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Abstract: A lot of effort has been devoted to the unknown input observer (UIO) research
over the past years. However, the strong disturbance decoupling assumption (manifested as
some rank constraint) is often implicitly embedded in much of the existing UIO work. With
the purpose of state and fault estimation, this fact motivates us to investigate the viability of
the UIO research when the strong disturbance decoupling is not possible, i.e., a “degenerate”
problem of UIO decoupling exists. Inspired by the scheme of reducing the effect of external
disturbance on estimation error, this paper incorporates the relaxed UIO (RxUIO) concept by
means of the H∞, H2, and mixed H2/H∞ techniques. Necessary and sufficient conditions for the
existence of different RxUIOs are presented in the tractable linear matrix inequality (LMI) form.
Numerical experiments are presented to illustrate the effectiveness of the suggested method.

Keywords: Fault Diagnosis, Fault Estimation, Unknown Input Observer, Linear Matrix
Inequality.

1. INTRODUCTION

The increasing complexity of industrial systems greatly
push the practical need for the ability of diagnostic alert
and fault tolerance. Unknown input observers (UIOs) play
an important role in the fault diagnosis community. For
example, Odgaard and Stoustrup (2012) made use of them
to accommodate the faults of rotor and generator speed
sensors in a wind turbine. Over the past decades, a great
deal of research effort has been devoted to the UIO theory.

For instance, Chen et al. (1996) and Chen and Patton
(1999) avoided the complicated canonical form transfor-
mation by solving a group of algebraic matrix equations
to acquire UIO parameters. Later, the UIO parameters
were resolved by Amato and Mattei (2002) through H∞
performance index in the linear matrix inequality (LMI)
framework. Using the robust H∞ technique, Pertew et al.
(2005) explored the issue of synthesizing UIOs for the
nonlinear Lipschitz system. As for the nonlinear descriptor
system case, Koenig (2006) dealt with the synthesis of
UIOs based on the LMI approach. In addition, Filasová
and Krokavec (2009) investigated the UIO synthesis for
the linear discrete-time system using the LMI technique.
Moreover, Hamdi et al. (2012) designed a tractable proce-
dure to evaluate UIO parameters of PI form for the pop-
ular linear parameter varying descriptor model, whereas
Chadli and Karimi (2013) built on some extra relaxation
variables to reduce the conservatism in the UIO solution
of the T-S fuzzy model. As far as model uncertainty is
concerned, Lungu and Lungu (2014) took advantage of

eigenstructure assignment to strengthen the robustness
of UIO estimators. The aforementioned research findings
(just name a few) highly enrich our knowledge of the UIO-
based estimation theory.

However, much of the existing work on UIO research has
some sort of requirement on the ranks of system coefficient
matrices. For example, the existence of a UIO estimator
for a linear time invariant (LTI) system requires that
the rank of the multiplication of measurement coefficient
matrix and disturbance coefficient matrix equal that of the
disturbance coefficient matrix (i.e., rank(CE) = rank(E),
see explanations in Subsection 3.1). When these rank-
related conditions are not satisfied, it will be impractical to
devise a UIO estimator in terms of current strong distur-
bance decoupling principle, and a so-called degenerate UIO
decoupling problem arises. In this context, it is the rank
conservatism that motivates us to relieve the constraint
imposed by the traditional UIO technique.

This paper is organized as follows. Section 2 briefly de-
scribes the problem of interest in this paper. Then the
main results are presented in Section 3. Section 4 gives a
tutorial example to illustrate the potential of the suggested
method. Finally, Section 5 concludes this paper.

2. PROBLEM DESCRIPTION

Consider the LTI model of the form:

ẋ(t) = Ax(t) +Bu(t) + Ew(t) (1)

y(t) = Cx(t) (2)
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where x(t) ∈ Rn is the system state, u(t) ∈ Rp is the
control input, w(t) ∈ Rd is the external disturbance,
y(t) ∈ Rq is the sensor measurement, and the matrices
A, B, C, and E are of compatible dimension. Meanwhile,
a full-order UIO can be readily formulated as

q̇ = Fq +GBu+Ky (3)

x̂ = q +Hy (4)

where q(t) ∈ Rn is the observer state, x̂(t) ∈ Rn is the
state estimate, and matrices F , G, K and H are the UIO
parameters. Unlike many of UIO papers, this work does
not assume that E has full-column rank, i.e., rank(E) = d.
Our problem is how to evaluate F , G, K and H for the
system in (1)–(2) when the rank of CE is degenerate, that
is, rank(CE) < rank(E).

3. RELAXED SOLUTION TO UIO DESIGN

3.1 Traditional UIO Revisit

For the purpose of discussion convenience, estimation error
is defined as e(t) = x(t)− x̂(t). Obviously, e(t) is expected
to converge to zero as t → ∞. First of all, it is easy to
obtain from (1)–(4) that

ė(t) = [(In −HC)A−K1C]e(t)
+[(In −HC)A− F −K1C]q(t)
+(In −G−HC)Bu(t)
+{[(In −HC)A−K1C]H −K2}y(t)
+(In −HC)Ew(t),

(5)

where K1 + K2 = K and In is the n × n identity matrix.
In terms of strong disturbance decoupling principle, the
traditional UIO theory requires that F , G, K, and H fulfill

A−HCA− F −K1C = 0 (6)

In −G−HC = 0 (7)

(A−HCA−K1C)H −K2 = 0 (8)

(In −HC)E = 0. (9)

Remark 1. The key step in solving UIO parameters lies
in (9). Chen et al. (1996) revealed that there exists
a solution for H in (9) if and only if rank(CE) =
rank(E). Unfortunately, less attention is paid to devising
a UIO estimator in case of rank(CE) 6= rank(E) (or
rank(CE) < rank(E)). In this context, it is still necessary
to explore the UIO design issue under the condition that
the preceding rank-equality constraint does not hold. In
this paper, the concept of relaxed UIOs is introduced to
address the rank-degenerate UIO problem.

3.2 H∞ RxUIO Design

Definition 1. A UIO in (3)–(4) is referred to as an H∞
RxUIO if the H∞ norm ‖Twe‖∞ of the transfer matrix
between the disturbance w(t) and the estimation error e(t)
is less than some γ, where γ ∈ R+.

Theorem 1. For a given γ ∈ R+, the system in (1)–(2)
has a γ-suboptimal H∞ RxUIO if and only if there exist a
symmetric positive-definite matrix P ∈ Rn×n and matrices
Y ∈ Rn×q and V ∈ Rn×q such thatATP + PA− Ξ(Y, V ) PE − Y CE In

ETP − ETCTY T −γId 0d×n
In 0n×d −γIn

 ≺ 0 (10)

where Ξ(Y, V ) = Y CA+ATCTY T + V C + CTV T .

Proof. The above analysis of (6)–(9) implies that as long
as the value of H becomes known, it will be trivial to get
the values of F , G, and K from (6)–(8). Hence we can first
focus on the solution to H. Under those circumstances, the
model about estimation error can be adapted to

ė(t) = (A−HCA−K1C)e(t) + (E −HCE)w(t) (11)

z(t) = e(t). (12)

Since rank(CE) 6= rank(E), it is impossible to seek an H
that makes E −HCE = 0. However, we can resort to the
use of the bounded-real lemma by Boyd et al. (1994) to
reduce the effect of w(t) on e(t) using the H∞ technique.
According to this lemma, the H∞ norm ‖Twz‖∞ is less
than γ if and only if there exists a symmetric positive-
definite matrix P fulfillingPA+ATP − Ξ(PH,PK1) P (E −HCE) In

(E −HCE)TP −γId 0d×n
In 0n×d −γIn

 ≺ 0

(13)
where Ξ(M,N) = ATCTMT + MCA + NC + CTNT .
Using the variable changes of Y = PH and V = PK1

can simplify (13) to (10). So the proof is finished.

Corollary 2. The system in (1)–(2) has an optimal H∞
RxUIO if and only if the following optimization problem
is solvable:

min γ
s.t. (10), P � 0, γ > 0

(14)

where P ∈ Rn×n, Y ∈ Rn×q, and V ∈ Rn×q.

3.3 H2 RxUIO Design

Definition 2. A UIO in (3)–(4) is referred to as an H2

RxUIO if the H2 norm ‖Twe‖2 of the transfer matrix
between the disturbance w(t) and the estimation error e(t)
is less than some ρ, where ρ ∈ R+.

Theorem 3. For a given ρ ∈ R+, the system in (1)–
(2) has a ρ-suboptimal H2 RxUIO if and only if there
exist symmetric positive-definite matrices P ∈ Rn×n and
W ∈ Rd×d and matrices Y ∈ Rn×q and V ∈ Rn×q such
that

ATP + PA− Ξ(Y, V ) + In ≺ 0 (15)[
−W ETP − ETCTY T

PE − Y CE −P

]
≺ 0 (16)

trace(W ) < ρ2 (17)

where Ξ(Y, V ) = ATCTY T + Y CA+ CTV T + V C.

Proof. Following a similar procedure to that in the proof
of Theorem 1, we can readily prove the correctness of this
result using the LMI formulation for H2 theory. For the
sake of space, the details are omitted.

Corollary 4. The system in (1)–(2) has an optimal H2

RxUIO if and only if the following optimization problem
is solvable:

min ρ
s.t. (15), (16), (17)

P � 0, W � 0, ρ > 0
(18)

where P ∈ Rn×n, Y ∈ Rn×q, V ∈ Rn×q, and W ∈ Rd×d.
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3.4 Mixed H2/H∞ RxUIO Design

Definition 3. A UIO in (3)–(4) is referred to as a mixed
H2/H∞ RxUIO if the transfer matrix between the distur-
bance w(t) and the estimation error e(t) satisfies ‖Twe‖2 <
ρ and ‖Twe‖∞ < γ, where ρ ∈ R+, γ ∈ R+, and ‖ • ‖2 and
‖ • ‖∞ represent the H2 and H∞ norms, respectively.

Theorem 5. For a given pair of γ and ρ, the system in (1)–
(2) has a mixed H2/H∞ RxUIO if and only if there
exist symmetric positive-definite matrices P ∈ Rn×n,
Q ∈ Rn×n, and W ∈ Rd×d, and matrices X ∈ Rn×q,
Y ∈ Rn×q, U ∈ Rn×q, and V ∈ Rn×q such thatPA+ATP − Ξ(X,U) PE −XCE In

ETP − ETCTXT −γId 0d×n
In 0n×d −γIn

 ≺ 0(19)

ATQ+QA− Ξ(Y, V ) + In ≺ 0 (20)[
−W ETQ− ETCTY T

QE − Y CE −Q

]
≺ 0 (21)

trace(W ) < ρ2 (22)

P−1X = Q−1Y (23)

P−1U = Q−1V. (24)

where Ξ(M,N) = MCA+ATCTMT +NC + CTNT .

Proof. It is trivial to reach this result through integrating
the proofs of Theorems 1 and 3.

Remark 2. It is worth noting that the last two constraints
in Theorem 5 (P−1X = Q−1Y and P−1U = Q−1V ) are
not convex on P , Q, Y , and V , because of inclusion of
the inverses of P and Q. In general, it is also challenging
to directly solve (19)–(24). One commonly used approach
is to introduce an extra constraint of P = Q, which can
smoothly eliminate the last two nonconvex constraints in
(23)–(24) at the expense of some conservatism.

Corollary 6. For a given pair of γ and ρ, if there exist
symmetric positive-definite matrices P ∈ Rn×n and W ∈
Rd×d and matrices Y ∈ Rn×q and V ∈ Rn×q such that
(10) and (15)–(17) hold, then the system in (1)–(2) has a
mixed H2/H∞ RxUIO.

Remark 3. Like the optimization scheme adopted in Corol-
lary 2 and 4, it is equally possible to incorporate a convex
objective function h(γ, ρ) of γ and ρ into Corollary 6.

Corollary 7. A sub-optimized mixed H2/H∞ RxUIO ex-
ists for the system in (1)–(2) when the convex optimization
problem is solvable:

min h(γ, ρ)
s.t. (10), (15), (16), (17)

P � 0, W � 0, γ > 0, ρ > 0
(25)

where h(γ, ρ) is a convex function on γ and ρ.

Remark 4. For the convenience of LMI evaluation, we can
change the upper bound of the trace of W from ρ2 to λ
in Corollary 4 and 7, but this will not have a significant
impact on estimation accuracy from the computational
perspective. Meanwhile, it should also be pointed out that
the final value of ‖Twe‖2 in Corollary 4 and 7 should be

taken as the square root of the optimized λ, i.e.,
√
λ.

Remark 5. Although numerical solutions to the feasibility
problems in Theorem 1 and 3 might exhibit some vari-
ety for different initial conditions or distinct off-the-shelf

software, the objective of the feasible LMI formulation
of RxUIO is to pave the way for an optimization design
process, e.g., Corollary 2, 4, and 7. Analyzing the effect
of variation in the solution to the feasibility problem in
Theorem 1 or 3 and seeking a multiobjective optimized
design are beyond the scope of this paper.

4. ILLUSTRATIVE EXAMPLE

4.1 Experimental Setup

To validate the effectiveness of the proposed method,
consider the following tutorial model parameters:

A =

[−2 −2 0
−1 −1 −2
2 −2 2

]
C =

[
1 0 2
2 1 4

]
B = [−2 −2 −1]

T
E = [−2 0 1]

T
.

According to Chen and Patton (1999), it is impossible to
design a conventional UIO for this illustrative model be-
cause of the degenerate rank condition: rank(CE) = 0 <
rank(E) = 1. However, it is possible to take advantage of
the RxUIO technique to restrain the influence of external
disturbance on the estimation error to the maximum ex-
tent, for example in observer design. In order to give a fair
evaluation, this paper only presents simulation results of
the optimized RxUIOs and merely considers the regulation
problem. As far as the mixed H2/H∞ RxUIO design is
concerned, an intuitive choice of h(γ, ρ) is h(γ, ρ) = αγ2 +
(1 − α)ρ2, where α ∈ [0, 1]. In this paper, α is simply
chosen as 0.5 (see Subsection 4.3). During the numerical
simulation, white noise with mean 0 and variance 0.02 is
used to serve as external disturbance w(t). For the sake of
space, we merely focus on one actuator fault. Under this
condition, the faulty system model is of the form:

ẋ(t) = Ax(t) +B(u(t) + f(t)) + Ew(t) (26)

y(t) = Cx(t). (27)

It is assumed that f(t) is slowly varying (i.e., ḟ ≈ 0).
To accomplish this degenerate state and fault estimation,
we can directly apply the RxUIO method to the following
augmented model system

ẋg(t) = Agxg(t) +Bgu(t) + Egw(t) (28)

y(t) = Cgxg(t). (29)

where xg(t) =

[
x(t)
f(t)

]
, Ag =

[
A B

0p×n 0p×p

]
, Bg =

[
B

0p×p

]
,

Cg = [C 0q×p], and Eg =

[
E

0p×d

]
. At the same time, a

multi-stepwise fault f(t) is added into the system process
operation over all the experiments to relieve the assump-
tion on the constancy of f(t).

4.2 Simulation Results

Figure 1 shows the multi-stepwise fault used in this pa-
per. It can be seen from Fig. 1 that this fault exhibits
a time-varying feature and hence weakens the preceding
assumption of ḟ = 0, to some extent. Table 1–3 list
the computed RxUIO parameters by the optimized H∞,
H2, and mixed H2/H∞ techniques, respectively. A com-
parison can be made between the corresponding RxUIO
parameters. Compared with the H2 and mixed H2/H∞
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Fig. 1. A multi-stepwise fault signal f(t) and its corre-
sponding control input u(t)
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Fig. 2. H∞ RxUIO for state estimation under the fault-free
condition
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Fig. 3. H2 RxUIO for state estimation under the fault-free
condition
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Fig. 4. Mixed H2/H∞ RxUIO for state estimation under
the fault-free condition

RxUIO, the H∞ RxUIO has much larger magnitude of
parameters, particularly for the terms G, K, and H. This
might attribute to the “notorious” high gain characteristic
of the optimal H∞ technique.

Figures 2–4 depict the performance of state estimation
under the fault-free condition. We can find out from
Figs. 2–4 that all the proposed RxUIOs can achieve a
perfect estimation of the second component x2 of x, but
the random white noise has some moderate impact on the
x1 and x3’s estimates. For the fault-free case, it is not easy
to differentiate which RxUIO has the best performance in
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Fig. 5. H∞ RxUIO for state and fault estimation

0 50 100 150
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time (s)

 

 

estimate of x
1

x
1

0 50 100 150
−0.5

0

0.5

1

1.5

2

2.5

3

Time (s)

 

 

estimate of x
2

x
2

0 50 100 150
−0.5

0

0.5

1

1.5

Time (s)

 

 

estimate of x
3

x
3

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

4

Time (s)

 

 

estimate of f
f

Fig. 6. H2 RxUIO for state and fault estimation

terms of estimation accuracy. In this context, we continue
to conduct the actuator fault experiment.

Figures 5–7 delineate both state and fault estimation when
a stepwise fault arises in the actuator. It can be noted
that both the white noise and the actuator fault lead to
a noticeable inaccuracy in the estimate of x1, but the
estimation for x2, x3, and f is at an acceptable level. The
nonstepwise profile of x1 in Figs. 5–7 should be ascribed
to the uncontrollability of x1 in the augmented model.
Figure 8 illustrates the location of poles of the three
evaluated RxUIOs. The estimated faults by the H∞, H2,
and mixed H2/H∞ RxUIOs are collectively compared in
Fig. 9. The quantitative indices for measuring disturbance
suppression are shown in Fig. 10, where γ∞ for the
H∞ RxUIO, γ2 for the H2 RxUIO, γm∞ for the H∞
component of the mixed H2/H∞ RxUIO, and γm2 for the
H2 component of the mixed H2/H∞ RxUIO. Surprisingly,
we can notice that the collectively optimized γm∞ and γm2

components in the mixed H2/H∞ RxUIO are comparable
with the corresponding separately minimized γ∞ and γ2
in the H∞ and H2 RxUIOs. A careful examination of
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Table 1. Parameters of the optimized H∞ RxUIO

F G K H−1.6359 17.7098 0.7282 0.9893
0.3472 1.9540 0.6943 1534.6
0.5499 −12.2393 −0.9001 −14.5366
0.2187 1534.5 0.4373 −3.1280

  5.1621 −9.8190 8.3243 0
−336.0957 −95.1033 −672.1915 0
0.5529 5.6624 2.1059 0

−14.4011 30.3662 −28.8022 1

  2756.9 1616.9
110780 −44303
−2881.7 −723.0573
−224280 −145790

 −23.8001 9.8190
143.8892 96.1033
10.7719 −5.6624
75.1334 −30.3662


Table 2. Parameters of the optimized H2 RxUIO

F G K H−1.7881 −0.9894 0.4238 −0.5599
0.9893 −0.9593 1.9785 −1.6849
0.4237 −1.9788 −1.1527 −1.1197
0.5598 1.6850 1.1195 −0.9407

  0.7273 −0.1747 −0.5454 0
−0.0639 0.9703 −0.1278 0
−0.0030 0.0659 0.9939 0
0.1985 0.0734 0.3969 1.0000

 −1.9644 0.4717
−2.5586 0.5100
1.5032 0.1045
5.8262 −2.8060

 −0.0767 0.1747
0.0044 0.0297
0.1349 −0.0659
−0.0516 −0.0734


Table 3. Parameters of the optimized mixed H2/H∞ RxUIO

F G K H−1.6748 −1.1767 0.6504 −0.7121
1.1745 −0.9615 2.3490 −3.9215
0.6504 −2.3534 −0.6992 −1.4241
0.7103 3.9222 1.4205 −0.3731

  0.7917 −0.2273 −0.4166 0
−0.2086 2.3779 −0.4171 0
0.0523 0.1075 1.1045 0
−0.5557 1.2979 −1.1113 1.0000

  −7.0360 2.7487
−18.7544 6.2637
−10.2561 5.2463
11.1600 −6.7975

 −0.2463 0.2273
2.9643 −1.3779
0.1628 −0.1075
3.1514 −1.2979


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Fig. 7. Mixed H2/H∞ RxUIO for state and fault estima-
tion
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Fig. 8. The location of poles of the three RxUIOs

Figs. 5–9 reveals that the H2 RxUIO is relatively superior
to the other two RxUIOs, particularly from the perspective
of fault estimation (with the purpose of fault tolerant
control). Moreover, the mixed RxUIO is just slightly better

Fig. 9. A comparison of the estimated stepwise fault

than the H∞ RxUIO. At this moment, the mixed H2/H∞
RxUIO does not bring any notable advantage over the
single H2 RxUIO.

4.3 Discussion

In the preceding experiments, the mixed H2/H∞ RxUIO
laid an equal emphasis on ‖Twe‖∞ and ‖Twe‖2 (α = 0.5).
A natural question arises of what effect the weight α has
upon fault estimation in the mixed RxUIO. Figure 11
illustrates the effect of different α’s (small, medium, and
large) on fault estimation and zooms in the estimation
dynamics. It is easy to see from Fig. 11 that the choice
of α = 0.5 corresponds to the best performance from
the viewpoint of estimation transient. Hence α = 0.5 is
an appropriate value. Figure 12 exemplifies the relation
between γm2 and γm∞ with an ascending α. The claim
on α = 0.5 can also be empirically justified from Fig. 12.
Simulation experience indicates that a good starting point
for the value of α in mixed RxUIO can be selected from the
interval [0.4, 0.6]. The RxUIO idea here is also extensible
to the popular linear parameter varying model case.
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Fig. 11. Effect of α on stepwise fault estimation
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5. CONCLUSION

This paper has proposed the RxUIO concept to deal with
the case when the conventional UIO is impractical due
to the strict rank limitation. The suggested method is
still applicable when the strong disturbance decoupling is
infeasible. The application of this given work to the issue of
(rank) degenerate state and fault estimation validates the
encouraging potential of the proposed method. Our future
work will take into account the pole location constraints
associated with estimation transients and make a compar-
ison with Luenberger-type observers under deterministic
disturbance.
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