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Abstract: Over the past decades, substantial progress has been made in fault detection and
diagnosis (FDD) and fault tolerant control (FTC) research. Recently, some attention has been
paid to the integrated design of fault estimation (FE) and active FTC in a two-stage manner:
estimation first and then compensation. Different from the preceding two-stage work, this paper
deals with the joint design problem of FE and active FTC in an attempt to resolve them
simultaneously. The joint design is accomplished by borrowing the H2, H∞, and mixed H2/H∞
concepts in the robust control field to quantitatively evaluate the fault tolerant performance.
Necessary and sufficient conditions for the existence of a joint solution are formulated in the
linear matrix inequality (LMI) language. A numerical tutorial example is used to illustrate the
effectiveness of the proposed method.

Keywords: Fault Diagnosis, Fault Estimation, Active Fault Tolerant Control, Linear Matrix
Inequality

1. INTRODUCTION

Fault detection and diagnosis (FDD) and fault tolerant
control (FTC) are two closely interrelated subjects in the
context of accommodating a variety of faults in industrial
systems. In particular, active FTC (Patton (1997) and
Zhang and Jiang (2008)) has been drawing an increasing
attention in academia, industry, and government agencies.
The FDD unit delivers to the FTC module valuable diag-
nostic information that is needed to reconfigure dynamic
system operation acceptably when the system encounters
a failure or multiple faults.

Researchers got used to address FDD and FTC isolat-
edly in earlier active FTC research, since it was often
assumed that the FDD task has been perfectly accom-
plished. The focus of active FTC at that time was on
control reconfiguration. Few attempts have been made to
investigate the interconnection between FDD and FTC.
Until recently, some emphasis has been laid on integrated
design of fault detection and normal feedback control (un-
der the health condition). For instance, Wang and Yang
(2009) studied for linear parameter varying (LPV) systems
the integrated design of a dynamic (detector/controller)
system that can generate detection residual and control
input simultaneously. Interested readers can refer to the
survey paper by Ding (2009) and the references therein
for more information. It should be noted that these so-
called integrated research papers are usually concerned
with residual generation and normal control law design.

On the other hand, some attempts have been made to
conduct fault estimation (FE) for the purpose of compen-

sating the adverse effect of system faults on control per-
formance directly (e.g., see Odgaard et al. (2006)). Zhang
et al. (2010) explored the integrated design issue of FE
and dynamic output feedback (DOF) FTC for Lipschitz
nonlinear discrete-time systems. Later, Sami and Patton
(2013) addressed actuator and sensor FE and DOF ac-
tive FTC for Takagi-Sugeno continuous-time systems in
an integrated manner. Recently, using linear matrix in-
equality (LMI) technique, Tabatabaeipour and Bak (2014)
presented an integrated solution to actuator FE and state
feedback FTC for piecewise linear systems by minimizing
the suggested input-to-state stability gain. In the mean-
time, Shi and Patton (2014) studied for LPV descriptor
systems the integrated issue of proportional derivative
extended state (system states and sensor and actuator
faults) estimation and active FTC at two steps. However,
in these pioneering investigations, FE and active FTC are
carried out not simultaneously but separately in a two-
stage way: estimation first and then compensation. In
addition, the assumption in previous work that the coef-
ficient matrices of control inputs and actuation faults are
colinear or “matched” (i.e., rank([B E]) = rank(B), see
Section 2) makes it nontrivial to compensate the estimated
faults when using existing two-stage approaches for the
noncolinear case.

In order to avoid a confusion with the preceding two-
stage integrated design, we introduce the concept of the
“joint” design problem to indicate that FE and active
FTC are resolved simultaneously. Fault tolerant robust-
ness, the ability of a system to retain its normal operation
performance in the presence of faults and the extent to
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Fig. 1. Schematic structure of the joint design

which the impact of the interaction between FE error and
active FTC capability can be decoupled, is explicitly used to
address this issue through the H2, H∞, and mixed H2/H∞
concepts in the robust control field. Figure 1 illustrates the
schematic structure for the joint FE/FTC issue. To the
best of our knowledge, it is still unclear how to devise
for a dynamic system FE and active FTC jointly, with
taking into consideration their possible interaction and
imperfect compensation. It is this fact that motivates us
to perform this research. The benefit of the joint design
is to provide an opportunity to address FE and active
FTC in a unified framework and quantitatively consider
the interaction between FE and FTC in a systematic way.

The remainder of this paper is organized in the following
manner. First of all, the problem of interest is briefly
formulated in Section 2. Next, Section 3 describes the
details of our solution to the joint design problem. Then
in Section 4, a numerical example is used to illustrate the
effectiveness of the proposed method. Finally, this paper
is concluded in Section 5.

2. PROBLEM FORMULATION

Consider the linear continuous-time dynamic model:

ẋ(t) = Ax(t) +Bu(t) + Ef(t) (1)

y(t) = Cx(t) (2)

where x(t) ∈ Rn is the vector of system states, u(t) ∈ Rp

is the vector of control inputs, f(t) ∈ Rp is the vector of
unmatched actuating faults (E is not colinear with B, i.e.,
rank([B E]) 6= rank(B)), and y(t) ∈ Rq is the vector of
measured outputs. Here the matrices A, B, C, and E are
of compatible dimensions. Although only actuator faults
are considered, the inclusion of some auxiliary states (Sami
and Patton (2013)) can generate an augmented model that
is of the form (1)–(2) for the sensor fault case. The focus
of this paper is thus on actuator faults.

Our objective is to seek a mechanism to simultaneously
design a fault estimator and a fault tolerant controller
in an integrated framework. It should be pointed out
that the requirement of the noncolinearity between E and
B does not mean that the proposed joint design in the
subsequent section is only suited for unmatched faults.
Instead, the joint design is valid as well for the model with
matched faults (i.e., rank([B E] = rank(B)), although
much simpler solutions exist for the matched case, e.g., by
using sliding mode control (Edwards and Spurgeon (1998))
without the help of FE.
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α

θ
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θ

Fig. 2. Convex LMI region enclosed by the dashed line

3. SUGGESTED METHOD

3.1 Fault Estimator Structure

For the ease of mathematical manipulation, it is temporar-
ily assumed that f(t) is slowly varying, i.e., ḟ(t) ≈ 0. Let

Â =

[
A E
0 0

]
, B̂ =

[
B
0

]
, Ĉ = [C 0], and η(t) =

[
x(t)
f(t)

]
.

Under this circumstance, a fault-augmented model can
thus be constructed:

η̇(t) = Âη(t) + B̂u(t) (3)

y(t) = Ĉη(t) (4)

As far as this virtual system in (3)–(4) is concerned, a
Lunberger observer can be introduced of the form:

˙̂η(t) = Âη̂(t) + B̂u(t) + L(y(t)− ŷ(t)) (5)

ŷ(t) = Ĉη̂(t) (6)

where η̂(t) and ŷ(t) represent the estimates of η(t) and
y(t), respectively. In this paper, L is of great interest.
Here we require that the observer poles reside in a convex-
shaped LMI region Ξ(ρ, α, θ) (Chilali and Gahinet (1996))
enclosed by the dashed line in Fig. 2.

3.2 Fault Tolerant Tracking Controller Structure

In the practical fault tolerant control, it is highly desirable
that the tracked measurement variables will not be affected
too much when some fault arises in the system. In this
paper, the tracked variables are denoted as yr(t) ∈ Rl.
Suppose that yr(t) can be mathematically expressed as
yr(t) = Scy(t), where Sc is a matrix for component extrac-
tion from y(t). In order to eliminate steady tracking error,

the integral of tracking error is defined as eI(t) =
∫ t

0
(r(τ)−

yr(τ))dτ , where r(τ) is the vector of reference command
signals. The interested fault tolerant tracking controller

is of the form: uf (t) = [K1 K2 K3]
[
xT (t) fT (t) eTI (t)

]T
.

Let Ā =

[
A E 0
0 0 0

−SrC 0 0

]
, B̄ =

[
B
0
0

]
, Ē =

[
0
0
Il

]
, C̄ = [0 0 Il],

K = [K1 K2 K3], and ζ(t) =

[
η(t)
eI(t)

]
. From the fault

tolerant tracking perspective, if eI(t) is chosen as the per-
formance evaluation signal, then we can easily construct
the following model:
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ζ̇(t) = Āζ(t) + B̄uf (t) + Ēr(t) (7)

z(t) = C̄ζ(t) (8)

uf (t) = Kζ(t), (9)

where Il represents the l × l identity matrix. The fault
tolerant controller has a state-feedback form and takes into
account potential occurring faults and tracking errors in a
straightforward manner.

3.3 Fault Estimator and Fault Tolerant Controller: A
Joint Design

In this paper, the values of L and K are needed to be
solved in a joint way. Using the well-known H2, H∞,
and mixed H2/H∞ techniques, this paper proposes three
integrated design mechanisms to accommodate possibly
occurring faults of the system described by (1)–(2) in the
beginning of control system design.

LMI Formulation of H2 Joint Design

Definition 1. The joint design for the system (1)–(2) of a
fault estimator (5)–(6) whose poles reside in the convex
region Ξ(ρ, α, θ) in Fig. 2 and a fault tolerant controller
(9) such that ‖Tzr‖2 < γ2 is called an H2 FE/FTC joint
design problem, where ‖Tzr‖2 denotes the H2 norm of the
transfer-function matrix from r(t) to z(t) and γ2 ∈ R+.

Theorem 1. For a given γ2 ∈ R+, an H2 FE/FTC joint
design problem is solvable if and only if there exist sym-
metric positive-definite matrices P � 0 and Q � 0 and
matrices Y and Z such that

PÂ− Y Ĉ + ÂTP − ĈTY T + 2αP ≺ 0 (10)[
−rP PÂ− Y Ĉ

ÂTP − ĈTY T −rP

]
≺ 0 (11)

sin θ(PÂ+ ÂTP

− Y Ĉ − ĈTY T )

cos θ(PÂ− ÂTP

− Y Ĉ + ĈTY T )

cos θ(ÂTP − PÂ
+ Y Ĉ − ĈTY T )

sin θ(PÂ+ ÂTP

− Y Ĉ − ĈTY T )

 ≺ 0 (12)

ĀQ+QĀT + B̄Z + ZT B̄T + ĒĒT ≺ 0 (13)

trace(C̄QC̄T ) < γ22 . (14)

If the LMIs (10)–(14) are feasible, then the fault estimator
gain L in (5) and the fault tolerant controller gain K in
(9) can be simultaneously synthesized as L = P−1Y and
K = Q−1Z in an H2 suboptimal sense.

Proof. On the one hand, according to the work by Chilali
and Gahinet (1996), the poles of the estimator in (5)–(6)
lie in the convex region Ξ(ρ, α, θ) if and only if there exists
a symmetric positive-definite matrix P � 0 such that

P (Â− LĈ) + (Â− LĈ)TP + 2αP ≺ 0 (15)[
−γP P (Â− LĈ)

(Â− LĈ)TP −γP

]
≺ 0 (16)

sin θ(P (Â− LĈ)

+ (Â− LĈ)TP )

cos θ(P (Â− LĈ)

− (Â− LĈ)TP )

cos θ((Â− LĈ)TP

− P (Â− LĈ))

sin θ(P (Â− LĈ)

+ (Â− LĈ)TP )

 ≺ 0 (17)

Introduce an auxiliary variable Y as Y = PL. Substituting
the definition of Y into (15)–(17) yields (10)–(12).

On the other hand, we can express the fault-tolerant
closed-loop system as

ζ̇(t) = (Ā+ B̄K)ζ(t) + Ēr(t) (18)

z(t) = C̄ζ(t) (19)

According to the LMI formulation for the H2 performance
index (Boyd et al. (1994)), the H2 norm ‖Tzr‖2 of the
transfer-function matrix from r(t) to z(t) is less than γ2
if and only if there exists a symmetric positive-definite
matrix Q � 0 such that

(Ā+ B̄K)Q+Q(Ā+ B̄K)T + ĒĒT ≺ 0 (20)

trace(C̄QC̄T ) < γ22 (21)

Define Z = KQ. Then this definition will naturally lead
to (13)–(14). So the proof is finished.

Corollary 2. If there are γ2 > 0, symmetric positive-
definite matrices P � 0 and Q � 0 and matrices Y and Z
such that

min γ2
s.t. (10), (11), (12), (13), (14)

(22)

then an optimized fault tolerant controller (9) (in an
H2 sense) and a robust fault estimator (5)–(6) can be
simultaneously constructed. The interested gains for the
controller and estimator are K = Q−1Z and L = P−1Y ,
respectively, and ‖Tzr‖2 < γ2.

LMI Formulation of H∞ Joint Design

Definition 2. The joint design for the system (1)–(2) of a
fault estimator (5)–(6) whose poles lie in the convex region
Ξ(ρ, α, θ) in Fig. 2 and a fault tolerant controller (9) such
that ‖Tzr‖∞ < γ∞ is called an H∞ FE/FTC joint design
problem, where ‖Tzr‖∞ denotes the H∞ norm of the
transfer-function matrix from r(t) to z(t) and γ∞ ∈ R+.

Theorem 3. For a given γ∞ ∈ R+, an H∞ FE/FTC
joint design problem is solvable if and only if there exist
symmetric positive-definite matrices P � 0 and Q � 0 and
matrices Y and Z such that (10)–(12) andĀQ+QĀT + B̄Z + ZT B̄T Ē QC̄T

ĒT −γ∞I 0
C̄Q 0 −γ∞I

 ≺ 0 (23)

hold. If the LMIs (10)–(12) and (23) are feasible, then
the fault estimator gain L in (5) and the fault tolerant
controller gain K in (9) can be simultaneously synthesized
as L = P−1Y and K = Q−1Z in an H∞ suboptimal sense.

Proof. With the help of the LMI technique for the H∞
formulation (Boyd et al. (1994)), it is easy to derive this
result by means of a similar procedure to that in the
proof of Theorem 1. For the sake of space, the details are
omitted.

Corollary 4. If there are γ∞ > 0, symmetric positive-
definite matrices P � 0 and Q � 0 and matrices Y and Z
such that

min γ∞
s.t. (10), (11), (12), (23)

(24)

then an optimized fault tolerant controller (9) (in an
H∞ sense) and a robust fault estimator (5)–(6) can be
simultaneously constructed. The interested gains for the
controller and estimator are K = Q−1Z and L = P−1Y ,
respectively, and ‖Tzr‖∞ < γ∞.
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LMI Formulation of Mixed H2/H∞ Joint Design

Definition 3. The joint design for the system (1)–(2) of a
fault estimator (5)–(6) whose poles are within the convex
region Ξ(ρ, α, θ) in Fig. 2 and a fault tolerant controller
(9) such that ‖Tzr‖2 < γ2 and ‖Tzr‖∞ < γ∞ is called
a mixed H2/H∞ FE/FTC joint design problem, where
‖Tzr‖2 and ‖Tzr‖∞ denote the H2 and H∞ norms of the
transfer-function matrix from r(t) to z(t), respectively, and
γ2 ∈ R+ and γ∞ ∈ R+.

Theorem 5. For a given pair of γ2 ∈ R+ and γ∞ ∈ R+, a
mixed H2/H∞ FE/FTC joint design problem is solvable if
and only if there exist symmetric positive-definite matrices
P � 0, Q � 0, and R � 0 and matrices X, Y , and Z such
that

PÂ−XĈ + ÂTP − ĈTXT + 2αP ≺ 0 (25)[
−rP PÂ−XĈ

ÂTP − ĈTXT −rP

]
≺ 0 (26)

sin θ(PÂ+ ÂTP

−XĈ − ĈTXT )

cos θ(PÂ− ÂTP

−XĈ + ĈTXT )

cos θ(ÂTP − PÂ
+XĈ − ĈTXT )

sin θ(PÂ+ ÂTP

−XĈ − ĈTXT )

 ≺ 0 (27)

ĀQ+QĀT + B̄Y + Y T B̄T Ē QC̄T

ĒT −γ∞I 0
C̄Q 0 −γ∞I

 ≺ 0 (28)

ĀR+RĀT + B̄Z + ZT B̄T + ĒĒT ≺ 0 (29)

trace(C̄RC̄T ) < γ22 (30)

Q−1Y = R−1Z. (31)

If the constraints (25)–(31) are feasible, then the fault
estimator gain L in (5) and the fault tolerant controller
gain K in (9) can be simultaneously synthesized as L =
P−1X and K = Q−1Y or K = R−1Z in a mixed H2/H∞
suboptimal sense.

Proof. By combining Theorems 1 with 3, we can smoothly
obtain (25)–(30). In order to make sure the consistency of
K across the mixed H2 and H∞ settings, it is natural to
incorporate (31). So the proof is finished.

Remark 1. In practice, Equation (31) poses a formidable
challenge to numerical optimization due to its involvement
of the inverses of Q and R, which give rise to nonconvexity.
Fortunately, this issue can be handled in a conservative
manner by imposing the equality of Q and R.

Theorem 6. For a given pair of γ2 ∈ R+ and γ∞ ∈ R+, if
there exist symmetric positive-definite matrices P � 0 and
Q � 0 and matrices Y and Z such that (10)–(14) and (23)
hold, then it is viable to conduct a mixedH2/H∞ FE/FTC
joint design for the system (1)–(2). When the constraints
(10)–(14) and (23) are feasible, the fault estimator gain L
in (5) and the fault tolerant controller gain K in (9) will
be of the form L = P−1Y and K = Q−1Z in a mixed
H2/H∞ suboptimal sense.

Proof. It is trivial to yield this result through integrating
Theorem 5 and the requirement of Q = R.

Corollary 7. If there are γ2 > 0, γ∞ > 0, symmetric
positive-definite matrices P � 0 and Q � 0 and matrices
Y and Z such that

Table 1. Optimized quantitative H2 and/or H∞
indexes for evaluating fault tolerant tracking

γ2/γ∞
H2 Joint Design 0.0043
H∞ Joint Design 0.0042

Mixed Joint Design 0.0300/0.0277

min γ2∞ + γ22
s.t. (10), (11), (12), (13), (14), (23)

(32)

then an optimized fault tolerant controller (9) and a robust
fault estimator (5)–(6) can be jointly evaluated in a mixed
H2/H∞ sense. The interested gains for the controller and
estimator are K = Q−1Z and L = P−1Y , respectively,
and ‖Tzr‖2 < γ2 and ‖Tzr‖∞ < γ∞.

4. NUMERICAL EXAMPLES

To illustrate the power of the integrated design approach,
a tutorial model of the form (1)–(2) is considered whose
parameters are as follows:

A =

[
1 −2 −2
2 1 1
1 −2 −1

]
B =

[
1
2
0

]

C =

[
1 2 −1
−1 2 −1
1 −2 0

]
E =

[
0
1
1

]
.

Note that rank([B E]) = 2 and rank(B) = 1 and imper-
fect compensation arises. During simulation experiments,
a stepwise fault is introduced to mitigate the assumption
of f being approximately constant, viz., ḟ ≈ 0. In the
meantime, an LMI region of the shape enclosed by the
dashed line in Fig. 2 on the complex plane that has α = 2,
ρ = 3, and θ = 36◦ is chosen for robust FE by means
of regional pole placement. In this tutorial example, the
tracked variable of interest is the second measured output,
i.e., Sr = [0 1 0].

Table 1 summarizes the optimized quantitative H2 and/or
H∞ indexes for evaluating fault tolerant tracking capa-
bility. For the sake of space, the corresponding observer
and controller gains are omitted. It can be noted that the
optimal values ofH2 andH∞ indexes are comparable when
independently being optimized. It is thus reasonable to
assign equal weights to H2 and H∞ indexes in the mixed
joint design. On the other hand, it should be pointed
out that the current joint optimization design methods
will give rise to drastically high controller gains (and
dramatic variation in the control input implicitly), albeit
their desirable perfect fault tolerant tracking performance.
An additional constraint (e.g., control saturation) need to
be incorporated into the optimization design, but this is
beyond the scope of this paper. Instead, we resort to the
use of suboptimal joint design algorithms to exemplify
the suggested method. Table 2 lists the observer and
controller gains by the suboptimal joint design approaches
corresponding to γ2/γ∞ = 0.4.

Figure 3 shows the stepwise fault and its estimate by the
three joint design methods. It takes an approximate two
seconds to give an accurate estimate of the occurring fault.
All three joint designs can provide an acceptable perfor-
mance for the FE task. It can be noted from Fig. 3 that the
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Table 2. Gains of the suboptimal fault estimator and fault tolerant controller at γ2/γ∞ = 0.4

Method L K

H2 Joint Design

1.1678 0.8322 3.0000
2.1152 −4.2407 −4.3560
0.2814 −2.7424 −2.0237
0.8239 −4.1193 −4.9431

 [
6.2924 −12.8205 3.9500 1.7537 43.8252

]

H∞ Joint Design

1.1686 0.8314 3.0000
2.1163 −4.2445 −4.3609
0.2820 −2.7474 −2.0295
0.8254 −4.1272 −4.9526

 [
4.0650 −6.5691 3.0762 3.0871 13.7278

]

Mixed Joint Design

1.1698 0.8302 3.0000
2.1153 −4.2368 −4.3521
0.2804 −2.7415 −2.0219
0.8230 −4.1148 −4.9378

 [
33.4599 −56.7316 33.3148 8.7038 340.6045

]
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Fig. 4. Control input for the stepwise fault
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fault can be approximately fitted by the sinusoidal signal
1.34 + 1.37sin(0.19t − 1.12). The low 0.03 Hz frequency
helps explain why the FE is still working when the fault
assumption is violated. If one expects to further reduce
the time needed to estimate the fault, this can be done by
retuning α, ρ, and θ. However, this issue is not the focus
of this paper. Figure 4 shows the corresponding control
input when the stepwise fault arises. It seems that the fault
tolerant control signal uf (t) by the mixed H2/H∞ joint
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Fig. 6. Effect of synthetic error f̃(t) in FE on FTC tracking
for the H2 joint design
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Fig. 7. Effect of synthetic error f̃(t) in FE on FTC tracking
for the H∞ joint design
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Fig. 8. Effect of synthetic error f̃(t) in FE on FTC tracking
for the mixed H2/H∞ joint design

design is more preferable, since the transitional change
is slightly moderate. Meanwhile, Figure 5 delineates the
generated diagram for the tracked output. It can be seen
from Fig. 5 that under the same level of fault tolerance
(viz., γ2 = γ∞), the mixed H2/H∞ design is superior
to the single H2 or H∞ joint approach (this might be
ascribed to that the mixed design assembles the respective
advantages of the H2 and H∞ schemes), and the H2 joint
design is slightly better than the H∞ design method.
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Fig. 9. A comparison of joint design and conventional two-
stage scheme

In order to figure out the effect of FE erroneous dis-
turbance on FTC tracking performance, we introduce a
random signal f̃(t) that is distributed normally with mean

zero and variance σ2: f̃(t) ∼ N (0, σ2). In this paper, σ
is chosen as σ = 0.04. This synthetic signal is forcefully

added into f̂(t) to emulate the FE process with stochastic
error. Figure 6–8 shows the impact of synthetic FE error
on the tracked output. Compared with the corresponding
error-free cases, the H2 and mixed H2/H∞ joint methods
seem to be more robust relative to the H∞ design, since
a little error in FE can lead to the “spike” fluctuation of
the tracked output for the H∞ joint method.

For the fault tolerant control form uf (t) = u∗(t)−B∗Ef̂(t)
(Jiang et al. (2006), Zhang et al. (2010), Tabatabaeipour
and Bak (2014)), where u∗(t) represents some control law
obtained by an independent design under the ideal normal
condition and B∗ satisfies BB∗E = E, it is impossible to
achieve perfect compensation in this example since E is
not colinear with B. On the other hand, our experiments
indicate that the coefficient of f(t) in the resolved fault
tolerant controller gain will be −1 when B = E—this co-
incides with the conventional two-stage strategy: uf (t) =

u∗(t)− f̂(t) (Sami and Patton (2013)). Moreover, we nor-
mally devised a mixed H2/H∞ state feedback controller as
well, whose gain is [32.0444 −50.5600 21.6624 313.6474],
disregarding the impact of f(t). This ordinary controller,

compensated by B†Ef̂(t) where B† is the Moore-Penrose
pseudoinverse of B, is connected with the observer derived
from the joint design. Figure 9 makes a comparison be-
tween the mixed joint design and the conventional two-
stage strategy in control input and tracking output. Al-
though it appears that no significant difference in control
input is noticeable from Fig. 9, yet the mixed joint design
outperforms the two-stage design in command tracking.

5. CONCLUSION

This paper has suggested a holistic design scheme for deal-
ing with the issues of fault estimation and fault tolerant
tracking control jointly. The contribution lies in the forma-
tion of the fault tolerant robustness concept that leads to
the H2, H∞, and mixed H2/H∞ joint design LMI formu-
lations for tackling FE and FTC in a unified framework.
“Separation” principle in state feedback control weakens
the joint design recommendation to some extent, but it is
possible to generalize the joint thought to other feasible
combinations of state observers and static/dynamic con-
trollers or to nonlinear system models. Our experience in-
dicates that the proposed design is not suitable for high fre-

quency faults and more work is needed for fault modeling.
To make full use of the power of the joint design scheme,
it is necessary to incorporate parameter uncertainty and
other constraints into the proposed framework. Because of
the limitation of space, more example illustrations will be
presented in an extended paper. All these will be explored
in our future research work.
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