Output feedback sliding mode FTC for a class of nonlinear inter-connected systems

Zheng Huang and Ron J Patton *

School of Engineering, University of Hull,

cottingham Road, Hull HU6 7RX, UK * r.j.patton@hull.ac.uk

Abstract: This paper is concerned with the challenge of developing a fault-tolerant control (FTC) scheme for an inter-connected decentralised system in which the individual subsystems are linear but the inter-connections are non-linear functions of the subsystem states and controls. It is assumed that the subsystems are disturbed by matched faults. The purpose of the decentralised control is to de-couple the subsystems with global and local control objectives as well as de-coupling the effects of uncertainties and faults. The paper describes the LMI-based sliding mode control (SMC) design, including Lemmas and proofs were appropriate and the main properties of the design approach, control objectives, stability, fault-tolerance and robustness are outlined. Results are given to illustrate the properties of the control design, meeting the desired objectives of stability, local and global control performance, subsystem de-coupling and fault-tolerance for a 3 electrical machine inter-connected system with non-linear inter-connections that are functions of machine rotor angle deviations.

Keywords: Sliding mode control; Decentralized control; Inter-connected systems; Fault-tolerant control; Static output feedback

1. INTRODUCTION

The design of decentralized control of interconnected systems has received considerable attention due to the need for increased reliability as well economic and information constraints (Bakule, 2008). Interest is in decentralized control using only local information at subsystem levels, containing much simpler architecture than centralized control. Some studies consider decentralized control in the presence of uncertainties (Šiljak & Stipanovic, 2000).

In most real systems state variables are not available or are costly to measure and output feedback control methods are required. For decentralized control very few output feedback strategies have been proposed. Some examples are based on decentralized observer based control (Zhu & Pagilla, 2007). However, the design of decentralized observer-based feedback for nonlinear interconnected system is challenging since the Separation Principle is usually not applicable to systems influenced by uncertainties and/or faults. Static output feedback control is an alternative way to deal with this problem. For example (Cao et al, 1998) proposed an ILM1 method to stabilize linear interconnected system without uncertainties. (Zečević & Šiljak, 2004) proposed an LMI method to deal with the nonlinear interaction. (Yan et al, 2004) show how a decentralized system can be designed and stabilized using SMC with rejection of matched disturbance. The main contribution of this paper is the development of a decentralized static output feedback SMC for interconnected systems with nonlinear interconnection, making use of Lyapunov stability parameterized in terms of LMI constraints solved efficiently by convex optimization tools. The interaction terms are assumed to satisfy quadratic constraints as proposed by (Šiljak & Stipanovic, 2000) to not only restrict the effects of the interconnection nonlinearities but also limit the effects of subsystem uncertainties.

The method proposed uses a simple LMI approach to calculate the linear control which will not only stabilize the aggregate system states of but also simultaneously maximize the interconnection bounds. Then by pre-structuring a symmetric positive definite (s.p.d.) matrix, an SMC is constructed. In the general case matched uncertainty (disturbance) or faults are rejected using the SMC. For simplicity here matched subsystem faults are considered (without the effect of disturbance). It is shown that the SMC algorithm shows good compatibility to combine with other static output feedback design methods.

The design problem is formulated in Section 2. Section 3 introduces the new static output feedback
control method is introduced. In Section 4, an efficient SMC algorithm is developed and discussed. Section 5 outlines a design example of 3 inter-connected electrical machines with nonlinear fault vector. \(h(x,t) = [h_1^T(x,t), ..., h_N^T(x,t)]^T \) are the nonlinear interconnection functions. The aggregate system state vector is:

\[
x(t) = [x_1^T(t) \ldots x_N^T(t)]^T \in \mathbb{R}^n, n = n_1 + \ldots + n_N
\]

The aggregate system control vector is \(u = [u_1^T(t) \ldots u_N^T(t)]^T \in \mathbb{R}^m, m = m_1 + \ldots + m_N \).

If matrices \(K \) and \(P \) can be found satisfying:

\[
B = \text{diag}(B_1, ..., B_N), \quad C = \text{diag}(C_1, ..., C_N).
\]

\[
f(t) = [f_1^T(t), ..., f_N^T(t)]^T \text{ is the overall system fault vector.}
\]

\[
h(x, t) = [h_1^T(x, t), ..., h_N^T(x, t)]^T
\]

The aggregate system output vector is:

\[
y(t) = [y_1^T(t) \ldots y_N^T(t)]^T \in \mathbb{R}^p, p = p_1 + \ldots + p_N.
\]

Assume that \(h(x, t) \) is bounded as follows:

\[
h^T(x, t)h(x, t) \leq x^T \sum_{i=1}^N \alpha_i^2 H_i^T H_i x
\]

The aim is to design a control law to reject matched subsystem faults, giving good FTC performance via SMC design with controls \(u_i = u_{i,0} + u_{i,1} \), \(u_{i,0} = K_i y_i = K_i C_i x_i \) are the linear continuous controls. \(u_{i,1} \) are the discontinuous SMC designed to reject the faults and matched uncertainties. Sections 3 and 4 introduce the design methods.

3. STATIC OUTPUT FEEDBACK DESIGN

According to SMC theory, the switching control can reject the matched disturbance completely. Thus, in the static output feedback design procedure, stabilization of the system without matched disturbance is the main problem. Here a novel LMI static output feedback design is given.

A Lyapunov function for (4) without \(f(t) \) is:

\[
V(x(t)) = x^T P x
\]

where \(P \) is an s.p.d. matrix. The main static output feedback design challenge was pointed out by (Benton & Smith, 1998). Considering the derivative of (6) along the system trajectory, gives:

\[
\dot{V}(x) = x^T (PA + A^T P + PBKC + C^T K^T B^T P)x + x^T P h + h^T P x
\]

To obtain a quadratic form, use the following result:

\[
X^T Y + Y^T X \leq X^T X + Y^T Y
\]

It follows that:

\[
x^T P h + h^T P x \leq x^T P P x + h^T h = x^T (P P + H^T H)x
\]

Then it gives:

\[
\dot{V}(x) \leq x^T (PA + A^T P + PBKC + C^T K^T B^T + P P + H^T H)x
\]

If matrices \(K \) and \(P \) can be found satisfying:
\[PA + \hat{A}P + PP + H'PH + PBKC + C^TK'B^TP < 0 \] (10)

Or equivalently finding matrices \(K, X \) satisfying (Boyd, 1993):

\[AX + XA^T + BKX + XC^T + B^TP + I + XI^THX < 0 \] (11)

Inequalities (10) & (11) are not convex for \(P \) and \(K \) and are coupled since \(X = P^{-1} \); they are impossible to solve using conventional LMIs, a main obstacle in static output feedback design. The method removes the need to consider coupled inequalities.

\((A_i, B_i) \) are controllable, hence consider the state feedback \(u_{sf} = K_0x \) which can stabilize the overall system with \((A + BK_0)\) stable. Hence (9) becomes:

\[
\dot{V}(x) = x^T \begin{bmatrix} P(A + BK_0 - BK_0 + BKC) + (A + BK_0 - BK_0 + BKC)Y \end{bmatrix} x + x^TPh + h^TPx \leq \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} (KC - K_0) \end{bmatrix} \begin{bmatrix} x \end{bmatrix}^T
\]

(12)

where \(\beta_0 = (A + BK_0)^T + (A + BK_0)^TP \).

Define \(S = KC - K_0 \), and consider:

\[
x^T[I \ S] \begin{bmatrix} 0 \\ I \end{bmatrix} G[S - I][I \ S] x = 0
\]

A \(G \in \mathbb{R}^{m \times m} \) also exists satisfying (12) due to \([S - I][I \ S]^T = 0 \). Thus, adding the LHS of (12) and its transpose to (11):

\[
\dot{V}(x) = \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} \beta_0 + PP + H^TH \quad PB + S^TG \end{bmatrix} \begin{bmatrix} x \\ B^TP + GS \end{bmatrix} \leq 0
\]

(14)

Thus, by computing \(P, G, K \) satisfying:

\[
\begin{bmatrix} \beta_0 + PP + H^TH \quad PB + S^TG \end{bmatrix} < 0
\]

(15)

The no fault aggregate system is Lyapunov stable.

(15) is not convex, and hence the Schur Complement Lemma with (5) gives new LMIs:

Minimize \(\sum_{i=1}^{N} y_i \) subject to \(P = diag(P_i) > 0 \), \(L = diag(L_i), G = diag(G_i), i = 1, \ldots, N \):

\[
\begin{bmatrix} \beta_0 & PB - K_0G + C^TL & P & H_1^T & \ldots & H_N^T \\ B^TP + L - G\Sigma & 0 & 0 & \ldots & 0 \\ 0 & -I & 0 & \ldots & 0 \\ H_1 & 0 & -I & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ H_N & 0 & 0 & \ldots & -\gamma_N \end{bmatrix} < 0
\]

(16)

where; \(L = GK \). If the LMIs (16) are feasible, the output feedback gain \(K \) can be obtained by:

\[
K = G^{-1}L
\]

(16) is equivalent to the following two inequalities:

\[
x^T\beta_0 x + x^TPh + h^TPx < 0
\]

(17)

\[
x^T\beta_0 x + x^TPh + h^TPx < 0
\]

(18)

where \(\beta_C = (A + BK_0) + (A + BK_0)^TP \).

To prove this use the “Elimination Lemma”:

Lemma 1 (Gahinet and Apkarian, 1994) Given a symmetric matrix \(\Psi \in \mathbb{R}^{m \times m} \), and \(\Gamma, W \) of column dimension \(m \), consider the problem of finding a \(\Theta \) of compatible dimension such that:

\[
\Psi + \Gamma^T\Theta W + W^T\Theta \Gamma < 0
\]

(19)

The columns of \(\tilde{\Phi} \) and \(\tilde{\Psi} \) form bases of the null spaces of \(\Gamma \& W \), then (19) is solvable for \(\Theta \) iff:

\[
\tilde{\Phi}^T\Psi \tilde{\Phi} < 0 \quad \text{and} \quad \tilde{\Psi}^T\Psi \tilde{\Psi} < 0
\]

(20)

Lemma 2 For (4), the following are equivalent:

1. There exists an s.p.d block diagonal matrix \(P = diag(P_1, \ldots, P_N), P_i \in \mathbb{R}^{n_i \times n_i} \), a non-singular block diagonal matrix \(G = diag(G_1, \ldots, G_N), G_i \in \mathbb{R}^{n_i \times n_i} \), a state feedback gain matrix \(K_0 \in \mathbb{R}^{m \times n_i} \) and an output feedback gain matrix \(K = diag(K_1, \ldots, K_N), K_i \in \mathbb{R}^{m \times n_{ti}} \), hence:

\[
\beta_0 + PP + H^TH < 0
\]

(21)

\[
\beta_C + PP + H^TH < 0
\]

(22)

Proof Define: \(\Psi = \begin{bmatrix} \beta_0 + PP + H^TH & PB \end{bmatrix} \begin{bmatrix} 0 \\ B^TP \end{bmatrix} \quad \text{where} \quad P, K_0 \) follow the Lemma description. Since:

\[
\begin{bmatrix} 0 \\ I \end{bmatrix} \begin{bmatrix} \Psi \end{bmatrix} \leq 0
\]

\[
\begin{bmatrix} \Psi + \begin{bmatrix} 0 \\ I \end{bmatrix} \begin{bmatrix} S \end{bmatrix} - \begin{bmatrix} S \end{bmatrix} \end{bmatrix} \begin{bmatrix} 0 \\ I \end{bmatrix} \begin{bmatrix} \Psi \end{bmatrix} \end{bmatrix}
\]

(23)

using the Elimination Lemma:
is solvable for G if and only if:

$$[I \ 0] [\begin{bmatrix} I \ 0 \end{bmatrix} = \beta_0 + PP + H^T H < 0$$

$$[I \ S^T] [\begin{bmatrix} I \ S \end{bmatrix} = \beta_\epsilon + PP + H^T H < 0$$

A G satisfying (13) is freely available, hence the solvability of (15) is equivalent to the solvability of (21) & (22)

The choice of $K_0 = -B^THP_0$ can be obtained by solving the following ARE problem:

$$A^TP_0 + P_0A - P_0BB^THP_0 = -\varepsilon I$$

where $\varepsilon > 0$ is arbitrarily small.

Assume K_0 a freely adjustable design parameter by adjusting ε in (24). A small ε leads to a large y_i if the LMI problem (16) is feasible. Other methods could also be used to design K_0. There may be a stabilizing K_0 for which (16) is infeasible with large y_i (Benton & Smith, 1998). The existence of an admissible K_0 is still an open problem.

The proposed method establishes a relation between state feedback and static output controls, i.e. finding an s.p.d. matrix P such that inequalities (21) & (22) hold simultaneously. The LMI feasibility problem (16) depends on the stabilizing gain K_0.

4. SLIDING MODE CONTROL DESIGN

The above method focuses on the decentralized system without matched faults. However, the SMC switching will reject the matched fault and hence the linear control is used to stabilize the system considering zero faults. Here the SMC system is described and the stability of the system with faults is proved. The sliding surface must be designed as a function of y (i.e. Cx) and not x, as follows:

$$\sigma = \begin{bmatrix} \sigma_1^T \ldots \sigma_N^T \end{bmatrix} = \text{diag}(F_1, \ldots, F_N) \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}$$

$F = \text{diag}(F_1, \ldots, F_N)$ is an $m \times p$ block diagonal matrix such that $F_iC_iB_i$, $i = 1, \ldots, N$ are nonsingular and the reduced $(n - m)$ th-order equivalent system dynamics restricted to:

$$Vy = FCx = 0$$, are asymptotically stable.

To form an SMC, use the well-known equation $B^TP = FC$ (Walcott & Zak, 1987), where F is used to design the sliding surface $\sigma(t) = Fy(t)$. The sliding surface for each subsystem is designed by:

$$\sigma_i(t) = F_iy_i(t)$$

Pre-defining the structure of $P_i = B_iW_{1i}B_i^T + C_i^TW_{2i}C_i$ of the LMI (16), where B_i is the orthogonal complement of the B_i, the F_i can be obtained as $F = B_i^TC_i^TW_{2i}$. Hence,

$$P = \text{diag}(P_i) = B_iW_{1i}B_i^T + C_i^TW_{2i}C_i$$, both W_1 & W_2 are block diagonal matrices.

Theorem 4.1. For the overall system in the form of (4), obtain W_{1i}, W_{2i}, K_i by solving (16) and design sliding surface $\sigma_i(t) = F_iy_i(t) = B_i^TC_i^TW_{2i}y_i(t)$ using the decentralized control law:

$$u_i = \begin{bmatrix} K_iy_i - \rho_i \frac{\sigma_i}{\|\sigma_i\|} & \sigma_i \neq 0 \\ K_iy_i, & \sigma_i = 0 \end{bmatrix}$$

The aggregate system is insensitive to matched uncertainty/faults and is quadratically stable.

Proof: It is easy to show that

$$\dot{\sigma}(t) = FCx(t) + FCAx(t) + FCBu(t) + f(t)$$

It is required to prove that in the sliding surface, the system is stable and insensitive to the matched faults with $\sigma = 0$ and $\dot{\sigma} = 0$.

Define the Lyapunov function:

$$V(x) = \sum_{i=1}^{N} x_i^TF_ix$$

The time derivative of (29) is given by:

$$\dot{V}(x) = x^T(PA + A^TP + PBKC + C^TK^TP + PP + H^T H)x + \sum_{i=1}^{N} 2x_i^TP_iB_i f_i - 2x_i^TP_iB_i\sigma_i \frac{\sigma_i}{\|\sigma_i\|}$$

$$\leq x^T\Sigma x + 2\sum_{i=1}^{N} x_i^TC_i^TF_i \left(\|f_i\| - \rho_i \frac{\sigma_i}{\|\sigma_i\|} \right)$$

$$\leq x^T\Sigma x + 2\sum_{i=1}^{N} \|\sigma_i\|\left(\|f_i\| - \rho_i \right)$$

Since $\Sigma < 0$ is already proved by LMI of step 5), if $\rho_i > \|f_i\|, i = 1, \ldots, N$ it can be claimed that the system is quadratically stable as $V(x) < 0$. In this case, ρ_i can be chosen as $\rho_i = \eta_i\|u\| + \varphi_i(y, t) + \eta_f, i = 1, \ldots, N$ where $\eta_i, i = 1, \ldots, N$ are positive constants chosen by the designer.

With appropriate $\rho_i > \|f_i\|$, the sliding reachability follows from the Lyapunov functions:

$$V(x) = \frac{1}{2} \sum_{i=1}^{N} \|\sigma_i((FCB_i)^{-1}\sigma_i)$$

$$F_iC_iB_i = B_i^TP_iB_i$$ satisfies the s.p.d constraint.

Hence, the time derivative of (30) is:

$$\dot{V} = \sigma_i^T((FCB_i)^{-1}FC) (A_i + B_iK_iC_i)x_i + b_i + f_i - \rho_i \frac{\sigma_i}{\|\sigma_i\|}$$

$$\leq \|\sigma_i((FCB_i)^{-1}FC) (A_i + B_iK_iC_i)x_i + b_i + f_i\| - \rho_i$$

$$\leq \frac{1}{2} \sum_{i=1}^{N} \|\sigma_i((FCB_i)^{-1}FC) (A_i + B_iK_iC_i)x_i + b_i + f_i\| - \rho_i$$

1143
Using $\rho_i = \|u\| + \varphi_i(y, t) + \eta_i, i = 1, ..., N$, can be rewritten as:

$$
\dot{V} \leq \sum_{i=1}^{N} [\sigma_i(F_i B_i)^T F_i C_i [(A + B_i K_i) x_i + h_i] - \eta_i] \tag{33}
$$

Let $0 < \eta_i < \eta_i$. Following closed-loop subsystem stability, sliding domains are reached according to:

$$
\Omega = \left\{ x_i : [(F_i B_i)^T F_i C_i [(A + B_i K_i) x_i + h_i] < \eta_i - \eta_i \right\}, \tag{34}
\right.

\dot{V} \leq \sum_{i=1}^{N} (\eta_i - \eta_i) \text{ implies that all sliding surfaces } \sigma_i = 0 \text{ can be reached in finite time, remaining there subsequently.}

The SMC is designed to reject matched faults. It does not influence the static output gain K design procedure, this is an attractive alternative to the state feedback “Integral sliding mode control” (ISMС) (Utkin and Shi, 1996), eliminating the reaching phase whilst not affecting the state feedback design procedure (Castaños and Fridman, 2006). The only study about output feedback ISMC requires several sliding surfaces in a step by step estimation strategy (Bajaranò et al., 2007). The proposed method provides a simple computational way to reject matched faults within the local and aggregate systems, without requiring that the reachability phase be removed. A suitable decentralised system output feedback algorithm is:

1. Solve the Algebraic Riccati equation:

$$
A^T P_0 + P_0 A - P_0 B B^T P_0 = -\varepsilon I \quad \text{where } \varepsilon > 0 \text{ is arbitrarily small.}
$$

2. Set $K_0 = -B^T P_0$ and matrix structures:

$$
P = \text{diag}(P_i), P_i = B_i W_1 B_i^T + C_i^T W_2 C_i \in \mathbb{R}^{n_i \times n_i} \text{ non-singular matrix}
$$

$$
G = \text{diag}(G_i, ..., G_N), G_i \in \mathbb{R}^{m_i \times m_i} \text{ and}
$$

$$
K = \text{diag}(K_i, ..., K_N), K_i \in \mathbb{R}^{m_i \times P_i}. \text{Compute } G, L, W_2 \text{ by solving the LMI problem:}
$$

Minimize $\sum_{i=1}^{N} Y_i$ subject to $P > 0$ together with (16)

3. Design the static output feedback matrix $K_i = G_i^{-1} L_i$ and sliding surface function $\sigma_i(t) = F_i y_i(t) = B_i^T C_i^T W_2 y_i(t)$. Step 1 determines a stabilising state feedback by suitable choice of ε. Step 2 calculates the static output feedback and sliding surface gains K_i and F_i, and maximum subsystem uncertainty gains y_i.

5. POWER SYSTEM NONLINEAR MODEL

The multi-machine power system has been widely used to illustrate the decentralized methods (Guo et al., 2000; Siljak et al., 2002; Tlili and Braiek, 2009, etc). System interactions are nonlinear, with interesting challenges for decentralised FTC. A 3-machine example power system with steam valve control has 3 interconnected subsystems as:

Let $x_i = [\delta_i(t) \omega_i(t) \Delta P_m(t) \Delta X_{ei}(t)]^T$ denote the state vector of a machine (Tlili and Braiek, 2009). The i-th machine dynamics, $i = 1, ..., 3$, can be represented by (1), where:

$$
h_i(x, t) = \sum_{j=1, i \neq j}^{N} p_{ij} G_{ij} g_{ij}(x_i, x_j) \text{ is a nonlinear function characterizing the interactions. The system parameters are given as:}
$$

$$
A_1 = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -2.86 \\
0 & 0 & 0 & -10.0
\end{bmatrix},
$$

$$
A_2 = A_3 = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -2.86 \\
0 & 0 & 0 & -10.0
\end{bmatrix},
$$

$$
B_1 = B_2 = B_3 = \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix},
$$

$$
C_i = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & G_{ij} & a_{ij} & 0 \\
0 & 0 & 0 & 10.0
\end{bmatrix}, i, j = 1, 2, 3
$$

$$
g_{ij}(x_i, x_j) = \sin(\delta_i(t) - \delta_j(t)) - \sin(\delta_i(t) - \delta_j(t))
$$

$$
p_{ij} = 1, \quad i, j = 1, 2, 3, i \neq j
$$

$$
\alpha_{11} = \alpha_{22} = \alpha_{33} = 0; \quad \alpha_{12} = \alpha_{13} = 27.49;
$$

$$
\alpha_{21} = \alpha_{23} = 23.1
$$

For the i-th machine the physical variables are defined as $\Delta \delta_i(t) = \delta_i(t) - \delta_i0$; $\Delta P_m(t) = P_m(t) - P_{m0}$; $\Delta X_{ei}(t) = X_{ei}(t) - X_{e0}$; $\delta_i(t)$ is the rotor angle (radians); $\omega_i(t)$ is the relative speed; $P_m(t)$ is the mechanical power in pu; $X_{ei}(t)$ is the steam valve position pu; $\delta_i0, P_{m0}, X_{e0}$ are nominal values of $\delta_i(t), P_m(t), X_{ei}(t)$. All the parameters are given in (Guo, Hill and Wang, 2000).

The algorithm in Section 4 is used with the choice of $\varepsilon = -0.01$ to derive the static output and sliding surface gains K_f, F_f (excluded for brevity).

Figure 1 shows the subsystem 1 state responses when a matched step fault of magnitude 0.5 occurs in this subsystem at $t = 1.5s$. The 4 output feedback state responses without sliding mode shows that subsystem 1 (hence subsystems 2 and 3) is/are affected significantly by the interconnections.
REFERENCES

