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In recent charge-pump experiments, single electrons are injected into quantum Hall edge chan-
nels at energies significantly above the Fermi level. We consider here the relaxation of these hot
edge-channel electrons through longitudinal-optical phonon emission. Our results show that the
probability for an electron in the outermost edge channel to emit one or more phonons en route to a
detector some microns distant along the edge channel suffers a double-exponential suppression with
increasing magnetic field. This explains recent experimental observations. We also describe how
the shape of the arrival-time distribution of electrons at the detector reflects the velocities of the
electronic states post phonon emission. We show how this can give rise to pronounced oscillations
in the arrival-time-distribution width as a function of magnetic field or electron energy.

PACS numbers: 73.23.Hk, 63.22.-m, 73.63.Kv, 73.23.-b

I. INTRODUCTION

Single-electron sources have recently been realised with
a number of different technologies such as a driven
mesoscopic capacitors1, quantum-dot charge pumps2–8,
and surface acoustic waves9–11. Shaped voltage pulses
have also been used to generate single Levitons12.
These sources enable electronic analogues of fundamen-
tal quantum-optics experiments13–15, and hold great
promise for future application, in particular as a current
standard16. For the full potential of these sources to be
realised, however, we need an understanding of the relax-
ation and decoherence processes that affect their single-
electron outputs17–20.

The focus of the current paper is the effect of
longitudinal-optical (LO) phonon emission by the hot
electrons originating from the charge pumps of Refs. 4–
8. In these systems, single electrons are emitted by a
dynamically-driven quantum dot into quantum-Hall edge
channels. The emission energy of these electrons can be
controlled by adjusting the dot potentials7,21 and can be
set far above the Fermi sea. By means of an adjustable
detector barrier placed some 2–5µm downstream of the
emitter, these experiments offer both energy- and time-
resolved detection of the electrons7,8.

In Ref. 7 it was reported that, at certain magnetic
field strengths, a significant fraction of the electrons ar-
rive at the detector with an energy that is some integer-
multiple of ∼36meV less than their energy at emission.
Since 36meV corresponds approximately to the energy
of LO phonons in GaAs22, it was concluded that these
electrons had emitted one or more LO phonons en route
to detector. Moreover, Fletcher et al.7 report that whilst
these “phonon replica” features are pronounced at lower

fields (B = 6T), they are scarcely visible at high fields
(B = 12T). A similar observation was made for different
samples in Ref. 8.

In this paper we offer an explanation of this transi-
tion based on the localisation properties of edge-channel
wave functions in a magnetic field. Using a Fröhlich
Hamiltonian23,24, we calculate scattering rates out of in-
dividual edge-channel states as a function of field and
energy of emission. From this we obtain the probabil-
ity of electrons emitting m = 0, 1, 2, . . . LO phonons be-
fore reaching the detector. For electrons emitted into the
outermost edge channel, we find an abrupt transition,
essentially from zero to one, in the probability that no
phonons are emitted. We also discuss phonon emission
by electrons in edge channels other than the outermost,
and describe conditions under which anomalously large
values of the relaxation rates can occur.

We then go on to consider the distribution of electron
arrival times at the detector. This distribution is simi-
lar in concept to the waiting time distribution, which has
been studied for time-independent transport in Coulomb-
blockade systems25 and also for a dynamic single-electron
emitter26. Here, we calculate the arrival-time distribu-
tions (ATDs) for electrons having emitted different num-
bers of phonons and show how energy loss leads to an in-
crease in the widths of the phonon-replica distributions.
We also predict that at lower fields the widths of these
distributions show pronounced oscillations as a function
of emission energy or magnetic field. This effect origi-
nates from the scattering of electrons into different edge
channels as the field or energy is changed.

This paper is structured as follows. In Sec. II we recap
the properties of quantum-Hall edge states with parabolic
transverse confinement and in Sec. III we derive an ex-
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pression for the scattering rate between these states. The
ATDs are discussed in Sec. IV, before we finish with dis-
cussions in Sec. V.

II. ELECTRON STATES

The charge pumps in question emit single electrons
into the edge channels of a two-dimensional electron gas
in the quantum-Hall regime. We model the behaviour
of these electrons in xy-plane with the effective-mass
Schrödinger equation27 (e > 0)

H =
1

2m∗
e

(i~∇− eA)
2
+ U(y), (1)

with m∗
e the effective electron mass, A the vector po-

tential, and U(y) the confinement potential transverse
to the transport direction. With magnetic field B per-
pendicular to the plane, the vector potential in the Lan-

dau gauge reads A = −By î, with î a unit vector in the
x-direction. We consider a parabolic confinement with
confinement energy ~ωy such that U(y) = 1

2m
∗
eω

2
yy

2. We
discuss the limits of this model in describing the experi-
ments of Refs. 7 and 8 at the end of this section.
The eigenfunctions of H are plane waves, with wave

number k, in the x direction, and harmonic-oscillator
eigenfunctions with quantum number n = 0, 1, 2, . . . in
the y direction (see Appendix A). The transverse wave
functions are localised about a guiding-centre coordinate

yG(k) =
ω2
c

Ω2

~k

eB
, (2)

and have a characteristic width

lΩ =

√
~

m∗
eΩ
. (3)

Here, Ω is the composite frequency Ω =
√
ω2
y + ω2

c with

ωc = |eB|
m∗

e
, the cyclotron frequency. The energies of the

eigenstates read

Enk = ~Ω

{
n+

1

2
+

1

2

[
ωyyG(k)

ωclΩ

]2}
, (4)

with corresponding velocities

vnk =
1

~

∂Enk

∂k
=
ω2
y

ωc
yG. (5)

Recent measurements28 of the velocities of the elec-
trons emitted by the charge pumps show that, close to
edge of the sample, the transverse potential is well ap-
proximated by the quadratic form employed here. Across
the interior of the sample, however, the potential is ex-
pected to be essentially flat. The experimental potential
is therefore an open parabola, rather that the closed one

we consider here. Nevertheless, we expect the eigenfunc-
tions of the closed parabola to provide a good approx-
imation to those of the open one, if their displacement
from the origin is significantly greater than their spatial
extent, i.e. when yG ≫ lΩ. This implies that the energy
of the electron above its subband bottom should satisfy

E − ~Ω

(
n+

1

2

)
≫ ~Ω

2

(
ωy

ωc

)2

. (6)

This holds true for most of the results reported here. In
the cases where it does not, we will argue that our results
still give a qualitative guide to experiment.

III. PHONON RELAXATION RATES

The scattering of quantum-confined electrons by
phonons, both with22,29–31 and without32,33 magnetic
field, has been studied extensively. These previous stud-
ies, however, have focused on macroscopic properties
such as conductance or optical absorption. In contrast,
our analysis here concerns the fate of single electrons and
scattering rates between individual edge-channel states.
We describe the interaction between electrons and LO

phonons with the Fröhlich Hamiltonian23,24 which, in
terms of the electronic states described above, can be
written as

Vep =
∑

nn′

∑

kk′

∑

q

Λk′k
n′n(q)c

†
n′k′cnk

(
a†−q + aq

)
. (7)

Here cnk is the annihilation operator for electrons with
quantum numbers n and k, aq is the annihilation opera-
tor for bulk LO phonons with (three-dimensional) wave

vector q, and Λk′k
n′n(q) is the appropriate matrix element,

proportional to the dimensionless Fröhlich coupling con-
stant α. The form of this matrix element along with
some technical details on the following calculation are
discussed in Appendix B. We assume that the phonons
are dispersionless and have energy ~ωLO.
We consider the zero-temperature limit and phonon

emission only. Since in GaAs the coupling constant is
small (α ≈ 0.068), we work to lowest order in α and cal-
culate the effects of coupling to the phonons via Fermi’s
golden rule34. This gives the rate of transition from the
state in subband n with energy E to a state in subband
n′ with energy E − ~ωLO to be

Γn′n(E) =
αΩωLO

2πωy

√
~ωLO

∆n′

Θ(∆n′) In′n (δG) . (8)

Here, ∆n′(E) ≡ E − ~Ω
(
n′ + 1

2

)
− ~ωLO is the energy

taken up by the motion along the edge channel after the
transition, Θ is the unit-step function, and In′n is a one-
dimensional integral, the argument of which is the rela-
tive change in guide centre,

δG =
yG − y′G

lΩ
, (9)
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with yG associated with the initial state (subband n) and
y′G with the final state (subband n′). The full form of
this one-dimensional integral is discussed in Appendix B.
However, when the initial energy of the electron is the
dominant energy scale, we obtain the approximate form

In′0(δG) ≈ π3/2ωc

Ω

1

n′!

(
δ2G
2

)n′− 1
2

e−
1
2 δ

2
G , (10)

where, for simplicity of presentation, we quote the result
for n = 0 only. Thus, the rates are dominated by an
exponential dependence on the distance between guid-
ing centres before and after scattering. This dependence
arises from the overlap of the transverse wave functions.
In emitting a phonon, an electron loses energy and, if
starting in the outermost subband, its k-value is corre-
spondingly reduced. Since the guiding centre of the edge-
channel wave functions is proportional to k, states before
and after emission are then necessarily separated in the
y direction. At large field and/or energies, the overlap
of these two wave functions is through their exponential
tails, and hence the form of Eq. (10).
Considering first the transition within the outermost

edge-channel (n = n′ = 0), we have

δ2G =
2ω2

c

ω2
y~Ω

[√
E − 1

2
~Ω−

√
E − ~ωLO − 1

2
~Ω

]2
.

If the energies of the problem are ordered E − ~ωLO ≫
~ωc ≫ ~ωy, this simplifies such that we may write

Γ00(E) ∼ exp [−B/BT] , (11)

with

BT =
m~ω2

y

eE

(
1−

√
1− ~ωLO

E

)−2

. (12)

This transition field increases with increasing electron en-
ergy and also with increasing confinement. For higher
field strengths, terms proportional to B2 start to play a
role in the exponent.
Considering the case for general n and n′, in the same

approximation as above and with E ≫ ~ωLO, the expo-
nential part of the rate reads

Γn′n(E) ∼ exp

[
− 1

4E

(~ωc)
2

~Ω

(
ωLO

ωy

)2

×
{
1 +

Ω

ωLO
(n′ − n)

}2 ]
. (13)

The dependence on n′ − n here means that for large
fields, the inwards off-diagonal transitions, n′ > n, are in-
creasingly more suppressed than the diagonal ones. Thus
starting in the outermost channel, the n = 0 to n′ = 0
transition will dominate at high field. For Ω . ωLO, how-
ever, rates other than the diagonal ones will contribute.
The total scattering rate out of state n is simply the

sum Γn(E) =
∑

n′ Γn′n(E). Results for n = 0, using

0 2 4 6 8 10 12 1410
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0 1 2 3 4

0

5

10

Γ
0

[

p
s−

1
]

Γ
0

[

p
s−

1
]

B [T]

B [T]

50meV
100meV

150meV

FIG. 1. The total phonon-induced scattering rate Γ0 =
Γ0(E) out of the n = 0 edge channel as a function of magnetic
field for several initial electron energies, E = 50, 100, 150meV.
The main panel shows results out to B = 15T for both the
full expression of Eq. (8) (solid lines) as well as the approx-
imate form of Eq. (10) (dashed lines). The inset shows the
low field region. Parameters for the calculation were: trans-
verse confinement energy of ~ωy = 2.7meV; electron-phonon
coupling constant: α = 0.068; effective mass: m∗

e = 0.067me;
and phonon energy: ~ωLO = 36meV. We also assumed a con-
finement distance of a = 5nm perpendicular to the plane (see
Appendix A).

both the exact integral In′0 and the approximate form
of Eq. (10), are shown in Fig. 1. This figure shows
that the rate exhibits an approximately exponential drop
across most of the experimentally-accessible magnetic-
field range and that Eq. (10) provides a decent account
of this behaviour. The inset of Fig. 1 shows the total
rate at low fields. We see that the decay rate has a max-
imum value in the range 5 –10ps−1 and occurs for B > 0.
The rate at low fields also exhibits a series of peaks as
a function B that arise from the density of states factor,

∆
−1/2
n′ , in Eq. (8). At these points, Eq. (6) does not hold

and the closed parabola is no longer an accurate model
of the experimental potential. Missing from the current
description are the bulk states that occur in the flat re-
gion of the potential. Due to the magnetic field, however,
these additional states will be dispersionless and the spec-
trum of the open-parabola system will still consist of a
set of distinct subbands. Thus, even though the positions
and strengths of these peaks will be modified in the open
potential, the essential ingredient behind this behaviour
remains. We thus expect the behaviour described here to
be qualitatively similar to that observable in experiment.

Fig. 2 shows the total scattering rate out of states
other than the n = 0 level. Generically, these rates show
a behaviour similar to the n = 0 case. In certain cir-
cumstances, however, these rates can attain anomalously
high values, see e.g. the n = 2 result in Fig. 2a around
B = 10T. These features occur whenever initial-state
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FIG. 2. Main panel: Total scattering rate Γn = Γn(E) out
of the n = 0, 1, 2 edge channel as a function of magnetic field
with an initial electron energy of E = 50meV. The most strik-
ing feature is the anomalously high rate for the n = 2 state
centered around a field of B ≈ 10T. Inset: This phenomenon
can be understood by considering the wave numbers involved
in scattering as a function of magnetic field. The solid blue
lines show the wave numbers of initial states at E = 50meV
as a function of magnetic field. The uppermost line is from
the n = 0 subband, with lines progressing downwards corre-
sponding to n = 1, . . . , 4. The dashed red lines show the same
thing but at an energy of E−~ωLO = 14meV. A crossing be-
tween the n = 2 initial-state line and the n = 0 final-state
line occurs around B = 10.3T (circled). At this point the
momentum of the electron in the transport direction is con-
served by the scattering and this gives rise to the enhanced
rate observed in the main panel. Parameters the same as
Fig. 1.

and final-state lines cross in a plot of wave number ver-
sus field (see the inset of Fig. 2b). At these points, the
momentum of the electron in the x direction is conserved.
From the 1/q2-structure of the integrals, this gives rise
to enhancement in the scattering rate.

IV. ARRIVAL-TIME DISTRIBUTION

We now consider the time of arrival of electrons at
a detector situated at a position xD from the emitter
along the edge channel. Let E(0) be the energy of the
electrons at emission and let us denote as A(m)(xD, τ)
the distribution of arrival times of electrons with en-
ergy E(m) = E(0) − m~ωLO, i.e. ones having emit-
ted exactly m phonons. The normalisation of A(m) is
such that P (m)(xD) ≡

∫∞

0 dτA(m)(xD, τ) is the total
probability of m phonons being emitted en route and∑

m=0 P
(m)(xD) = 1. For each value of m, we define the

mean arrival time

〈τ (m)〉 ≡
∫∞

0
dτ τA(m)(xD, τ)

P (m)(xD)
, (14)

and width

∆τ (m) ≡

√∫∞

0
dτ
[
τ2 − 〈τ (m)〉2

]
A(m)(xD, τ)

P (m)(xD)
. (15)

To calculate the ATDs, we should consider that the
electron is emitted as a wave packet with a range of k
values. In principle, this affects the time evolution of
the electron not only through the dispersion of Eq. (4),
but also through the energy (and hence wavenumber) de-
pendence of the scattering rate. A quantum-mechanical
treatment of the ATD that addresses these issues is dis-
cussed in Appendix C. In this treatment, we assume that
the initial spatial distribution of the electron is a Gaus-
sian wave packet with a spatial extent & 1µm, which
is a reasonable assumption for the situation described in
Ref. 7 and 8. In this case, we find that the relative spread
in wave number k is small enough that the dispersion of
the wave packet can be neglected over relevant source-
detector distances. The variation of the phonon rates,
the guide-centre positions and the velocities over the rel-
evant k range are also negligibly small. In the following,
then, we neglect dispersion and employ a semi-classical
description of the dynamics. We note that where the ini-
tial extent of the wave packet . 100nm, we would expect
k-dependent effects to become significant.

A. Semi-classical dynamics

Let us denote as ̺
(m)
n (x, t) the classical probability dis-

tribution to find at time t an electron at position x of
edge channel n given that it has emitted m phonons. In
a semi-classical picture, we consider an electron in edge
channel n to have a well-defined velocity, irrespective of
its spatial distribution. We will label quantities with the
phonon-number m as a proxy for the energy and thus

write v
(m)
n for the velocity of the electron in the nth sub-

band with energy E(m) = E(0) −m~ωLO. We label the
rates with the m-value of the starting state, rather than

the energy: Γ
(m)
n′n = Γn′n

(
E(m)

)
.

For the probabilities, we write down a set of coupled
Boltzmann-like equations with drift and scattering terms

∂

∂t
̺(m)
n + v(m)

n

∂

∂x
̺(m)
n = − (1− δm,M ) Γ(m)

n ̺(m)
n

+(1− δm,0)
∑

n′

Γ
(m−1)
nn′ ̺

(m−1)
n′ .

(16)

Here M is the maximum number of phonons that an
electron can emit before its energy fails to less than ~ωLO

above the bottom of the n = 0 subband, from which
point no further emission is possible. In terms of these
probabilities, the ATD at energy E(m) is simply related
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to the current as35

A(m)(xD, τ) =
∑

n

A(m)
n (xD, τ)

=
∑

n

v(m)
n ̺(m)

n (xD, t = τ). (17)

In the first line here we have written A(m) as a sum
over the contributions from the individual edge channels,

A
(m)
n .

B. The survival probability

The first quantity in which we are interested is the
survival probability, P (0)(xD), which is the probability
that the electron reaches the detector without emitting
any phonons. We assume that the electron is emitted into
the outermost edge channel with a starting probability

density ̺
(0)
0 (x, 0) = f(x). Solution of Eq. (16) with m =

n = 0 gives simply

̺
(0)
0 (x, t) = e−Γ

(0)
0 tf(x− v

(0)
0 t), (18)

which represents a wave packet travelling with velocity

v
(0)
0 , damped at a rate Γ

(0)
0 . We assume that the initial

distribution is a Gaussian of spatial width σ and central
coordinate x0. In Ref. 8, it was determined that the
electron wave packet was emitted over some fixed time
interval ∆τi. This gives the initial width of the wave

packet to be σ = v
(0)
0 ∆τi. Since the wave packet begins

to form at t = 0, we set the central coordinate x0 = −2σ
such that ̺0(x ≥ 0, 0) ≈ 0 for x ≥ 0. Ref. 8 describes
30ps as an overestimate of width, and we shall take 20ps
in our numerical calculations. By integrating Eq. (18)
with this Gaussian Ansatz, we find a survival probability

P (0)(xD) =
1

2
exp



−Γ

(0)
0 (xD − x0)

v
(0)
0

+
1

2

(
σΓ

(0)
0

v
(0)
0

)2




×erfc

{
σ2Γ

(0)
0 − v

(0)
0 (xD − x0)√
2σv

(0)
0

}
. (19)

This result is shown in Fig. 3a with rates and veloci-
ties calculated as in the preceding sections. We see that
the survival probability undergoes a rapid transition from
close to zero for low fields to close to unity for high field.

In the limit (xD − x0)/σ ≫ 1, σΓ
(0)
0 /v

(0)
0 , the degree of

scattering experienced by the wave packet as it passes
the point xD is negligible, and we find

P (0)(xD) ≈ exp

{
−Γ

(0)
0 (xD − x0)

v
(0)
0

}
, (20)

which represents a simple exponential decay in time eval-
uated at the mean-time of arrival at the detector. Since,

for large B at least, the rate Γ
(0)
0 behaves as in Eq. (11),
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(c)

FIG. 3. (a) The survival probability, P (0), for electrons to
reach a detector at xD = 10µm without emitting a phonon
for initial energies E(0) = 50, 100, 150meV. A rapid transition
from zero to unity is observed in the experimentally-relevant
range of magnetic fields. (b) The field value B1/2 at which
the survival probability reaches one half as a function of initial
energy E. Results are shown for xD = 5, 10, 15µm. (c) The

width of the m = 0 arrival-time distribution, ∆τ (0), in units
of the initial width ∆τi (Same energies and detector position
as part (a)). Above B1/2, the width plateaus to its value at
emission. Parameters the same as Fig. 1.

the result of Eq. (20) is a double-exponential suppres-
sion on the survival probability as the magnetic field de-
creases. From Eq. (11) we also see that the magnetic
field at which the survival probability reaches one-half,
B1/2, is roughly proportional to BT. Complete results
for this cross-over field are shown in Fig. 3b as a func-

tion of energy. We note that at low field, the rate Γ
(0)
0

is high enough that the wave packet is almost entirely
suppressed before it can reach the detector. In this case,
Eq. (20) ceases to be a good approximation. Rather, in

the limit σΓ
(0)
0 /v

(0)
0 ≫ 1, (xD − x0)/σ, we obtain

P (0)(xD) ≈
v
(0)
0

Γ
(0)
0

f(xD), (21)

such that only the exponentially-small tail of the distri-
bution contributes in this limit.

C. Distribution widths

We now consider the complete ATDs and characterise
them in terms of their widths. Considering first the m =
0 case, the same approximations that lead to Eq. (20),
give the width of the m = 0 ATD to be

∆τ (0) =
σ

v
(0)
0

, (22)

which is simply the typical time it takes for a wave packet
of width σ to move across the detector. In the emission
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FIG. 4. Arrival-time distributions as function of time t and initial electron energy, E(0). The three panels show the distributions
detected at energies E(m) with m = 0, 1, 2, i.e. with the electron having emitted m = 0, 1, 2 phonons. Here B = 5T, xD = 10µm,
and the initial width was ∆τi = 20ps. As the initial energy increases, the distribution moves from the m = 0 to m = 1 and
then m = 2 as one- then and two-phonon emission processes become possible.

model such that σ = v
(0)
0 ∆τi, we obtain ∆τ (0) = ∆τi

and the width of this distribution remains constant ir-
respective of decay process. This behaviour is observed
at high fields in Fig. 3c, but as B decreases through the
transition point, B1/2, the width of the arrival-time dis-
tribution drops. This is consistent with the picture of
Eq. (21) that only the small fraction of the probability
distribution close to the measurement point contributes
in the strongly-damped regime. We note that the fix-
ity of the temporal width relies on the assumption that
the electron is emitted over a constant time-window irre-
spective of other conditions. If, for example, it were the
initial spatial width σ, rather than the temporal width,
that was fixed, then ∆τ (0) would show an approximately
linear increase with field.

We next consider the distributions for m > 0. Re-
sults from the numerical solution of Eq. (16) are shown
in Fig. 4 for B = 5T and in Fig. 5 for B = 2T. We start
by discussing Fig. 4, as these results are indicative of
what happens at higher field. Starting at low energy, the
ATD for m = 0 shows a strong peak given by Eq. (18).
As the initial energy of the electron increases, this peak
moves to shorter times as the velocity increases in line
with Eq. (5). At around E(0) = 1

2~Ω + ~ωLO ≈ 80meV,
scattering out of this state becomes significant and pop-
ulation transfers to the m = 1 state. This continues
until about E(0) = 1

2~Ω + 2~ωLO ≈ 115meV, at which
point the emission of two phonons becomes likely and
the m = 2 distribution develops. The temporal widths
of the distributions increase with increasing m, but nar-
row throughout their individual ranges as E(0) increases.
The distributions here are largely featureless.

A similar story unfolds at lower fields, Fig. 5, but the
increase in width with m here is more marked. Moreover,
a distinct structure evolves in the m > 0 distributions.

Whilst the transition from m = 0 to m = 1 distribution
is gradual, the m = 1 distribution undergoes an abrupt
cut-off around E = 1

2~Ω + 2~ωLO ≈ 74meV. The m = 2
distribution that then arises shows a series of bands with
increasing energy in which the width of the distribution
oscillates. The m = 1 distribution shows this oscillation
too, but less obviously than for m = 2.
To help understand these results, we consider the case

when the maximum number of phonons that can be emit-
ted is M = 1. This occurs when 1

2~Ω + ~ωLO ≤ E(0) <
1
2~Ω + 2~ωLO. In this case, Eq. (16) can be solved ex-
actly. With Gaussian initial conditions, the one-phonon
distribution for subband n reads

A(1)
n (x, t) =

Γ
(0)
n0 v

(1)
n

2(v
(0)
0 − v

(1)
n )

{
e−Γ

(0)
0 tf(x− v

(0)
0 t)C(z2)

−f(x− v(1)n t)C(z1)
}
, (23)

with continued fraction (z > 0)36

C(z) = exp(z2)erfc(z)

=
2z√
π

1

2z2 + 1− 1 · 2

2z2 + 5− 3 · 4
2z2 + 9− · · ·

, (24)

and

z1 =
σ2Γ

(0)
0 − (v

(0)
0 − v

(1)
n )(x − v

(0)
0 t)

√
2σ(v

(0)
0 − v

(1)
n )

;

z2 =
σ2Γ

(0)
0 − (v

(0)
0 − v

(1)
n )(x − v

(1)
n t)

√
2σ(v

(0)
0 − v

(1)
n )

. (25)

Taking the limit Γ
(0)
0 t ≫ 1, and approximating C(z) ≈



7

t [ps]t [ps] t [ps]

E
(0

)
[m

eV
]

000 200200200 400400400

40

60

80

100

m = 0 m = 1 m = 2

FIG. 5. Same as Fig. 4 but here with B = 2T. The transitions here between the distributions with different m are more
abrupt. Furthermore, the distributions develop oscillations in their widths as a function of initial energy.

1/(
√
πz) we obtain

A(1)
n (x, t) ≈ Γ

(0)
n0

Γ
(0)
0

f(x− v(1)n t). (26)

The width of this distribution for edge channel n is

∆τ (1)n ≈ ∆τi
v
(0)
0

v
(1)
n

. (27)

Thus, we expect the complete m = 1 ATD to be approx-
imately given by a sum of Gaussians with centre and

widths determined by the velocity ratios v
(0)
0 /v

(1)
n and

weighted by the branching ratio Γ
(0)
n0 /Γ

(0)
0 .

Fig. 6 shows the total widths ∆τ (m) of the distributions
in Figs. 4 and 5 in comparison with the partial widths

∆τ (m)
n ≈ ∆τi

v
(0)
0

v
(m)
n

, (28)

generalised from Eq. (27). For B = 5T, the situation is
rather simple: across most of the energy range considered
here, the full width decreases with E and corresponds
very closely to the n = 0 partial width. This is indica-
tive of the fact that, for these parameters, scattering is
dominated by the n = 0 → n′ = 0 transition. At higher
energies, the width decreases below this level. This ef-
fect has the same origin as the reduction in discussed in
connection with Fig. 3c.
The distribution widths for B = 2T show oscillations

as a function of energy. Analogously to the Shubnikov-de
Haas oscillations, these occur as the relevant energy, here
E(m), passes through the band-bottom energies. Con-
sider first the m = 1 case. Below E(0) = 3

2~Ω + ~ωLO ≈
42.5meV the only available state into which the electron
can scatter is the outermost edge channel. The width of

distribution therefore follows ∆τ
(1)
0 . At E(0) ≈ 42.5meV,

the band bottom of n = 1 state passes through the en-
ergy E(1) and scattering into this state becomes possi-
ble. Initially the rate of this process is small, but as
energy increases, an increasing fraction of population is
scattered into this state. As the velocity of this n = 1
state is significantly lower than that of n = 0 state, the
width of its partial distribution is greater. Thus, as more
population is added to this state, the width of distribu-
tion comes to be dominated by this wider contribution.
Above a certain point the total width of the m = 1 dis-
tribution follows roughly the n = 1 partial width. At
E(0) = 5

2~Ω + ~ωLO ≈ 47meV, the same thing occurs
with the n = 2 subband, which then determine the total
width. This pattern continues with increasing E(0). At
higher energies, however, the total distribution is actu-
ally a mixture of contributions from all the states with
subbands below E(1). These different contributions com-
bine to make the alignment of the oscillation minima drift
away from the exact subband energies.
The m = 1 width shows a sharp drop to the width of

the ∆τ
(1)
0 level at E(0) = 1

2~Ω + 2~ωLO ≈ 74meV. This
corresponds to the transition in the maximum phonon
number from M = 1 to M = 2 when two-phonon pro-
cesses become possible. In accordance with Fig. 2, the
rates out of the n > 0 states are greater than those from
the n = 0 states. Thus, at these energies, any residual
population in m = 1 distribution will predominantly be
in the n = 0 state. At the onset of the m = 2 distribu-
tion, its width starts below ∆τ

(2)
0 . This is a result of the

admixture of components travelling with velocities from
the source level (here m = 1), just as Eq. (23) shows
the m = 1 distribution contains an admixture of slower
m = 0 velocity components.

Due to the passing of the electron energy through sub-
band bottoms, the prediction of this effect for experiment
can be only qualitative, rather than quantitative. Cer-
tainly near the bottom of the bands, the shape of the
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FIG. 6. Widths ∆τ (m) of the arrival-time distributions for
m = 1 (top row) and m = 2 (bottom) as a function of initial

energy E(0) for two values of the magnetic field B = 5T (left)
and B = 2T (right). The thick lines show the widths of the
distributions; the green dashed lines show the partial widths

∆τ
(m)
n predicted by Eq. (28); the black vertical lines show

the (initial) energies for which E(m) is equal to a subband-

bottom energy, i.e. when E(0) = m~ωLO + ~Ω
(

n+ 1
2

)

. In all
four panels, the leftmost partial width is that for n = 0, with
n increasing in steps of one from left to right. At B = 5T, the
total width is determined almost exclusively by the properties
of the outermost edge channel. At B = 2T, the width shows
oscillations with increasing field arising from the contribution
of a succession of different subbands.

partial width curves will change from those shown here,
since the dispersion relation will be modified. However,
when E(m) is near a subband bottom, the width is ac-
tually determined by the width of the next-lowest band,
for which our electronic states should be a good approx-
imation. By the time the energy is increased enough to
follow the partial width curve of a subband, the energy is
already significantly higher than the band bottom. The
width oscillations should therefore show a similar pattern
in the open-parabola potential.

V. DISCUSSION

The advent of single-electron sources coupled with
energy- and time-resolved detection opens new possi-
bilities to study confined electron-phonon interactions
in great detail7,8. Here, we have calculated relaxation
rates due to LO-phonon emission in quantum Hall edge
channels and studied the consequences of these processes
for the arrival-time distributions of electrons at a down-
stream detector. The rates show an exponential sup-
pression with increasing field strength as the electronic
wave functions become more localised. This, in turn,
translates into a double-exponential suppression of the
survival probability as the field decreases. These calcula-

tions explain the observations of phonon-scattering sup-
pression at high magnetic fields in Refs. 7 and 8. More
quantitatively, Ref. 7 reports an electron emission energy
of 150meV above the Fermi sea. Taking this to coincide
with the energy above the potential bottom, our calcu-
lations suggest the magnetic-field at which the survival
probability drops to one half is B1/2 ≈ 9T for a detector
at xD = 3µm. This is consistent with the strong phonon
scattering at B = 6T and its almost complete absence at
B = 12T as observed in Ref. 7.

For scattering out of the higher, n > 0 edge channels,
our rates show an anomalously high value whenever the
transition is vertical in the electron forward momentum.
In the experiments of Refs. 7 and 8, it is believed that
the electrons are emitted only into the n = 0 level. To
observe these anomalously high rates then, it is necessary
to scatter electrons into these higher states post emission.
Phonon emission can not provide this scattering because,
looking at Fig. 2, the crossing occurs at high field where
scattering from the n = 0 channel is both highly sup-
pressed as well as effectively diagonal in subband index.
To observe these rates an additional scattering process,
such as at a quantum point contact to populate inner
edge channels, is required.

Concerning the ATDs themselves, we predict here an
increase in the width of the phonon-replica distributions
relative to that of the direct distribution. Since this
change in width depends on the change in k value of the
electron during phonon emission, at high energy, where
the relative proportion of energy lost is small, the width
increase will be correspondingly small. However, at lower
energy and field, this width increase can be significant.
In Fig. 6, for example, the width of the B = 2T distribu-
tion around their mid-point in energy range is a factor of
three (m = 1) or five (m = 2) greater than the starting
width. Such increases should be visible with the time-
domain resolution reported in Ref. 7 and might prove a
useful way to characterise the resolution of the detector.
We have also seen that, at lower field, the distributions
exhibit an oscillatory behaviour due to subband cross-
ings. The width of the distribution where these oscilla-
tions occur is significantly greater than the original emis-
sion width and should therefore be resolvable in current
experiment.

There are a number of ways in which our calculations
could be extended. Firstly, the description of states near
the subband bottoms could be brought closer to those in
experiment by considering the open-parabola potential.
Whilst this should give better agreement with experi-
ment in specific parameters regions, some of the simplic-
ity of the above approach will inevitably be lost. More
interesting will be to include further effects relating to
the phonons. In particular, confinement of the optical
phonons has been reported to be important in nanostruc-
tures in magnetic fields31. Moreover, it will be of interest
to go beyond the Fermi-golden-rule approach used here
and look for signatures of polaron physics in the single-
electron arrival time distributions.
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Appendix A: Quantum hall wave functions

The eigenfunctions of the Hamiltonian of Eq. (1) are

ψnk(x, y) =
1√
LxlΩ

eikxun

(
y − yG
lΩ

)
, (A1)

where normalisation in the x-direction is to the length of
the conductor, Lx, and where

un(s) =
1√
2nn!

1

π1/4
e−s2/2Hn(s), (A2)

are the standard harmonic-oscillator functions with
Hn(s) the nth Hermite polynomial.
To calculate the interaction with bulk phonons, we sup-

plement this wave function with that in the growth di-
rection, z. Assuming the confinement in this direction to
be an infinite-square-well with boundaries at z = 0 and
z = a, the ground-state wave function in this direction is

φ1(z) =

{√
2
a sin πz

a for 0 ≤ z ≤ a;

0 otherwise.
(A3)

We assume that the energy of excitation in this z di-
rection is large enough that the electron is confined to
this ground state. The total wave function used in the
calculation of matrix elements is then

Ψnk(x, y, z) = ψnk(x, y)φ1(z). (A4)

Appendix B: Calculation of electron-phonon rates

Specified in terms of c̃k, the annihilation operator for
plane-wave electrons with three-dimensional wave vector
k, the Fröhlich Hamiltonian for polar optical phonons
reads24

Vep =
∑

k,q

M(q) c̃†k+qc̃k

(
a†−q + aq

)
, (B1)

with matrix element

M(q) ≡ M0√
V

1

|q| ; M2
0 = 4πα~

(~ωLO)
3/2

(2m∗
e)

1/2
. (B2)

Translating into the basis of Eq. (A4), we obtain Eq. (7)
with the matrix elements37

Λk′k
n′n(q) =

∑

p

M(q)〈Ψn′k′ |p+ q〉〈p|Ψnk〉,

=M(q) δqx,k′−kG
(y)
n′k′,nk(qy)G

(z)
11 (qz), (B3)

with

G
(y)
n′nk(qy) = l−1

Ω e−iqyyG

∫
dy eiqyyu∗n′(l−1

Ω y)u∗n(l
−1
Ω y);

G
(z)
11 (qz) =

∫
dz eiqzzφ∗1(z)φ1(z). (B4)

Fermi’s golden rule then gives the transition rate from
state n with energy E to state with n′ as

Γn′n(E) =
Lx

~

∫
dk′
∑

q

|Λk′k
n′n(q)|2δ (En′k′ − E + ~ωLO) .

(B5)

Taking the continuum limit for q, three of the four inte-
grals in this expression can be evaluated analytically34.
This yields Eq. (8) with the remaining integral

In′n(δG) =

∫
dQF

(z)
11



√

Q2 +

(
aΩ

lΩωc

)2

δ2G




× F
(y)
n′n

(√
1

2

[
l2Ω
a2
Q2 + δ2G

])
.(B6)

Here we have defined

F
(z)
11 (A) ≡

∫
dQ

1

A2 +Q2
|G(z)

11 (Q/a)|2, (B7)

which evaluates as

F
(z)
11 (A) =

3πA5 + 20π3A3 − 32π5(1− e−A)

A3(A2 + 4π2)2
, (B8)

and we have written

|G(y)
n′nk(qy)|2 = F

(y)
n′n

(√
1
2

[
l2Ωq

2
y + δ2G

])
, (B9)

with

F
(y)
n′n(Q) =

n<!

n>!
e−Q2

Q2|n′−n|
[
L|n′−n|
n<

(
Q2
)]2

.

(B10)

In this latter, Lα
n(x) is an associated Laguerre polynomial

and n< = min(n2, n1) and n> = max(n2, n1). In writ-
ing Eq. (B6), we have neglected processes which change
the sign of k. This is consistent with only one side of
the potential being relevant to the experimental poten-
tial. Processes that change the sign of k will anyway be
severely suppressed when yG ≫ lΩ.
The approximation to In′0 given in Eq. (10) can be

obtained by noting that the exponential factor in F (y)

dominates the integrand. Setting Q everywhere but in
this exponent, we obtain

In′n(δG) ≈
∫
dQe

− 1
2

(
lΩQ

a

)2

F
(z)
11

(
aΩ

lΩωc
δG

)
F

(y)
n′n

(
1√
2
δG

)

=

√
2πa

lΩ
F

(z)
11

(
aΩ

lΩωc
δG

)
F

(y)
n′n. (B11)
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Further, if the initial energy of the electron, E, is the
dominant energy scale, we can approximate

δG ≈ ω2
cωLO

ω2
yΩ

lΩ
yG
. (B12)

This gives δG ∼ E−1/2 and we thus expand the non-
exponential contribution for small δG to obtain Eq. (10).

Appendix C: Quantum dynamics

We can assess the importance of dispersion by consid-
ering the time evolution of a Gaussian wave packet38,39.
We assume that initially the electron is confined to the
lowest Landau level (n = 0) with momentum distributed
normally. The wave function then reads

|Ψ(0)〉 =
∑

k

Nαe
−α(k−k0)

2 |ψ0k〉, (C1)

with k0 the central wavenumber and α = σ2 a width
parameter with k0 ≫ (4α)−1/2, such that only positive
values of k are relevant. Nα is a normalisation constant.
The marginal probability distribution of this state in the
x-direction is a Gaussian with width

√
ν =

√
α+

1

2

(ωc

Ω
lΩ

)2
. (C2)

The increase over
√
α = σ stems from the dependence

on wave number of the guiding centre of the transverse
wave function.
The time evolution of this wave packet including

phonon-induced relaxation can be found by solving the
time-dependent Schrödinger equation with eigen-energies
that have imaginary parts to account for the population
decay. The wave function at later time t is then

|Ψ(t)〉 =
∑

k

Nαe
−α(k−k0)

2−i~−1Ẽ0kt|0, k〉, (C3)

with Ẽ0k = E0k − i~2Γ
k
0 where, for the purposes of this

appendix, we have labelled the rate with the initial wave
number: Γk

0 = Γ0(E0k). At high energy and field, the
rate is a slowly-varying function of k. We therefore ap-
proximate Γk

0 ≈ Γk0
0 + ∂kΓ

k0
0 [k − k0] +

1
2∂

2
kΓ

k0
0 [k − k0]

2
.

The simplest way to define an arrival time distribu-
tion in quantum mechanics is in relation to the current
density40,41

A(xD, t) ≡
∫
dy J(xD, y, t) · î, (C4)

where J(x, y, t) here is given by

J(x, y, t) =
1

m∗
e

Re
{
Ψ∗(x, y, t)

(
p+

e

c
A

)
Ψ(x, y, t)

}
.

(C5)

This definition can lead to problems of interpretation35,42

but under the conditions studied here, no such issues
arise. With the wave function of Eq. (C3), we obtain

A(xD, t) =
1√
2πν̃

D−3/2ṽg

[
1 + (D − 1)

x

ṽgt

]

× exp

[
− 1

2ν̃D
(xD − ṽgt)

2

]

×
√
α

α̃
exp

[
−Γ̃t

]
, (C6)

with

α̃ = α+
1

4

(
∂2kΓ

k0
0

)
t; ν̃ = α̃+

1

2

(ωc

Ω

)2
l2Ω;

D = 1 +
~
2t2

4m∗
e
2α̃ν̃

; ṽg = vg −
(
∂kΓ

k0
0

)
~t

4m∗
eα̃

;

Γ̃ = Γk0
0 +

(
∂kΓ

k0
0

)2 t

8α̃
. (C7)

This can be understood as the ATD of a damped, trav-
elling Gaussian wave packet moving with velocity, width
and damping rate that are all functions of time.
We can assess the importance of the time-dependence

of these parameters for experiment. By assuming t ∼
xD/vg, a width parameter α ≈ (1µm)2 and detector
position xD = 10µm, we numerically obtain a value of
α̃/α − 1 ≈ 10−5 for B = 5T and E = 100meV, which is
a typical value in the relevant parameter range. A sim-
ilar story can be told for the corrections involving the
derivatives of the rates — these terms yield relative cor-
rections of the order of 10−5 or less. We are thus safe in
approximating α̃ ≈ α, ν̃ ≈ ν, Γ̃ ≈ Γk0

0 and ṽg ≈ vg.
Concerning the width adjustment, we have

ν̃

α̃
− 1 ≈ ν

α
− 1 ∼

(
lc
σ

)2

, (C8)

with lc =
√
~/m∗

eωc the magnetic confinement length.
At 5T, lc ∼ 10nm, so this correction is also small. Finally,
we have the diffusion parameter

D − 1 ≈ ~
2x2D

4m∗
e
2v2gα

2
≈ 10−5, (C9)

and the dispersion of the initial wave packet is also neg-
ligible.
Neglecting these small terms then, the arrival time dis-

tribution becomes that of a dispersionless Gaussian wave
packet moving at velocity vg and damped at a rate Γ0:

A(xD, t) =
1√
2πα

vge
−Γ

k0
0 t exp

[
− 1

2α
(x− vgt)

2

]
.

This agrees with the expression found in section IVB
and the lack of any significant corrections to this simple
Gaussian evolution justifies the use of the semi-classical
approach in the main text.
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