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Abstract 12 

Storm tide (combination of storm surge and the astronomical tide) flooding is a natural hazard with significant 13 

global social and economic consequences. For this reason, government agencies and stakeholders need storm tide 14 

flood maps to determine population and infrastructure at risk to present and future levels of inundation. Computer 15 

models of varying complexity are able to produce regional scale storm tide flood maps and current model types are 16 

either static or dynamic in their implementation. Static models of storm tide utilize storm tide heights to inundate 17 

locations hydrologically connected to the coast, whilst dynamic models simulate physical processes that cause 18 

flooding. Static models have been used in regional scale storm tide flood impact assessments but model limitations 19 

and coarse spatial resolutions contribute to uncertain impact estimates. Dynamic models are better at estimating 20 

flooding and impact but are computationally expensive. In this study we have developed a dynamic reduced-21 

complexity model of storm tide flooding that is computationally efficient and is applied at hyper-resolutions (< 100 22 

m cell size) over regional scales. We test the performance of this dynamic reduced-complexity model and a separate 23 

static model at three test sites where storm tide observational data is available. Additionally, we perform a flood 24 

impact assessment at each site using the dynamic reduced-complexity and static model outputs. Our results show 25 

that static models can overestimate observed flood areas up to 204% and estimate more than twice the number of 26 
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people, infrastructure, and agricultural land affected by flooding. Overall we find that that a reduced-complexity 27 

dynamic model of storm tide provides more conservative estimates of coastal flooding and impact. 28 

 29 
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 31 

1  Introduction 32 

Globally, storm tide flooding in the past 200 years has claimed the lives of approximately 2.6 million people 33 

(Nicholls 2003) and monetary damages from recent storm tide driven floods have repeatedly exceeded $1 billion 34 

(Smith and Katz 2013). Storm tide flooding can also be the primary cause of death during a cyclone or hurricane. 35 

For example, throughout the United States Atlantic coast 50% of the fatalities related to tropical cyclones were 36 

directly caused by storm tide flooding (Rappaport 2014). The combination of projected cyclone intensity and 37 

frequency (Emanuel 2013; Grinsted et al 2013) with sea level rise (Stocker et al 2013) and expected population 38 

expansion along low lying coastal areas (Curtis and Schneider 2011) will expose more people and infrastructure to 39 

storm tide flooding. Particularly vulnerable are coastal regions that are inhabited by low income residents that have 40 

limited resources to cope and adapt with extreme flood events (McGranahan et al 2007). A first step towards 41 

strengthening resilience in coastal communities requires a robust method for mapping potential regional scale storm 42 

tide impact. Regional scale (100-200 km of coastline, 50-100 km inland) impact analysis at hyper-resolution (< 100 43 

m cell size) is needed to provide a synoptic view of population and infrastructure at risk. This information can be 44 

used to pinpoint vulnerable locations that require more detailed analysis and local scale efforts (e.g., flood defence 45 

structures) to mitigate loses from storm tide flooding. 46 

 47 

Key to all storm tide impact analyses is an accurate delineation of storm tide flooding and water depths at flooded 48 

locations. Over the past 25 years computer models have offered the possibility to map storm tide flooding at regional 49 

scale using models with varying amounts of physical rigour, complexity, and computational efficiency. The simplest 50 

method to map storm tide flooding uses a static model, also called the bathtub model. A static storm tide flood 51 

model determines flooded locations as those hydraulically connected to the coast and lower than the elevation of the 52 

storm tide. Due to the algorithmic simplicity of this model, computational overhead is low and a static model can be 53 

used to simply and quickly estimate storm tide flooding and impact over large regions at hyper-resolutions (Hinkel 54 
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et al 2010; Dasgupta et al 2011; Torresan et al 2012). However, static models do not replicate important 55 

characteristics and processes of storm tide flooding. The most important physical processes not accounted for in 56 

static models are the: (1) conservation of mass for flows (de Almeida et al 2012), (2) effect of landscape roughness 57 

on the spread of floodwater and, (3) attenuation of storm tide by vegetation (Gedan et al 2011). These processes 58 

generally limit the extent of storm tide flooding and are needed to replicate flooding in low lying, topographically 59 

flat, vegetated regions. Additionally static models assume that flood propagation is only limited by topography and 60 

that maximum storm tide water levels are maintained for an infinite duration. The lack of the aforementioned 61 

processes and assumptions in static models may be the reason static models consistently overestimate flood extents 62 

(Bates et al 2005). Regardless of the physical shortcomings of the static model the computational efficiency of this 63 

method has made it a valuable tool to explore scenarios of future storm tide impact (Jongman et al 2012; Mokrech et 64 

al 2014; Lloyd et al 2015; Neumann et al 2015), but flood impact derived from statically modelled flood maps may 65 

be uncertain in topographically flat regions. 66 

 67 

Dynamic models overcome the limitations of the static model by simulating the physical processes related to storm 68 

tide flooding. The more complex dynamic models are coupled two-dimensional (2D) or three-dimensional (3D) 69 

models that replicate coastal storm tide flooding by simulating atmospheric–ocean–land interactions from the deep 70 

ocean to the coast (Forbes et al 2010; Condon and Sheng 2012; Bertin et al 2014) and may include winds, waves, 71 

tides, currents, and river runoff. An advantage of coupled models is the ability to map flooding at hyper-resolutions 72 

by using unstructured grids that represent the ocean at coarse spatial resolution (1-20 km) and the landscape at fine 73 

spatial resolution (5-50 m). This method to partition the model domain increases computational efficiency, but these 74 

gains are greatly offset by the act of linking models which increases model complexity and the need to have large 75 

model extents to replicate processes (e.g., waves) that occur 100-1000s km offshore. Due to high model complexity 76 

and large geographic domains the majority of coupled models are computationally expensive, and require 77 

supercomputers with 100-1000s of cores and terabytes of memory (Dietrich et al 2011; Bertin et al 2014) 78 

Nevertheless coupled models are useful to replicate historical storm tide events, or a limited number of synthetic 79 

events for a single location, but computational overhead hampers their use to investigate storm tide flood impact 80 

scenarios requiring many simulations. 81 

 82 
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Dynamic models of reduced-complexity with simplified physics and lower computational overhead (Larsen et al 83 

2014) have been developed to replicate storm tide flooding (Bates et al 2005; Skinner et al 2015). These 2D models 84 

focus on nearshore-land processes that contribute to storm tide flooding, but do not model surge processes in the 85 

open ocean. Reduced-complexity models of storm tide inundation have been tested against observed storm tide 86 

flood records with good results, but tests have been performed at fine spatial resolution (<50 m) in locations that are 87 

smaller in spatial extent than regional scales (Bates et al 2005; Smith et al 2012; Skinner et al 2015). Where these 88 

models have been applied on the regional scale, hyper-resolution topographic data has not been used (Bates et al 89 

2005; Lewis et al 2013). Instead, these models have utilized relatively coarse spatial resolution (250-900 m) digital 90 

elevation models (DEMs) containing spatially averaged elevations, smoother terrain features and loss of 91 

hydrologically important features. As flood model accuracy is highly contingent on the spatial resolution of DEMs 92 

(Schumann et al 2014), using these topographically homogenous DEMs will likely produce uncertain flood maps 93 

that contain significant error in estimated water depths and flood extents. To date, no regional scale storm tide 94 

impact analysis has used flood maps generated from reduced-complexity models, but the computational efficiency 95 

of this method demonstrates promise for scenario type modeling. 96 

 97 

With the availability of regional scale storm surge water level heights at the coast for the present day (Zervas 2013; 98 

Cid et al 2014) and future (Marcos et al 2011) there is a need for a robust method to produce storm tide flood maps 99 

at hyper-resolution for use in socio-economic impact analysis. This method should be computationally efficient and 100 

contain sufficient physical processes to accurately replicate storm tide hydrodynamics. Here, we present a dynamic 101 

model that builds upon recent developments in reduced-complexity modeling of storm tide flooding (Skinner et al 102 

2015), but we apply our model to regional scales at hyper-resolutions. Our model has several distinct advantages 103 

over current static and dynamic coupled models of storm tide flooding. Our model is computational efficient and 104 

does not require computational resources equivalent to a supercomputer. Furthermore, the flood model is 105 

transferable to any coastal location and utilizes datasets that have global spatial extent. These advantages make the 106 

model applicable in data poor regions and areas where researchers do not have access to high performance 107 

computing facilities. We apply the model at three sites affected by storm tide flooding and test the model by 108 

comparing simulated and observed storm tide inundation extents and water height locations. Additionally, we test a 109 

static model against the same observed data at the same sites. The results from both model approaches (static and 110 
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dynamic) are used to determine errors in flood mapping and impact. Overall we find that static models overestimate 111 

storm tide flooding and impact, whilst reduced-complexity dynamic models provide more accurate and conservative 112 

estimates of flooding and impact. 113 

 114 

2  Methods 115 

2.1  Flood modelling 116 

The reduced-complexity dynamic model developed in our study of regional storm tide inundation is largely based on 117 

the open source, freely available CAESAR-Lisflood model (Coulthard et al 2013). Within CAESAR-Lisflood the 118 

landscape is represented with a DEM and discharge between raster cells is resolved using simplified shallow water 119 

equations (Bates et al 2010) rather than the more computationally expensive full shallow water equations. The use of 120 

simplified shallow water equations results in a hydrodynamic model that is computational efficient and allows 121 

CAESAR-Lisflood to model flooding over regional landscapes (~15,000 km2) that are represented by hyper-122 

resolution DEMs (< 90 m cell size) with many raster cells (> 1,000,000). 123 

 124 

2.1.1 Case Studies 125 

Our dynamic storm tide model was tested at three sites where observed storm tide water levels, flood extent and 126 

flood heights were available for direct comparison with model output. The first test site was located in western 127 

France near the city of La Rochelle (Figure 1a). This stretch of Atlantic coastline was impacted by wind storm 128 

Xynthia on February 27-28, 2010 with maximum wind speeds of 126 km h-1, and the resulting storm surge 129 

coincided with a high tide. The second test site selected was the north eastern United States coast near New York 130 

City (Figure 1b). On October 29, 2012 hurricane Sandy made landfall in New Jersey, approximately 100 km south 131 

of this test site. Although Sandy was only a Saffir-Simpson category 1 hurricane (130 km h-1 winds), the storm tide 132 

was higher than expected because it coincided with a full moon high tide and a winter storm (Forbes et al 2014). The 133 

last test site was located on the southern coast of Myanmar (Figure 1c). On May 2, 2008 cyclone Nargis made 134 

landfall on Myanmar as a category 3 cyclone with winds exceeding 178 km h-1. This slow moving cyclone produced 135 

a large storm tide that penetrated 50 km inland through the densely populated Irrawaddy delta region (Brakenridge 136 

et al 2013). Table 1 summarizes each test site’s physical characteristics, storm tide properties for Xynthia, Sandy, 137 

and Nargis and the documented socioeconomic impact from each flood event. 138 
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 139 

The data requirements for CAESAR-Lisflood are low and to setup a storm tide flood model requires: (1) a DEM to 140 

represent the landscape and near shore bathymetry, (2) land cover to assign roughness values to locations within the 141 

landscape, and (3) the duration and height of the storm tide. As our intention was to develop a storm tide inundation 142 

method that can be applied at any coastal location, we purposely restricted our selection of model input datasets that 143 

have global extent. All the spatial datasets for our model were re projected into the spatial projection of World 144 

Mollweide to preserve geographic area. For each test site a post processed Space Shuttle Radar Topography Mission 145 

(SRTM) DEM (Jarvis et al 2008) at 90 m spatial resolution was obtained (Figure 1). This DEM has a vertical datum 146 

of EGM96 and all vertically referenced datasets in our study were transformed into this vertical datum. For dynamic 147 

models, preliminary simulations were performed to estimate the maximum spatial extent of inland flooding and 148 

DEMs were clipped to encompass the majority of the flooded area. The length of coastline modelled was determined 149 

by the spatial extent of the observed flooding and the proximity of the nearest tidal station. Where tidal station data 150 

was available (France and USA), coastal locations modelled did not exceed a distance of 70 km from the tidal 151 

station. The SRTM DEM used does not represent ‘bare earth’ and vegetation effects related to SRTM noise (Wilson 152 

et al 2007) and canopy heights (Baugh et al 2013) should be considered at locations with dense forest canopy and 153 

high vegetation heights. In our study vegetation effects at the USA site were not mitigated because locations near the 154 

coast are mostly urban land cover (e.g. New York city). We analysed canopy height data (Simard et al 2011) and 155 

found that vegetation heights ≤ 1 m in height covered 69% of the France site and 65% of the Myanmar site. This 156 

analysis demonstrates that vegetation effects are less important at these two sites and no changes to the DEM were 157 

performed to offset vegetation heights. Global near shore bathymetric data that is commensurate in spatial resolution 158 

to the DEM was not readily available. As a proxy for bathymetry a 2.5 km wide seaward shelf was added to the 159 

DEM coast with a constant elevation of -5 m. This seaward shelf is the location where the storm tide is added to the 160 

model and the shelf elevation was chosen to allow the full range of water levels that occurred in all the test sites. To 161 

calculate the flow of water between DEM cells in CAESAR-Lisflood a roughness coefficient (Manning’s n) per cell 162 

was required. This roughness coefficient determines the resistance a particular land cover imparts on water flow 163 

between cells in the DEM. Roughness parameters in CAESAR-Lisflood are generally calibrated until the model 164 

replicates observational data like flood extents or water heights (Skinner et al 2015). Although calibration is an 165 

important step in dynamic flood simulations (Hunter et al 2007; Stephens et al 2012), observational data of storm 166 
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tide flooding is rare and independent calibration data was unavailable here, and likely to be unavailable in an 167 

operational context. For this reason, we chose to develop an uncalibrated model that instead uses spatially 168 

distributed roughness coefficients and typical roughness values for land cover classes. GlobCover 2009 land cover 169 

maps (Bontemps et al 2011) were obtained for each site at 300 m spatial resolution. The three sites have 170 

characteristically different land cover (Table 1) with west France dominated by croplands, the northeast USA coast 171 

primarily urban bounded by inland forest, and south Myanmar mostly croplands interspersed with forest. Manning 172 

roughness coefficients for each land cover class were assigned using coefficient values per land cover class reported 173 

in Alfieri et al. (2014) (Figure 2). 174 

 175 

2.1.2 Storm tide 176 

Strom tide inundation was simulated in the model by gradually raising and lowering storm tide water levels 177 

proximate to the coastline over time (Figure 1, ocean area). Observed records of storm tide at tidal stations were 178 

used to drive simulations of inundation for wind storm Xynthia at La Pallice, France (Figure 1a) and for hurricane 179 

Sandy at Battery Park, USA (Figure 1b). Xynthia water levels were obtained from the REFMAR database 180 

(www.refmar.shom.fr) and Sandy water levels from NOAA (http://tidesandcurrents.noaa.gov/). The lack of tide 181 

stations in south Myanmar required the use of simulated storm tide for cyclone Nargis (Saito et al 2010; Sayama et 182 

al 2012). For each site a water level time series of 62 hrs was extracted at 10 minute time interval for Xynthia and 183 

Nargis, and 6 minute time interval for Sandy (Figure 3). These time intervals became the frequency upon which 184 

storm tide water levels are updated along the coast within the models. The duration of the time series was chosen to 185 

include two tidal peaks prior to the peak storm surge and two tidal peaks afterwards. Operating the model in this 186 

manner allows for the development of baseline hydrodynamic conditions for 24 hrs, followed by a period of storm 187 

tide flooding of approximately 14 hrs and ample time for drawdown of floodwaters for 24 hrs. At each of our sites 188 

rivers hydraulically connected to the ocean were important conduits for storm tide flooding inland. We assumed that 189 

average runoff conditions existed in the rivers during the SRTM data collection and river elevations in the DEM 190 

represent the water surface. Accordingly we have used a roughness coefficient for water (n = 0.02) within river 191 

channel locations. As the duration of each simulation was not sufficient for these rivers to form completely, a fixed 192 

water elevation of 0.25 m above mean sea level was maintained at river locations for the first 2 hrs of simulation. 193 

This water elevation was enough for rivers to develop but not overflow their banks. River locations that correspond 194 
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to the DEM were determined by using the globally available SRTM water body dataset (https://lta.cr.usgs.gov). 195 

Although waves may be included in the observed water levels that drive the models, we do not explicitly reproduce 196 

the effect of waves in our simulations. Furthermore in all simulation no soil percolation effects or storm water 197 

abatement systems were modeled on land. 198 

 199 

Models were executed on a computer with an Intel Xeon E5-2630 processor with 6 cores on 12 simultaneous threads 200 

and resulted in wall clock model execution times of 17, 26, and 56 minutes for France, USA, and Myanmar 201 

respectively. Model output per test site consisted of a map of maximum flood water heights (DEM elevation + water 202 

depth) at each DEM location and this map also delineated the maximum flood extent for a flood event. Additionally, 203 

for each test site a static model was performed. Static models of France and USA sites were limited in spatial extent 204 

to approximately 50 km inland from the coast, but for Myanmar the inland extent was extended to 100 km inland 205 

because this site is a river delta and inundation can reach further inland. The length of coastline modelled per site 206 

was the same as the dynamic models. Static models were developed in a geographical information system (GIS, 207 

ESRI ArcMap 9.3) by geographically selecting DEM locations that were less than or equal to observed peak storm 208 

tide water levels. From this selection of flooded locations, areas that were not hydraulically connected to the coast or 209 

rivers connected to the coast were eliminated. The remaining locations represented the maximum flood extent and 210 

water heights across the flood extent were equal to the peak storm tide. 211 

 212 

2.1.3 Observed flood extent and high water marks 213 

Dynamically and statically modelled flood maps were compared against observed datasets that consisted of flood 214 

extents and high water marks (HWM) that represented debris deposited at the flood edge or on the side of structures. 215 

For the site in France, a flood extent for wind storm Xynthia consisting of 41 polygons was obtained from satellite 216 

images taken 2-4 days after the storm (Breilh et al 2013) and an extensive field survey performed by the French 217 

consulting agency SOGREAH (DDTM-17 2011). Additionally maps from the SOGREAH field survey were 218 

georeferenced and 388 high water marks were obtained (Figure 4a). For hurricane Sandy a high resolution flood 219 

extent in the USA was obtained from the United States Federal Emergency Management Agency Modeling Task 220 

Force. This flood extent consisted of 1822 polygons that were created from the interpolation of field verified high 221 

water marks. Two hundred nineteen hurricane Sandy high water marks (Figure 4b) were obtained from a post storm 222 
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survey performed by the United States Geological Survey (McCallum et al 2013). Flood extents for Myanmar 223 

Nargis flooding consisted of 772 polygons that were derived from a 250 m spatial resolution MODIS Terra and 224 

Aqua imagery (UNOSAT 2008), and 25 high water marks measured by Fritz et al (2009). For each test site 225 

dynamically and statically derived flood extents were overlaid on their corresponding observed flood extents to 226 

determine the total area correctly estimated, underestimated and overestimated. The resulting estimated areas were 227 

normalized by the observed flood extent, and presented as percentages. Dynamically and statically modeled 228 

maximum flood water heights were compared directly to the water heights at the location of observed high water 229 

marks. For both model types vertical error in water heights at each site were calculated as a root mean squared error 230 

(RMSE, in m). 231 

 232 

2.2  Flood impact assessment 233 

Flood impact assessments for each site were performed to gauge the differences and similarities between impacts 234 

derived from observed, static and dynamic flooding. Within this study our intention was to perform a basic impact 235 

assessment that reveals how errors in modelling storm tide extent may cascade into an impact assessment. In our 236 

assessment we do not provide estimates of economic exposure derived with depth-damage curves, but instead use 237 

exposure indicators that include population counts, road networks that represent infrastructure, and agricultural 238 

areas. Efforts were made to only use open source data sets that nearly coincided in time with the flood events and 239 

regional scale spatial resolutions (< 500 m). Data sets of different sources were used for each test site and for this 240 

reason we refrained from performing comparisons between sites. For France gridded population counts for 2009 241 

were obtained from fiscal sources (European Forum for Geography and Statistics 2009). USA population was 242 

determined using 2010 census block population counts (U.S. Census Bureau 2010). For Myanmar, a 100 m gridded 243 

population model from the WorldPop database was obtained for 2010 with national population counts adjusted to 244 

match UN population division estimates (Gaughan et al 2013). All population count datasets were re projected to the 245 

World Mollweide equal area projection and converted into population densities (e.g., people per 200 m2) for each 246 

spatial unit of the population count dataset (grid cell or census block). These population density maps were overlaid 247 

on the flood extent maps to calculate the total number of people possibly exposed by observed, static and dynamic 248 

flooding. Agricultural spatial extent in France was determined from the 2006 Corine land cover map at 100 m spatial 249 

resolution (European Environmental Agency 2006), whilst agricultural areas in Myanmar were extracted from 300 250 
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m GlobCover 2009 land cover maps (Bontemps et al 2011). At these two sites total agricultural area exposed to 251 

storm tide flooding was calculated for observed, static and dynamic flooding. Analysis of agricultural locations 252 

exposed to storm tide flooding in the USA was not performed because agricultural land cover is nearly not existent 253 

at this mostly urban site. Road network data was obtained for each test site from OpenStreetMap (Haklay and Weber 254 

2008) and overlaid on the flood maps to calculate the total length of roads flooded. 255 

 256 

3  Results 257 

3.1  Flood model test 258 

Figure 4 are maps of dynamically modelled maximum water depths (water height – DEM elevation) and flood 259 

extents for each storm tide event. Overlaid on these maps are the locations of the HWM where observed water 260 

heights were collected. The comparison between HWM with dynamic and static modeled water heights are 261 

summarized in Table 2. Comparable vertical error in water heights (RMSE of 1 m) was obtained from both model 262 

types (dynamic and static) for the storm tide events in France and the USA. Greater amounts of vertical error in 263 

water heights were found for both model types at the Myanmar site. At this site the dynamic model water height 264 

RMSE was 2 m, whilst the static model water height difference was 48% greater (2.97 m). The similarities and 265 

differences in water height error (observed water height – estimated water height) at all three sites can also be seen 266 

in Figure 5. Overall both model types, for all sites, generally underestimated water heights at HWM locations. The 267 

performance of dynamic and static models for France and USA was good, with both median vertical errors < 0.5 m. 268 

Both model types were less successful in matching HWM in Myanmar. For this site, error in dynamically simulated 269 

water heights was less than those obtained with the static model. At this site, the majority of vertical error 270 

(interquartile range) in the static model was underestimations in water heights by 2-3.5m, and 1-2 m for the dynamic 271 

model. 272 

 273 

Table 3 provides a comparison of the observed, dynamic and static flood extents for each test site. For France the 274 

dynamic model flooded 79% of the observed flooding that included locations on the near shore islands and land 275 

adjacent to the rivers Seudre and Charente (Figure 6a). Overestimations of flooding for the dynamic model were 276 

equal to 59% of the observed flooding, with the majority of the overestimations concentrated near the Poitevin 277 

marsh and Brouage (Figure 6a). The static model of France correctly flooded 95% of the observed flood areas, but 278 
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extensive amounts of flooding were estimated where no flooding occurred (Figure 6b). For this site a total of 883 279 

km2 of land was incorrectly flooded using the static model, and this land area was equal to 204% of the observed 280 

flood extent. The greatest amount of error occurred near Charente and Poitevin marsh, where statically modelled 281 

flooding occurred 20 km further inland than observed flooding. Dynamic and static flooding of the United States 282 

produced comparable results between both model types (Figure 6 c, d). Overall both models underestimated nearly 283 

50% of the observed flooding (Table 3), and performed well at Long Island, but flooding did not advance 284 

sufficiently inland at the locations of New York City, Newark, and the inlets of the Raritan bay (Figure 6 c, d). 285 

Dynamic flooding of Myanmar produced a good, but conservative mapping of the observed flooding (Figure 6e). 286 

The dynamic model correctly estimated 65% of observed flood area, and over- and underestimations of the observed 287 

flood area were 33% and 35% respectively (Table 3). All dynamic flooding was near the inland boundary of the 288 

observed flooding, and the core of the flooding between Labutta and Bogale was simulated well. A moderate 289 

amount of underestimation occurred south west of Pyapon (Figure 6e). The static model correctly estimated a high 290 

amount (92%) of the observed flooding, but also flooded a considerable amount of land that was not flooded during 291 

this event (Figure 6f). North of Bogale the observed flooding reached 50 km inland, but the static model estimated 292 

90 km of inland flooding that was only limited by the spatial extent of the study area. This area of inland flooding 293 

and flooding south of Pyapon contributed to an overestimation of 99% of the observed flood area (Table 3). 294 

 295 

3.2  Flood impact assessment 296 

In France population exposed to flooding for observed and dynamically modelled flooding are nearly the same 297 

(~20,000 people). Static flooding for France exposed more than double the number of coastal inhabitants (Table 4), 298 

and incorrectly exposed 29,000 people to flooding. Observed and dynamically modeled infrastructure flood 299 

exposure for France was comparable, but static flooding overestimated infrastructure exposure by 115% (Table 4). 300 

Static modelling of France flooded nearly four times the observed agricultural area flooded, whilst the dynamic 301 

model only flooded 1.5 times the observed agricultural area. In the USA, both dynamic and static models poorly 302 

estimated population exposure. The observed estimate of population exposure for this test site was ~230,000 people, 303 

and both static and dynamic models underestimated exposure by 82% and 75% respectively (Table 4). Similarly, 304 

infrastructure exposure derived from both model types was approximately half of the observed exposure. In 305 

Myanmar, population counts in the static flood extent are roughly twice those in the observed and dynamic flood 306 
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extents (Table 4). For Myanmar observed and dynamically flooded infrastructure are nearly equivalent, whilst static 307 

flood exposure is approximately double the observed infrastructure exposure. The same pattern occurs for Myanmar 308 

agricultural impact. Here the dynamic model produces nearly equivalent impact as observed flooding, and the static 309 

model floods nearly twice the amount of agricultural land. 310 

 311 

4  Discussion 312 

This study has tested the performance of a reduced-complexity dynamic model and static model of storm tide 313 

flooding at three sites. Performance of the models was gauged using observed flood water levels and flood extents 314 

from storm tide events. In our study we find that static and dynamic models perform similarly regarding flood water 315 

levels. For the site in the USA and France both model types produced water levels within 1 m of observed water 316 

levels, which is comparable to the performance of dynamic models of greater physical complexity (Forbes et al 317 

2014). At the Myanmar site both model types underestimated flood water levels by 2-3 m. Where both modelling 318 

approaches differ is in the spatial extent of flooding. Overall static models have the tendency to significantly 319 

overestimate flood extents, whilst the dynamic models produced more conservative flood extents. This is most 320 

apparent at the France and Myanmar sites where the static models overestimated 204% and 99% of the observed 321 

flood extents respectively. Specifically at the France site the dynamic model significantly reduced the 322 

overestimation of flood extents and flooded almost identical locations as a dynamic coupled model of surge, tide and 323 

wave flooding (Bertin et al 2014). 324 

 325 

Our impact assessment metrics indicated that at France and Myanmar our dynamic model nearly produced the same 326 

amount of socio-economic impact that the observed flood extent estimated. This contrasted with static storm tide 327 

flooding that resulted in highly inflated socio-economic impact at the same test sites. These results suggest that static 328 

models at least estimated twice the amount of impact than dynamic models with the difference caused by the 329 

overestimation of flood extents. This demonstrates that static models that do not consider landscape roughness or 330 

flood hydrodynamics can produce high overestimates of flood impact. Both model types underestimated impact at 331 

the USA site, and this was mostly caused by insufficient flooding. 332 

 333 
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Differences between observed and modelled flood extents in both model types may be the result of limitations on 334 

model inputs and quality of spatial data. In our study we used storm tide water levels recorded at one geographic 335 

location, even though storm tide heights can vary along the coast according to the physical structure of a storm and 336 

differences in bathymetry. Not accounting for geographic variability in strom tide heights may explain the 337 

underestimation of hurricane Sandy’s flood extent by both model types. Evidence for this is provided by a network 338 

of inland storm tide sensors (McCallum et al 2013) that measured peak storm tide heights at locations throughout the 339 

USA site during Sandy. This data indicates that peak storm tide can be 1-2 m greater at sites 40 km from the tidal 340 

gauge station (Battery Park) used in our flood model. If more tidal gauge stations were available for our test sites it 341 

would have been possible to partition the coast into segments (Lewis et al 2013) and account for spatial 342 

heterogeneity in storm tide heights within both model types. We also suggest that care is taken when selecting tidal 343 

station data, as bathymetric effects at station locations can amplify or attenuate storm tide. When possible metadata 344 

(e.g. bathymetry) should be obtained for tidal stations and used to determine records that are not significantly 345 

affected by relatively shallow locations or steeply sloping sea beds. Where tidal station data is not available or of 346 

poor quality our reduced-complexity flood model can optionally be driven with modelled storm surge heights 347 

applied to coastal segments with similar surge characteristics (Lewis et al 2013). 348 

 349 

A secondary reason for mismatches between observed and modelled flood extents may be the result of feature 350 

representation within the DEM. Schumann et al (2014) showed that DEM resolution and quality can have a 351 

significant impact upon the outcome and calibration of flood inundation models like CAESAR-Lisflood. At the 352 

France site the spatial coarseness (90 m) of the DEM has ‘smoothed’ the heights of flood defence features (natural 353 

barriers and sea walls) and this has contributed to flood extent overestimation by both model types. Finer spatial 354 

resolution DEMs with global coverage could not be obtained at the time this study was performed, but now 30 m 355 

SRTM DEMs have been released and this spatial resolution may better represent flood defences. Where LIDAR 356 

(Light Detection And Ranging) DEMs exist at fine spatial resolution (1-2 m) elevations of flood defences can be 357 

extracted and directly added to a regional scale DEM. Likewise, locations and heights of flood defences can be 358 

obtained from local agencies and this information can be incorporated into the DEM. Another approach is to use 359 

subgrid parameterization methods to embed fine scale flood defence features within a coarser scale grid (Yu and 360 

Lane 2006; McMillan and Brasington 2007). Subgrid parameterization methods have been implemented in a 361 
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modified Lisflood-FP as a grid-by-grid ‘porosity’ parameter that represents the blocking effect of microtopography 362 

(McMillan and Brasington 2007). Although these methods have not been developed in CAESAR-Lisflood, such an 363 

implementation is possible and could be used to represent coastal flood defences within regional scale DEMs. This 364 

improvement of feature representation in DEMs could be used to test different flood defence schemes with 365 

CAESAR-Lisflood and help select schemes that offer optimal flood protection. 366 

 367 

Additional simulations for each site were carried out to test the effects of bathymetry on storm tide flooding. Adding 368 

the 30 arc second spatial resolution GEBCO bathymetry (Weatherall et al 2015) to the DEM produced very small 369 

differences in maximum flood extents and water depths. Bathymetry should be included in the reduced-complexity 370 

model if the storm tide was introduced at an offshore location and propagated towards the coast. If this were the 371 

case, near shore slopes and elevations would have an effect on the storm tide and inland flooding. Instead we have 372 

introduced the storm tide uniformly across the near shore area and this does not allow bathymetry to have an effect 373 

on the storm tide. This finding suggests that high resolution bathymetry is not required to achieve good performance 374 

with the reduced-complexity model and storm tide flooding can still be reasonably estimated where bathymetric data 375 

is not available or of poor quality. 376 

 377 

The underestimation of water heights at the Myanmar site may also be due to the role of waves. At this site no 378 

records exist for cyclone Nargis storm tide heights but post storm HWM suggested that the storm tide was 5 m with 379 

2 m waves superimposed on the storm tide (Fritz et al 2009). Our dynamic and static models attained a peak storm 380 

tide near 7 m, which is equivalent to the combined surge, tide and waves, but neither model type explicitly 381 

replicated the effects of waves and this may explain the underestimation of flood water levels at this site. The overall 382 

poor performance of static models is largely due to their failure to represent hydrodynamic processes or 383 

conservation of mass. Therefore static models will not incorporate the effect of landscape roughness slowing the 384 

spread of floodwater or a flood wave. As such, the lateral movement of flooding in static models was only limited 385 

by topography (in this case DEM elevation) leading to an overestimation of flood extent especially in the low 386 

elevation France and Myanmar sites. At these sites landscape roughness was represented in the dynamic models and 387 

better model performance could be attributed to the land cover providing sufficient resistance to flow thus affecting 388 

the speed and spatial limit of the flood wave advance. Such findings support previous research by Gedan et al. 389 
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(2011) and de Almeida et al. (2012) and importantly show that hydrodynamic and landscape roughness effects are 390 

also important at the hyper-resolution scale. 391 

 392 

Our study has not investigated the influence of uncertainty within the data and modelling process on the simulated 393 

storm tide flooding. Model uncertainty analysis requires multiple model runs (100-1000s) with each model run 394 

having random values chosen for uncertain parameters and the resulting model outputs summarized into 395 

probabilistic flood estimates (Skinner et al 2015). For example, Stephens et al. (2012) demonstrated how a Monte 396 

Carlo based approach applied to model parameters, including roughness values, could be used to produce 397 

probabilistic flood extents, which are more useful for determining flood risk and impact in an operational setting. 398 

Given that uncertainty analysis requires many model runs, this analysis is more feasible with models that are 399 

computationally efficient and produce model output quickly. For this reason, our reduced-complexity storm tide 400 

model is more suited for uncertainty analysis than storm tide models that are computationally expensive and time-401 

consuming. 402 

 403 

5  Conclusions 404 

Our findings show that a simple hyper-resolution dynamic reduced-complexity model of storm tide flooding can 405 

replicate flood water heights, flood extent, and provides socio-economic impact at regional scale. Our model is the 406 

first implementation of a reduced-complexity storm tide inundation model at a fine spatial resolution (90 m) and 407 

regional scale. Our approach to estimate flood impact is based on an open source model that is computationally 408 

efficient, does not require model calibration, can be operated with limited training, and was developed with freely 409 

available data of global extent. The approach is transferable to any location in the world and is a valuable tool for 410 

flood risk management in poorer coastal regions with sparse data and limited computational resources. Most 411 

importantly our approach could be used to estimate future coastal flooding and impact with storm tide scenarios of 412 

different return periods and sea levels. Additionally, future work with both model types (static and dynamic) could 413 

determine whether the uncertainty within the forcing water-level boundary condition (e.g. spatial or temporal 414 

variability of water-levels (Lewis et al 2011; Quinn et al 2014)) is larger than the difference between inundation 415 

modelling methods. Another follow up study with both model types could gauge the role of DEM resolution on the 416 
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flood results (Savage et al 2015) and socioeconomic impact. A study like this would determine at which spatial 417 

resolution does model performance deteriorate and identify when hyper-resolutions DEMs are needed. 418 

 419 

Dynamic reduced complexity models therefore offer a more conservative yet easily implementable alternative to 420 

existing methods. The primary advantage our dynamic model offers over static models is the inclusion of landscape 421 

roughness effects on flooding. Importantly, we find that static models of storm flooding applied in topographically 422 

flat regions are highly erroneous and this contributes to exaggerated socio-economic impact assessments. We 423 

recommend that regional storm tide impact in topographically flat regions always utilize dynamic models that 424 

consider landscape roughness. 425 

 426 

6  Acknowledgements 427 

The authors wish to thank the two anonymous reviewers. CAESAR-Lisflood is available from 428 

http://sourceforge.net/projects/caesar-lisflood/ and the source code for the modified version of CAESAR-Lisflood 429 

used in this study can be obtained from Jorge Ramirez. 430 

 431 

7  References 432 

Aerts JCJH, Lin N, Botzen W, et al (2013) Low-Probability Flood Risk Modeling for New York City. Risk Anal 433 
33:772–788. doi: 10.1111/risa.12008 434 

Alfieri L, Salamon P, Bianchi A, et al (2014) Advances in pan-European flood hazard mapping. Hydrol Process 435 
28:4067–4077. doi: 10.1002/hyp.9947 436 

Bates PD, Dawson RJ, Hall JW, et al (2005) Simplified two-dimensional numerical modelling of coastal flooding 437 
and example applications. Coast Eng 52:793–810. doi: http://dx.doi.org/10.1016/j.coastaleng.2005.06.001 438 

Bates PD, Horritt MS, Fewtrell TJ (2010) A simple inertial formulation of the shallow water equations for efficient 439 
two-dimensional flood inundation modelling. J Hydrol 387:33–45. doi: 440 
http://dx.doi.org/10.1016/j.jhydrol.2010.03.027 441 

Baugh CA, Bates PD, Schumann G, Trigg MA (2013) SRTM vegetation removal and hydrodynamic modeling 442 
accuracy. Water Resour Res 49:5276–5289. 443 

Bertin X, Li K, Roland A, et al (2014) A modeling-based analysis of the flooding associated with Xynthia, central 444 
Bay of Biscay. Coast Eng 94:80–89. 445 

Bontemps S, Defourny P, Bogaert E, et al (2011) GLOBCOVER 2009 - Products Description and Validation 446 
Report.  447 



17 
 

Brakenridge GR, Syvitski JPM, Overeem I, et al (2013) Global mapping of storm surges and the assessment of 448 
coastal vulnerability. Nat hazards 66:1295–1312. 449 

Breilh JF, Chaumillon E, Bertin X, Gravelle M (2013) Assessment of static flood modeling techniques: application 450 
to contrasting marshes flooded during Xynthia (western France). Nat Hazards Earth Syst Sci 13:1595–1612. 451 

Chadenas C, Creach A, Mercier D (2013) The impact of storm Xynthia in 2010 on coastal flood prevention policy in 452 
France. J Coast Conserv 1–10. 453 

Cid A, Castanedo S, Abascal AJ, et al (2014) A high resolution hindcast of the meteorological sea level component 454 
for Southern Europe: the GOS dataset. Clim Dyn 1–18. 455 

Condon AJ, Sheng YP (2012) Evaluation of coastal inundation hazard for present and future climates. Nat hazards 456 
62:345–373. 457 

Coulthard TJ, Neal JC, Bates PD, et al (2013) Integrating the LISFLOOD-FP 2D hydrodynamic model with the 458 
CAESAR model: implications for modelling landscape evolution. Earth Surf Process Landforms 38:1897–459 
1906. doi: 10.1002/esp.3478 460 

Curtis KJ, Schneider A (2011) Understanding the demographic implications of climate change: estimates of 461 
localized population predictions under future scenarios of sea-level rise. Popul Environ 33:28–54. 462 

Dasgupta S, Laplante B, Murray S, Wheeler D (2011) Exposure of developing countries to sea-level rise and storm 463 
surges. Clim Change 106:567–579. 464 

DDTM-17 (2011) Éléments de mémoire sur la tempête Xynthia du 27 et 28 février 2010. http://www.charente-465 
maritime.gouv.fr/Politiques-publiques/Environnement-risques-naturels-et-technologiques/Risques-naturels-et-466 
technologiques/Generalites-sur-la-prevention-des-risques-naturels/Elements-de-memoire-Xynthia/Elements-467 
de-memoire-sur-la-tempete-Xynthia-du-27-et-28-fevrier-2010.  468 

De Almeida GAM, Bates P, Freer JE, Souvignet M (2012) Improving the stability of a simple formulation of the 469 
shallow water equations for 2-D flood modeling. Water Resour Res 48:n/a–n/a. doi: 10.1029/2011WR011570 470 

Dietrich JC, Zijlema M, Westerink JJ, et al (2011) Modeling hurricane waves and storm surge using integrally-471 
coupled, scalable computations. Coast Eng 58:45–65. 472 

Emanuel KA (2013) Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st 473 
century. Proc Natl Acad Sci 110:12219–12224. doi: 10.1073/pnas.1301293110 474 

European Environmental Agency (2006) Corine Land Cover 2006. http://www.eea.europa.eu/data-and-475 
maps/data/ds_resolveuid/a47ee0d3248146908f72a8fde9939d9d. Accessed 20 May 2005 476 

European Forum for Geography and Statistics (2009) Estimations carroyées de population Version 2. Gridded fiscal 477 
population 2009,.  478 

Forbes C, Luettich Jr RA, Mattocks CA, Westerink JJ (2010) A retrospective evaluation of the storm surge produced 479 
by Hurricane Gustav (2008): Forecast and hindcast results. Weather Forecast 25:1577–1602. 480 

Forbes C, Rhome J, Mattocks C, Taylor A (2014) Predicting the Storm Surge Threat of Hurricane Sandy with the 481 
National Weather Service SLOSH Model. J Mar Sci Eng 2:437–476. 482 

Fritz HM, Blount CD, Thwin S, et al (2009) Cyclone Nargis storm surge in Myanmar. Nat Geosci 2:448–449. 483 



18 
 

Gaughan AE, Stevens FR, Linard C, et al (2013) High Resolution Population Distribution Maps for Southeast Asia 484 
in 2010 and 2015. PLoS One 8:e55882. doi: 10.1371/journal.pone.0055882 485 

Gedan KB, Kirwan ML, Wolanski E, et al (2011) The present and future role of coastal wetland vegetation in 486 
protecting shorelines: answering recent challenges to the paradigm. Clim Change 106:7–29. 487 

Genovese E, Przyluski V (2013) Storm surge disaster risk management: the Xynthia case study in France. J Risk 488 
Res 16:825–841. 489 

Grinsted A, Moore JC, Jevrejeva S (2013) Projected Atlantic hurricane surge threat from rising temperatures. Proc 490 
Natl Acad Sci 110:5369–5373. doi: 10.1073/pnas.1209980110 491 

Haklay M, Weber P (2008) Openstreetmap: User-generated street maps. Pervasive Comput IEEE 7:12–18. 492 

Hinkel J, Nicholls RJ, Vafeidis AT, et al (2010) Assessing risk of and adaptation to sea-level rise in the European 493 
Union: an application of DIVA. Mitig Adapt Strateg Glob Chang 15:703–719. 494 

Hunter NM, Bates PD, Horritt MS, Wilson MD (2007) Simple spatially-distributed models for predicting flood 495 
inundation: A review. Geomorphology 90:208–225. doi: http://dx.doi.org/10.1016/j.geomorph.2006.10.021 496 

Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4. Int. Cent. Trop. Agric.  497 

Jongman B, Ward PJ, Aerts JCJH (2012) Global exposure to river and coastal flooding: Long term trends and 498 
changes. Glob Environ Chang 22:823–835. 499 

Larsen L, Thomas C, Eppinga M, Coulthard T (2014) Exploratory Modeling: Extracting Causality From 500 
Complexity. Eos, Trans Am Geophys Union 95:285–286. doi: 10.1002/2014EO320001 501 

Lewis M, Bates P, Horsburgh K, et al (2013) A storm surge inundation model of the northern Bay of Bengal using 502 
publicly available data. Q J R Meteorol Soc 139:358–369. doi: 10.1002/qj.2040 503 

Lewis M, Horsburgh K, Bates P, Smith R (2011) Quantifying the uncertainty in future coastal flood risk estimates 504 
for the UK. J Coast Res 27:870–881. 505 

Lloyd S, Kovats RS, Chalabi Z, et al (2015) Modelling the influences of climate change-associated sea-level rise 506 
and socioeconomic development on future storm surge mortality. Clim Change 1–15. doi: 10.1007/s10584-507 
015-1376-4 508 

Marcos M, Jordà G, Gomis D, Pérez B (2011) Changes in storm surges in southern Europe from a regional model 509 
under climate change scenarios. Glob Planet Change 77:116–128. 510 

McCallum BE, Wicklein SM, Reiser RG, et al (2013) Monitoring storm tide and flooding from hurricane Sandy 511 
along the Atlantic coast of the United States, October 2012. 42. 512 

McGranahan G, Balk D, Anderson B (2007) The rising tide: assessing the risks of climate change and human 513 
settlements in low elevation coastal zones. Environ Urban 19:17–37. 514 

McMillan HK, Brasington J (2007) Reduced complexity strategies for modelling urban floodplain inundation. 515 
Geomorphology 90:226–243. 516 

Mokrech M, Kebede AS, Nicholls RJ, et al (2014) An integrated approach for assessing flood impacts due to future 517 
climate and socio-economic conditions and the scope of adaptation in Europe. Clim Change 1–16. 518 



19 
 

Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ (2015) Future coastal population growth and exposure to 519 
sea-level rise and coastal flooding-A global assessment. PLoS One 10:e0118571. 520 

Nicholls RJ (2003) An expert assessment of storm surge “hotspots.” Interim Re  521 

Quinn N, Lewis M, Wadey MP, Haigh ID (2014) Assessing the temporal variability in extreme storm-tide time 522 
series for coastal flood risk assessment. J Geophys Res Ocean 119:4983–4998. doi: 10.1002/2014JC010197 523 

Rappaport EN (2014) Fatalities in the United States from Atlantic tropical cyclones: New data and interpretation. 524 
Bull Am Meteorol Soc 95:341–346. 525 

Report MW (2013) Deaths associated with hurricane Sandy - October-November 2012. MMWR Morb Mortal Wkly 526 
Rep 62:393–7. 527 

Saito K, Kuroda T, Kunii M, Kohno N (2010) Numerical simulation of Myanmar cyclone Nargis and the associated 528 
storm surge part II: Ensemble prediction.   2  88:547–570. 529 

Savage JTS, Bates P, Freer J, et al (2015) When does spatial resolution become spurious in probabilistic flood 530 
inundation predictions? Hydrol Process n/a–n/a. doi: 10.1002/hyp.10749 531 

Sayama T, Myo Lin N, Fukami K, et al (2012) Storm surge inundation simulation of cyclone Nargis with a rainfall-532 
runoff-inundation model. J. Japan Soc. Civ. Eng. Ser. B1 67: 533 

Schumann GJ-P, Andreadis KM, Bates PD (2014) Downscaling coarse grid hydrodynamic model simulations over 534 
large domains. J Hydrol 508:289–298. 535 

Simard M, Pinto N, Fisher JB, Baccini A (2011) Mapping forest canopy height globally with spaceborne lidar. J. 536 
Geophys. Res. Biogeosciences 116: 537 

Skinner CJ, Coulthard TJ, Parsons DR, et al (2015) Simulating tidal and storm surge hydraulics with a simple 2D 538 
inertia based model, in the Humber Estuary, U.K. Estuar Coast Shelf Sci -. doi: 539 
http://dx.doi.org/10.1016/j.ecss.2015.01.019 540 

Smith AB, Katz RW (2013) US billion-dollar weather and climate disasters: data sources, trends, accuracy and 541 
biases. Nat hazards 67:387–410. 542 

Smith RAE, Bates PD, Hayes C (2012) Evaluation of a coastal flood inundation model using hard and soft data. 543 
Environ Model Softw 30:35–46. doi: http://dx.doi.org/10.1016/j.envsoft.2011.11.008 544 

Stephens EM, Bates PD, Freer JE, Mason DC (2012) The impact of uncertainty in satellite data on the assessment of 545 
flood inundation models. J Hydrol 414:162–173. 546 

Stocker TF, Qin D, Plattner G-K, et al (2013) Climate change 2013: The physical science basis. Intergov. Panel 547 
Clim. Chang. Work. Gr. I Contrib. to IPCC Fifth Assess. Rep. (AR5)(Cambridge Univ Press. New York)  548 

Torresan S, Critto A, Rizzi J, Marcomini A (2012) Assessment of coastal vulnerability to climate change hazards at 549 
the regional scale: the case study of the North Adriatic Sea. Nat Hazards Earth Syst Sci 12:2347–2368. 550 

U.S. Census Bureau (2010) Population & Housing Unit Counts — Blocks.  551 

UNOSAT (2008) Flood assesment for cyclone Nargis affected Ayeyarwady division, Myanmar. 552 
http://www.unitar.org/unosat/.  553 



20 
 

Weatherall P, Marks KM, Jakobsson M, et al (2015) A new digital bathymetric model of the world’s oceans. Earth 554 
Sp Sci 2:331–345. doi: 10.1002/2015EA000107 555 

Wilson M, Bates P, Alsdorf D, et al (2007) Modeling large-scale inundation of Amazonian seasonally flooded 556 
wetlands. Geophys Res Lett 34:n/a–n/a. doi: 10.1029/2007GL030156 557 

Yu D, Lane SN (2006) Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 2: 558 
development of a sub-grid-scale treatment. Hydrol Process 20:1567–1583. 559 

Zervas C (2013) Extreme water levels of the United States 1893--2010 NOAA Technical Report NOS CO-OPS 067.  560 

 561 

 562 

 563 

 564 

 565 

 566 

 567 

 568 

 569 

 570 

 571 

 572 

 573 

 574 

 575 

 576 

 577 

 578 

 579 

 580 



21 
 

Table 1.  Test site physical characteristics, storm tide event properties and socioeconomic impact of flooding. 581 

  Physical Characteristics  Storm Tide  Flood Impact 

test site 
 

coast 
(km) 

area 
(km2) 

tidal 
range 
(m) 

land cover (%)  
name 

return 
period 

(yr) 

max 
height 

(m) 

 
deaths 

damage 
(billion 
USD)  urban crop forest   

France  100 3570 6 0.4 45.0 3.7  Xynthia 100a 4.1  41c 3.2f 

USA  140 7692 2.5 11.3 0.4 45.7  Sandy 500b 3.5  53d 68g 

Myanmar  210 12754 3 0.0 53.2 13.7  Nargis ― 6.9  138000e 10e 

 582 
a(Breilh et al 2013) 583 
b(Aerts et al 2013) 584 
c(Chadenas et al 2013) 585 
d(Report 2013) 586 
e(Fritz et al 2009) 587 
f(Genovese and Przyluski 2013) 588 
g(Forbes et al 2014) 589 

 590 

 591 

 592 

 593 

 594 

 595 

 596 

 597 

 598 

 599 

 600 

 601 

 602 

 603 

 604 
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Table 2.  Percentage of high water marks (HWM) flooded and the vertical error in water heights for each site using 605 

dynamic and static models. 606 

test site 

 dynamic  static 

 HWM 
flooded (%) 

vertical error 
(RMSE, m)  HWM flooded 

(%) 
vertical error 
(RMSE, m) 

France  62 0.81  65 0.85 

USA  32 0.94  32 0.86 

Myanmar  40 2.01  52 2.97 

 607 

 608 

 609 

 610 

 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 

 619 

 620 

 621 

 622 

 623 

 624 
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Table 3.  Observed flood extent, and areas correctly estimated, overestimated, and underestimated using dynamic 625 

and static models. 626 

test site 
 observed   dynamic  static 

 flood area 
(km2) 

 flood area 
(km2) 

correct 
(%) 

over 
(%)  

under 
(%) 

 flood area 
(km2) 

correct 
(%) 

over 
(%) 

under 
(%) 

France  444  611 79 59 21  1327 95 204 5 

USA  553  328 51 8 49  371 57 10 42 

Myanmar  4219  4139 65 33 35  8096 92 99 8 

 627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 

 635 

 636 

 637 

 638 

 639 

 640 

 641 

 642 

 643 

 644 

 645 

 646 

 647 

 648 
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Table 4.  Population, roads, and agriculture in the observed, dynamic and static flood extents. 649 

test Site 
 population (counts)  roads (km)  agriculture (km2) 
 obs. dynamic static  obs. dynamic static  obs. dynamic static 

France  19,576 21,721 49,024  1326 1427 2845  282 432 1096 
USA  228,825 40,926 56,915  4651 2135 2540  – – – 

Myanmar  390,115 374,958 880,758  259 266 557  3776 3421 7043 

 650 
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 654 
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 656 
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 669

Figure 1.  Digital elevation model for sites in (a) west France, (b) north east USA, and (c) south Myanmar. 670
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 675 

Figure 2.  Manning roughness coefficient values (n) for land cover in (a) France, (b) USA, and (c) Myanmar. 676 
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 681 

Figure 3.  Observed storm tide water levels at tide station (a) La Pallice, France for wind storm Xynthia, (b) The 682 

Battery, USA for hurricane Sandy, and (c) simulated water levels for south Myanmar during cyclone Nargis. 683 
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 693
Figure 4. Dynamically modelled maximum water depths and observed high water mark locations for sites in (a) 694

France, (b) USA, and (c) Myanmar. 695
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  701

Figure 5.  Vertical error between observed high water marks and estimated water heights for dynamic and static 702

models. Vertical error values < 0 m are model water height overestimations and > 0 m model water height 703

underestimations. The interquartile distance (IQD) is the difference between the upper and lower quartiles, and is the 704

central box in the boxplot. Boxplot whiskers extend to upper quartile plus 1.5 times the IQD, and the lower quartile 705

minus 1.5 times the IQD. Open circles represent extreme data values. 706
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 718 
 719 
Figure 6.  Locations correctly estimated, underestimated, and overestimated using dynamic (left column) and static 720 

(right column) models for sites in (a,b) France, (c,d) USA, and (e,f) Myanmar (different horizontal map scale 721 

between sites). 722 
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