schmidt numbers,
perturbations may be visible in the highest and/or lowest density iso-
surfaces. Additionally, with increasing Reynolds number the perturba-
tions in the density isosurfaces are most pronounced near the head,
while for increasing Schmidt number the perturbations become more
pronounced with increasing distance from the head. This suggests that
there are at least two distinct mechanisms influencing the flow
structure.

To investigate the mechanisms responsible for these changes,
pseudocolor plots of density both in an ~X � ~Z plane at ~Y ¼ 0:1 and
in a ~Z � ~Y plane near the current front (Fig. 8) can be inspected.
These plots show that cases ðReI ; ScÞ ¼ ð100; 100Þ; ð500; 10Þ, and

(3000, 1) contain regions of less-dense fluid surrounded by the denser
fluid of the head. The ~Z � ~Y plane illustrates that this fluid is absorbed
upward, originating from the over-running of ambient by the raised
nose of the flow. Therefore, as well as causing dense fluid to reach
closer to the front of the flow, increasing Schmidt number at fixed
Reynolds number leads to the formation of lobe-and-cleft structures
within the head. These structures also form with increasing Reynolds
number.

B. Velocity

In order to obtain a thorough understanding of the flow struc-
ture, the velocity structures are inspected. Pseudocolor plots of all three
velocity components for each case are shown on an ~X � ~Z slice close
to the bottom boundary (Fig. 9) and on ~X � ~Y slices (Figs. 10 and 11).
In addition to Figs. 7 and 8, Fig. 9 highlights a strong symmetry about
the central ~Z-plane in all but the ðReI ; ScÞ ¼ ð3000; 1Þ case. Only in
this case does the increase in nonlinearity owing to higher Reynolds
number cause this symmetry to break. Excepting this highest Reynolds
number case, the cross-stream velocity for all cases has negligible mag-
nitude on the central ~Z ¼ 0 plane (Fig. 10), indicating a symmetric
solution. However, away from this central plane, the magnitude of
cross-stream and vertical velocities have equivalent magnitude in all
cases (for example the plane at ~Z ¼ 0:5 shown in Fig. 11). This sug-
gests that the flow is not two-dimensional as commonly assumed.1,8

Downstream velocity on the two ~X � ~Y planes has the same structure
and magnitude in all cases, as does cross-stream velocity in the ReI
¼ 3000 case.

FIG. 8. Pseudocolor plots of D~S at~t ¼ 23:4 on an ~X � ~Z plane at ~Y ¼ 0:1 and a ~Z � ~Y plane ~X ¼ 2 behind the current front for (top to bottom) increasing Reynolds num-
ber and (left to right) increasing Schmidt number.
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The vertical velocity plots confirm the over-riding of ambient
fluid, with Fig. 9 showing areas of large positive vertical velocity close
to the bottom boundary and near the front of the current for the
ðReI ; ScÞ ¼ ð100; 100Þ, (500, 10), and (3000, 1) cases, corresponding
to the rising buoyant fluid over-ridden by the current front.
Additionally, as expected from the density contours, increasing
Reynolds number increases downstream velocity within the flow.
Increasing Reynolds number also increases variation in all compo-
nents of velocity within the body, including alternating positive and
negative vertical velocity near the side walls in the ReI ¼ 1000; 3000
cases. Visible in both Figs. 9 and 10, increasing Schmidt number
results in a regular alternating pattern of positive and negative vertical
velocity at a central cross-stream location, and corresponding positive
and negative cross-stream velocity on either side of the center, behind
the head of the current. The regular alternating vertical velocity pattern
established by increasing Schmidt number is localized to the cross-
stream center of the flow, though increasing Reynolds number
increases the width of the motions (Figs. 9 and 11).

Figure 12 illustrates the flow behind the head in the ðReI ; ScÞ
¼ ð500; 1Þ; ð500; 10Þ cases at ~t ¼ 66:3, demonstrating that these are
not short-term changes. As well as velocity plots, this figure contains
plots of density fluctuations from cross-stream averaged density

(D~S � D~S ~Z , where D~S ~Z is density averaged in the cross-stream direc-
tion). The density fluctuations in the Sc¼ 10 case contain a pattern of
alternating positive and negative regions correlated with those in verti-
cal velocity but with a 1=4-wavelength offset (characteristic of internal
gravity waves61). To understand why decreasing mass diffusivity leads

to large-scale changes in flow structure, plots of swirling strength and
gradient Richardson number will be inspected.

Figure 13 shows plots of swirling strength fci as defined by Zhou
et al.,62

L ¼
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(5)

where L is the velocity gradient tensor, fr and vr are the real eigenvalue
and eigenvector, and fcr 6 ifci the complex conjugate pair of complex
eigenvalues with corresponding eigenvectors vcr 6 ivci. These plots
reveal that increasing Schmidt number leads to the formation of struc-
tures in the mixed layer between the current and the ambient in the
center of the tank in the cross-stream direction (with the mixed layer
here defined as the region between the D~S ¼ 0:03 and D~S ¼ 0:48
contours). The placement of these structures is identical for the
ðReI ; ScÞ ¼ ð100; 10Þ; ð100; 100Þ cases, and their spacing in the down-
stream direction is the same for all three Sc>1 cases. Figure 13 shows
that increasing Reynolds number also leads to the formation of struc-
tures within the body, though they differ from those resulting from
increased Schmidt number. While some of the structures resulting
from increased Reynolds number are within the mixed region, the
structures in the higher Reynolds number cases have a less regular

FIG. 9. Plots of (left) downstream, (center) vertical, and (right) cross-stream velocity for each case at~t ¼ 23:4 on an ~X � ~Z slice at ~Y ¼ 0:1.
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FIG. 10. Plots of (left) downstream, (center) vertical, and (right) cross-stream velocity for each case at~t ¼ 23:4 on an ~X � ~Y slice at a central cross-stream location (~Z ¼ 0).

FIG. 11. Plots of (left) downstream, (center) vertical, and (right) cross-stream velocity for each case at~t ¼ 23:4 on an ~X � ~Y slice at an off-center cross-stream location (~Z ¼ 0:5).
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pattern (with a different physical spacing to the high Schmidt number
cases) and are not limited to the center in the cross-stream direction.

Change in large-scale flow structures with Schmidt number is
not immediately anticipated, given that Schmidt number is expected
to result in changes at the small scale. Figure 14 shows the density and
downstream velocity profiles on a central cross-stream location aver-
aged over downstream location at the time step illustrated in Fig. 12.
The change in diffusivity resulting from the Schmidt number increase
leads to a change in density profile, specifically the anticipated increase
in density in the lower part of the flow and sharper transition from
dense to ambient fluid. As there is a greater density difference, there is
a corresponding increase in downstream velocity within the body.
These changes may affect the stability of the interface. To illustrate
this, a gradient Richardson number can be calculated,

Ri ¼ g
qc

@�q=@Y

ð@ �U=@YÞ2
; (6)

where qc is the density of the fluid pumped in at the inlet, which gives
a measure of the stability of density stratification. If Ri> 0.25, then
the energy produced by shear is not sufficient to overcome the den-
sity stratification and is therefore dissipated.63 Profiles of Ri for the
cases with ReI ¼ 500 are shown in Fig. 14(c). Increasing Schmidt
number from 1 changes the Ri profile such that the value at the cur-
rent height moves from above to below this critical level. The same
change is seen for every case with Sc>1, while for every case with
Sc¼ 1, Ri> 0.25 in this area. Therefore, changes in the density and
velocity profiles resulting from decreasing mass diffusivity (and
therefore increasing Schmidt number) lead to the density stratifica-
tion becoming less stable such that energy produced from shear is no

longer dissipated but instead leads to large-scale structural changes
in the flow.

IV. DISCUSSION

Increasing the flow Reynolds number has been shown to result in
a shorter head, with more velocity fluctuations, and greater front and
internal velocities. Excepting the highest Reynolds number case con-
sidered in this work, a strong symmetry plane is present at a central
cross-stream location for all cases. Attempting to quantify such flows
using exclusively a central cross-stream plane could, depending on
flow Reynolds number, give a misleading impression of the overall
flow particularly in terms of the cross-stream velocity (Figs. 9–11). For
most cases,W was found to be 0 on the central cross-stream plane but
elsewhere the magnitude of cross-stream velocity was equivalent to
that of vertical velocity suggesting that the flow is not two-dimensional
as often assumed.1,8

A. The effect of Reynolds and Schmidt numbers
on flow in the head

Figure 5 and Table III show that increasing either Schmidt or
Reynolds number results in a more defined head, with a forward
angled depression in the density contour behind the head. The head
height, based on the D~S ¼ 0:03 density contour, decreases slightly
from ~Y � 1:2 at ReI ¼ 100 to ~Y ¼ 1 at ReI ¼ 500 with no further
decrease when Reynolds number is increased further. Increasing
Schmidt number does consistently reduce the head height, with a
more significant change at lower Reynolds number and when Schmidt
number is increased from 1 to 10 compared with 10 to 100. The
difference between the rightmost positions of the D~S ¼ 0:03 and

FIG. 12. Comparison of the cases with (a) ðReI ; ScÞ ¼ ð500; 1Þ and (b) ðReI ; ScÞ ¼ ð500; 10Þ at ~t ¼ 66:3 on (left) a central cross-stream plane and (right) a plane perpen-
dicular to the lower boundary at ~Y ¼ 0:35. From top to bottom, the plots are excess density fluctuations from the cross-stream average value (where the cross-stream average

density is denoted by D~S ~Z ), and downstream, vertical, and cross-stream velocities. The horizontal lines indicate the height of the downstream velocity maximum, and vertical

lines show the approximate downstream locations of D~S � D~S ~Z ¼ 0.
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D~S ¼ 0:48 contours as a proportion of current front position
decreases with both increased Reynolds and Schmidt numbers, indi-
cating that dense fluid is reaching closer to the front of the flow. In the
ðReI ; ScÞ ¼ ð100; 100Þ case, the D~S ¼ 0:48 contour reaches the front
of the flow, suggesting that a further increase in Schmidt number
would likely have little impact.

The lobe-and-cleft structures resulting from the over-running of
ambient fluid by the current front are present in some cases but not
others (Fig. 8). As lobe-and-cleft structures are associated with some of
the largest bed shear stresses,22,64 and changes in rates of mixing,65

accurately capturing this feature is important to understanding the

flow structure. While the ðReI ; ScÞ ¼ ð100; 1Þ; ð100; 10Þ, and (500, 1)
cases do not exhibit over-running of ambient fluid, the ðReI ; ScÞ
¼ ð100; 100Þ and (500, 10) cases do. Therefore, for Reynolds numbers
Oð100Þ the presence of lobes-and-clefts in the current head is depen-
dent on the Schmidt number [with Fig. 15(b) showing the phase space
where these structures are found in this work]. This conflicts with the
findings of Bonometti and Balachandar,33 who suggest that lobe-and-
cleft structures are not Schmidt number dependent. However, varying
Schmidt number in three-dimensional DNS here was only possible at
Reynolds numbers sufficiently low that these structures were not
already present at Sc¼ 1. As over-running of ambient fluid is observed

FIG. 13. Pseudocolor plots of swirling strength at ~t ¼ 23:4 for each case (left) on an ~X � ~Y plane at a central cross-stream location, and (right) on an ~X � ~Z plane at
~Y ¼ 0:5. The blue lines illustrate the (solid) D~S ¼ 0:03 and (dashed) D~S ¼ 0:48 excess density contours.
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in the ðReI ; ScÞ ¼ ð3000; 1Þ case (Fig. 8), providing the Reynolds num-
ber of the flow is sufficiently high this flow feature may be captured
without increasing Schmidt number above 1.

B. The effect of Reynolds and Schmidt numbers
on flow behind the head

Considering flow behind the head, the current height decreases
with both Reynolds and Schmidt numbers (Fig. 5 and Table III).
However, the height of the D~S ¼ 0:48 contour seems to be relatively
consistent regardless of the Reynolds and Schmidt number of the flow
(likely a result of the short duration of the simulations presented).

Increasing Reynolds number from ReI ¼ 100 to ReI ¼ 500 leads to a
smaller percentage decrease in current height as Schmidt number is
increased. At the Reynolds and Schmidt number range considered in
this work, the percentage change in thickness of the mixed layer of
fluid behind the head as Schmidt number is increased from 1 to 10 is
equivalent in both ReI ¼ 100 and ReI ¼ 500 cases. A further increase
from Sc¼ 10 to Sc¼ 100, however, results in a smaller change.
Increasing Reynolds number was found to have a more complex effect
on mixed layer thickness, with the percentage of flow height taken up
by the mixed layer initially decreasing and then increasing when
ReI ¼ 3000. This may be a result of increased mixing from the

FIG. 14. Comparison of (a) excess density and (b) downstream velocity averaged over downstream locations at the time step illustrated in Fig. 12, and (c) Ri profile for the
cases with ðReI ; ScÞ ¼ ð500; 1Þ and (500, 10) based on the excess density and velocity profiles shown in (a) and (b). The horizontal lines show (dashed) the height of the cur-
rent based on where the average downstream velocity profile changes from positive to negative, and (dot-dash) the average height of the maximum downstream velocity, and
the vertical line indicates the critical value of Ri¼ 0.25. The inset shows a magnified view of the high Schmidt number case plot near the upper interface, illustrating where
flow Ri moves from above to below the critical value.
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Kelvin–Helmholtz structures (visible in Fig. 7) that begin to form as
ReI increases. Close examination of the density contours in Fig. 5 and
the isosurfaces in Fig. 7 indicates that the Kelvin–Helmholtz structures
may be emerging in the ðReI ; ScÞ ¼ ð500; 10Þ case [but not the
ðReI ; ScÞ ¼ ð500; 1Þ case]. This suggests that increasing Schmidt num-
ber may reduce flow stability.

Several changes resulting from increased Schmidt number have
been noted in the data from this paper. In many cases, the impact of
increasing Schmidt number beyond one is either reduced by increas-
ing Reynolds number (for example the change in current height), or
the same changes are observed with increased Reynolds number (for
example the presence of lobes-and-clefts). There are, however, features
that are not captured if Sc¼ 1 is assumed. In particular, increasing
Schmidt number is related to the formation of structures at the curren-
t–ambient interface behind the head. This can be seen in several of the
plots presented, for example, the instability of the density contours
(Fig. 5), in the velocity plots (Figs. 9 and 10), and in the swirling
strength plots (Fig. 13), in which wave-like distortions in the density
contours correlate with peaks in swirling strength.

The stability of the interface can be quantified by a gradient
Richardson number in the upper part of the flow. In all cases with
Sc¼ 1, even those with Kelvin–Helmholtz structures behind the head,
the gradient Richardson number in the upper part of the flow is above
the critical value. As discussed by Pelmard et al.,24 a gradient
Richardson number below 0.25 in the head may lead to the formation
of Kelvin–Helmholtz structures that then dissipate some distance
behind the head if the value rises above the critical level in the body.
Therefore, the current–ambient interface in the body may be stable
even with the presence of Kelvin–Helmholtz structures near the head.
All cases with Sc>1 have Ri< 0.25 in the upper part of the flow,

suggesting that density stratification is no longer stable enough to dis-
sipate the energy generated through shear and exhibit the formation of
corresponding structures on the current–ambient interface behind the
head. These structures are not diminished as distance from the head
increases (Fig. 13), suggesting that this may be a distinct mechanism
from the formation of Kelvin–Helmholtz vortices, the influence of
which decreases with distance from the head in these data, and which
are present in some cases with Sc¼ 1 [see Fig. 15(a)]. A similar change
from above to below the critical gradient Richardson number (with
corresponding structure formation) was observed by Kneller et al.66 in
particulate flows, both with increasing bed slope and increasing parti-
cle settling velocity (or larger particle sizes).

The velocity and density perturbations associated with the struc-
tures in the cases with Ri< 0.25 (Fig. 12) have correlated patterns of
alternating positive and negative regions, with the 1=4� wavelength
offset characteristic of internal gravity waves,61 supporting the conclu-
sions of Marshall et al.25 The formation of these internal gravity waves
is a result of the decrease in mass diffusivity sharpening the density
profile, leading to a change in the stability of the interface. Crucially,
unlike other characteristics, it does not appear to be the case that this
effect of increased Schmidt number is diminished by increased
Reynolds number in the range considered here. The perturbations in
density field are at least as prominent in the ReI ¼ 500 case as in the
ReI ¼ 100 cases (Fig. 5). The effect is also not captured purely by
increasing Reynolds number in the range considered in this work.
While peaks in swirling strength are found in the ReI ¼ 1000; 3000
cases, they are missing the regularity of those in the higher Sc cases
and are not limited to the center in the cross-stream direction, sup-
porting the suggestion that this is a separate mechanism to those seen
with increased Reynolds number.

FIG. 15. Scatterplots showing the Schmidt and Reynolds numbers where (a) Kelvin–Helmholtz structures, and (b) lobe-and-cleft structures are present in Fig. 7.
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V. CONCLUSIONS

Many numerical investigations of gravity current flows have
sought to mitigate the high computational cost of three-dimensional
direct numerical simulation by claiming the effect of increasing Schmidt
number from 1 is negligible. However, the justifiability of this assump-
tion has been questionable given the lack of understanding regarding
the effect of Schmidt number on three-dimensional flow features. In this
work, the effects of Reynolds and Schmidt numbers on constant-influx
solute-based gravity current flow structure have been investigated
through three-dimensional direct numerical simulation performed using
the spectral element solver Nek5000. These results have been used to
draw conclusions regarding when a Sc¼ 1 assumption is justified.

The importance of considering Schmidt number is dependent on
the flow property of interest and on the flow itself. Some flow features
appear to be independent of Schmidt number (for example, current
front velocity). Additionally, some of the effects of increased Schmidt
number also occur with increased Reynolds number (such as the
appearance of lobe-and-cleft structures in the head) or are reduced by
increased Reynolds number (such as the change in current height). A
notable exception is the reduction in gradient Richardson number. In
flows with ReI ¼ 100 and 500, increasing Schmidt number from 1 to
10 was found to reduce the gradient Richardson number in the body
of the flow from above to below the critical value, resulting in the pres-
ence of structures in the mixed layer. When moving from ReI¼ 100 to
ReI ¼ 500, this effect of increased Schmidt number was not reduced.
Further, equivalent structures were not apparent in the ReI ¼ 3000
case, suggesting that this feature may not be captured purely by
increasing Reynolds number. When considering the structure of the
gravity current body in a high Schmidt number flow, assuming Sc¼ 1
may therefore lead to qualitative changes in flow structure (for exam-
ple, to internal gravity waves). The importance of considering Schmidt
number may also depend on flow type, for example, the data presented
in this work suggest that Schmidt number impact may be greater in a
more viscous flow (such as clay based transitional flows67,68) though
further work considering the impact of Reynolds number on such
flows is needed.

A Schmidt number of 1 is often assumed when performing
numerical investigations of gravity current flows. This is largely as a
result of the rapidly escalating computational cost of DNS,27,34 which
scales with Re3Sc2. When computational resources are limited, decid-
ing whether to prioritize increasing Schmidt or Reynolds number is a
complex issue dependent on several factors. There may be no benefit
to prioritizing Schmidt number at the expense of Reynolds number if
data analysis will focus on parameters that are not Schmidt number
dependent (such as front velocity), or that are also seen with increased
Reynolds number (such as the formation of lobe-and-cleft structures).
However, it is recommended to have Schmidt number sufficiently
large to accurately capture the body gradient Richardson number. The
work presented here suggests that assuming a Schmidt number of 1 in
numerical investigations leads to substantial structural differences
compared with higher Schmidt number flows. However, even at ReI
¼ 100 the effect of increasing Schmidt number from 10 to 100 was
quantitative rather than qualitative [similar to the findings of Deepwell
and Stastna47 for flow along a pycnocline(s)], and therefore the struc-
ture of solute-based flows [Sc ¼ Oð1000Þ] can likely be captured with
the comparatively minor cost of a small increase in Schmidt number
rather than the large cost of matching Schmidt number exactly.
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