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Abstract

An airship is lighter than an air vehicle with enormous potential in applications such as com-

munication, aerial inspection, border surveillance, and precision agriculture. An airship

model is made up of dynamic, aerodynamic, aerostatic, and propulsive forces. However,

the computation of aerodynamic forces remained a challenge. In addition to aerodynamic

model deficiencies, airship mass matrix suffers from parameter variations. Moreover, due to

the lighter-than-air nature, it is also susceptible to wind disturbances. These modeling

issues are the key challenges in developing an efficient autonomous flight controller for an

airship. This article proposes a unified estimation method for airship states, model uncer-

tainties, and wind disturbance estimation using Unscented Kalman Filter (UKF). The pro-

posed method is based on a lumped model uncertainty vector that unifies model

uncertainties and wind disturbances in a single vector. The airship model is extended by

incorporating six auxiliary state variables into the lumped model uncertainty vector. The per-

formance of the proposed methodology is evaluated using a nonlinear simulation model of a

custom-developed UETT airship and is validated by conducting a kind of error analysis. For

comparative studies, EKF estimator is also developed. The results show the performance

superiority of the proposed estimator over EKF; however, the proposed estimator is a bit

expensive on computational grounds. However, as per the requirements of the current appli-

cation, the proposed estimator can be a preferred choice.

1. Introduction

An airship is a lighter-than-air, buoyancy-driven vehicle that gains its lift from low-density gas

such as helium or hydrogen. An airship can be constructed using a rigid frame, or it may con-

sist of a flexible envelope. To make it fly worthy, a comprehensive steering mechanism and a

useful payload are attached to it. An airship has some unique and promising characteristics,

making it a favorite among air vehicles, which led to its reemergence after 60 years of silence.
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Now, many companies and institutions worldwide are enthusiastically working on manned

and unmanned airship-based projects [1]. An airship has certain advantages over conventional

air vehicles, for example, environmentally friendly vehicle, simpler technology, ease of opera-

tion, low power consumption, and long-duration flights. These advantages make them suitable

for many potential applications. For example, hovering capabilities make it suitable for a high-

altitude communication platform. It has high payload carrying capabilities and can provide a

long endurance platform for military surveillance, environmental and agricultural monitoring,

advertisement, geographical surveys, and data collection for research [2–4].

These applications require various autonomous flight missions. For the successful execu-

tion of these missions, developing an efficient and reliable navigation and control system for

an airship is inevitable. However, the complex dynamics of an airship and its vulnerability to

wind disturbances pose a great challenge for designing an efficient control system. In litera-

ture, many nonlinear control approaches, such as Sliding Mode Control (SMC) [5, 6], Back-

Stepping Controller (BSC) [7], Model Predictive Control [8, 9], and Nonlinear Model Predic-

tive Controller (NMPC) [10], have been applied for the development of a control system for an

airship and ground vehicles. Although they are robust control methods, they are usually

designed for the worst-case scenario, sacrificing the nominal performance. They perform satis-

factorily well if the model uncertainty prevails within specified bounds for which the controller

is designed. An airship model suffers from model uncertainties that may degrade the perfor-

mance of the nonlinear control methods if the uncertainty exceeds the assumed bounds. In the

literature, researchers have suggested a robust control method. For example, in [11], the author

has designed the scenario-based H-infinity controller for the ground vehicles to handle uncer-

tainty. In hybrid control methods that couple the neural networks, adaptive and fuzzy methods

with SMC or BSC are used to handle airship model uncertainties and increase the overall con-

trol performance [12–15].

Hence, it is important to provide reasonably accurate model information to the controller

for adequate control performance. An airship model is made up of dynamic, aerodynamic,

aerostatic, and propulsion forces. Apart from others, the computation of aerodynamic forces

remains an issue for dynamic airship analysis [16]. In the literature, wind tunnel experiments,

computational aerodynamic methods, and nonlinear estimation methods have been used for

aerodynamic model computation. In wind tunnel experiments, an airship-scaled physical

model is mounted at a fixed location in the tunnel with pressure measuring sensors at different

locations on its surface. The wind is blown on it at different angles of attack and sideslip angles.

From the sensor’s data, drag force, side force, lift force, rolling, pitching, and yaw moment

coefficient are computed [17]. Wind tunnel methods were common in the early days of airship

development when other methods were not available [18]. Many reports of the national advi-

sory committee for aeronautics have covered the wind tunnel data for many British and Amer-

ican airships [19, 20]. Wind tunnel experiments were also used to develop an aerodynamic

model for modern airships; for example, Gomes has developed the aerodynamics of the YEZ-

2A airship by collecting 600 hours of wind tunnel data for different sideslip and angle of

attacks [17]. Jones, from the University of Toronto Institute for Aerospace Studies, has per-

formed wind tunnel experiments for TCOM-250 aerostat [21]. Wind tunnel data for Lotte air-

ship developed in the University of Stuttgart, Germany, have also been reported in the

literature [22]. However, these experimental setups are expensive and the collection of wind

tunnel data for a large range of angle of attacks and sideslip angle is a laborious task. Conse-

quently, researchers have proposed aerodynamic models that depend on airship geometrical

parameters.

Initial theoretical work on the airship aerodynamic model can be found in the late 1920s. In

this context, Munk has published a report that discussed airship aerodynamic characteristics
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using potential flow theory [23]. Munk’s work is improved by the incorporation of the cross-

flow drag [24]. Later, aerodynamic modeling equations are modified by incorporating airship

hull and fin interaction [21]. Muller has formulated the 6-degree-of-freedom (DOF) nonlinear

equations for calculating airship aerodynamic forces and torques, but these equations were

deficient in damping terms due to roll, pitch, and yaw moments [25]. Muller’s work is

improved by incorporating damping terms in the nonlinear equations [16]. These methods

depend on the geometrical parameters of an airship and assume that the envelope maintains

its shape. However, aerodynamic forces may vary due to unforeseen shape changes in the

envelope.

Some researchers have suggested nonlinear filter-based estimation approaches to avoid the

expensive wind tunnel experiments and address the limitations of computational aerodynamic

calculation methods. They have estimated the aerodynamic coefficients or the complete aero-

dynamic model. In these estimation methods, Kalman filters have been applied to estimate

aerodynamic model coefficients [26] or aerodynamic forces and torques [27, 28]. The aerody-

namic model parameter estimation method estimates more than 50 parameters [26]. That

makes the procedure computationally exhaustive because it introduces more than 50 aug-

mented state variables, resulting in many states. This is directly related to the Kalman filter

computational complexity. However, the method suggested by some researchers introduces

only six augmented state variables to estimate the complete aerodynamic model [27, 28].

These estimation methods are a good cost-effective solution for approximating the airship

aerodynamic model. However, they do not consider the model uncertainties due to variation

in the airship mass matrix parameters and wind disturbances. Parameter variations of airship

mass matrix and dynamic forces are inevitable. Airship mass matrix and dynamic forces con-

sist of airship mass, added mass, inertia, added inertia, and Center of Gravity (CG) terms [29].

During airship flight, the air is charged in and out of the envelope, which causes changes in

mass matrix parameters. Even a small amount of helium gas leakage also changes mass matrix

parameters. Apart from model uncertainties, due to the lighter-than-air nature, an airship is

also susceptible to wind disturbances. In the literature, adaptive neural networks and fuzzy

methods are used for handling airship model uncertainties and wind disturbances [12–15].

Nevertheless, they are computationally intensive.

Building on the existing literature, in this paper, an estimation solution is proposed that

introduces a lumped model uncertainties estimation approach based on the UKF estimator.

The proposed work is a significant extension of our previous results reported in [27, 28]. The

previous work only deals with the estimation of an airship aerodynamic model; however, the

proposed work extends the results and incorporates model uncertainties and wind distur-

bances at the same time. The method estimates the airship states and the combined uncertainty

vector incorporating mass matrix variations, aerodynamic model deficiencies, and wind

forces. The proposed method avoids the expensive wind tunnel experimentation, deficiencies,

and limitation of existing computational aerodynamic methods and the aerodynamic model

estimation methods. The estimated uncertainty vector can be used to enhance the perfor-

mance of a model-based controller. The proposed approach is validated by conducting exten-

sive simulations and considering three cases where the lumped model uncertainty vector

estimates the mass matrix variations, aerodynamic model deficiencies, and wind disturbances.

For the comparative study, the same problem is solved using the EKF estimator.

2. Airship modeling

An airship is made up of an axis-symmetric, teardrop-shaped hull filled with helium gas, as

shown in Fig 1. Its envelope accommodates an air-filled ballonet that controls the buoyancy.
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Two rudders and elevators are mounted on its tail in a plus configuration that creates the nec-

essary aerodynamic force for maneuvering during an airship cruise flight. It is equipped with

propellers mounted on both sides of the gondola. Gondola houses batteries, cameras, naviga-

tion, and control equipment required for autonomous airship operation.

As the airship is a buoyancy-driven air vehicle, its equations of motion are slightly different

from the conventional aircraft. Because of its lighter-than-air nature, the main difference is the

added mass and inertial terms. Underwater vehicles and airships are both buoyancy-driven

vehicles. So, the mathematical model of an airship is derived from well-developed models of

Remotely Operated underwater Vehicles (ROVs). Gomes [17] has used the small perturbation

model of ROVs to study the YEZ-2A airship flight dynamics. He has adopted the 6-DOF non-

linear model of an airship, which is comprised of dynamics, buoyancy, gravity, aerodynamic,

and propulsion forces. Because an airship is prone to wind disturbances, wind forces are also

incorporated into the airship model [30].

Two reference frames are used for assessing airship navigation. As shown in Fig 1, an iner-

tial reference frame located at any fixed point on the surface of the earth is denoted by OeX-

eYeZe, where OeXe-axis points toward the north, OeYe-axis points toward the east, and OeZe-

axis points upward. A body-fixed reference frame is centered at the Center of Volume (CV) of

the airship, denoted by ObXbYbZb, where ObXb-axis points toward its nose. It coincides with

the symmetry axis of the envelope, ObZb-axis points toward the earth center and ObYb-axis as

determined by the right-hand rule points to the right.

Generalized coordinates of an airship are represented by �x ¼ ½P;F�0, where P = [x,y,z]0 is

the position with respect to the inertial frame and F = [ϕ,θ,ψ]0 are its attitudes. The generalized

vector for velocities with respect to the body frame is represented by �Vb ¼ ½n;O�0, where v =

[u,v,w]0 is the vector of linear velocities and O = [p,q,r]0 are the angular velocities. Using these

notations, the vector form of the 6-DOF equation of motion for an airship can be written as

follows:

�_x ¼ RðFÞ �Vb ð1Þ

�_V b ¼
�M � 1ð�FD þ

�FAS þ
�FAD þ FW þ UÞ; ð2Þ

where �x ¼ ½x; y; z; �; y;c� and �Vb ¼ ½u; v;w; p; q; r�. R(F) = diag(R1(F), R2(F)) is the rotation

matrix that transforms the body axes velocities to the inertial frame; �M is the airship mass

Fig 1. The coordinate system of an airship.

https://doi.org/10.1371/journal.pone.0257849.g001

PLOS ONE State estimation using UKF

PLOS ONE | https://doi.org/10.1371/journal.pone.0257849 November 5, 2021 4 / 25

https://doi.org/10.1371/journal.pone.0257849.g001
https://doi.org/10.1371/journal.pone.0257849


matrix; �FD is the dynamic force vector that is made up of Coriolis and centripetal forces; �FAS is

the aerostatic force vector that is made up of buoyancy and gravity forces; �FAD is the aerody-

namic force vector; U is the generalized control input vector. The expressions for rotation

matrix with the simplification of cos(.), sin(.) and tan(.) as c(.), s(.), t(.), respectively, are given in

the following equations:

R1ðFÞ ¼

cccy ccsys� � scc� ccsyc� þ scs�
sccy sys�sc þ ccc� scc�sy � ccs�
� sy cysc cycc

2

6
4

3

7
5; ð3Þ

R2ðFÞ ¼

1 s�ty c�ty
0 c� � s�
0 s�secðyÞ c�secðyÞ

2

6
4

3

7
5: ð4Þ

The mass matrix is given as follows:

�M ¼

m1 0 0 0 m5 0

0 m2 0 m4 0 m6

0 0 m3 0 m7 0

0 m8 0 m9 0 m10

m11 0 m12 0 m13 0

0 m14 0 m15 0 m16

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

: ð5Þ

The mass matrix terms are defined in S1 Appendix. They are made up of airship mass,

added mass, inertia, added inertia, and its CG. The dynamic, aerodynamic, and aerostatic

force vectors are given in the following equations:

�FD ¼

� mzwqþmyrvþm½axðq2 þ r2Þ � azrp�

� mxur þmzpwþm½� axpq � azrq�

� myvpþmxquþm½� axrpþ azðq2 þ p2Þ�

� ðJz � JyÞrqþ Jxzpqþmazður � pwÞ

� ðJx � JzÞpr þ Jxzðr2 � p2Þ þ . . .

m½axðvp � quÞ � azðwq � rvÞ�

� ðJy � JxÞqp � Jxzqr þm½� axður � pwÞ�

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

; ð6Þ

�FAD ¼ f Vtð Þ

CX1c2
a
c2
b
þ CX2s2asa

2

CY1cb=2s2b þ CY2s2b þ CY3sbsjbj
Cz1ca=2s2a þ Cz2s2a þ Cz3sasjaj

CL2sbsjbj
CM1ca=2s2a þ CM2s2a þ CM3sasjaj
CN1cb=2s2b þ CN2s2b þ CN3sbsjbj

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

; ð7Þ

PLOS ONE State estimation using UKF

PLOS ONE | https://doi.org/10.1371/journal.pone.0257849 November 5, 2021 5 / 25

https://doi.org/10.1371/journal.pone.0257849


t

�FAS ¼

� ðW � Bf Þsy
ðW � Bf Þcys�
ðW � Bf Þcyc�

azWcys�
� ðazW � bzBf Þsy � ðaxW � bxBf Þcyc�

axWcys�

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

; ð8Þ

where m, mx, my, mz, Jx, Jy, Jz, Jxz are the terms corresponding to the airship mass and inertia and are

given in S1 Appendix. (ax, az) are the coordinates of CG with respect to CV. α and β are the angle of

attack and sideslip angles, respectively. W is the airship weight and Bf is the buoyancy force. The function

f Vtð Þ ¼
1

2
rV2

t and Vt is the velocity of airship. Cij(i = X,Y,Z,L,M,N;j = 1,2,3,4) are the aerodynamic

coefficients.

It is considered that wind is acting on an airship in a horizontal inertial plane with constant

velocity. It does not induce angular disturbance. The wind velocity in the body frame can be

obtained by transforming wind speed from the inertial frame using the transformation matrix

defined in (3). So, the wind velocity in the body frame can be expressed by the following equa-

tion:

Vw ¼ RðFÞ

VNwcosðcwÞ

VEWsinðcwÞ

0

2

6
4

3

7
5; ð9Þ

where VNw and VEW are the wind velocities in the inertial frame with an incidence angle of ψw

with respect to the inertial frame. It has the same sign convention as the yaw angle defined ear-

lier. The Dryden model power spectral density function is used to model the turbulent gust

[31]. Gust velocities are generated by applying noise inputs having unitary power spectral den-

sity function to the filters given in the following equation:

Hu sð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2Ves

2
u

Lup

s
1

sþ Ve
Lu

� �

2

4

3

5; ð10Þ

Hv sð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2Ves

2
v

Lvp

s
sþ Veffiffi

3
p

Lu

� �

sþ Ve
Lv

� �� �2

2

6
4

3

7
5; ð11Þ

Hw sð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2s2

w

LwVep

s
sþ Veffiffi

3
p

Lw

� �

sþ Ve
Lw

� �� �2

2

6
4

3

7
5; ð12Þ

where {Lu, Lv, Lw} are the turbulence scale lengths that depend on aircraft height. {σu, σv, σw}

are the intensities of turbulence in each direction. ‘s’ is the Laplace operator and Ve is the equi-

librium speed of aircraft. The filters output the translational velocities {ug, vg, wg} of the atmo-

spheric gusts. If the linear turbulence gust velocity vector is represented by Vg = [ug vg wg]
T,

then the airflow vector can be given by Va = Vg+Vw. In this work, it is assumed that the turbu-

lence gust does not produce angular wind disturbance, so the influence of wind on an airship
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may be encapsulated as follows:

Fw ¼
M _Va þ O�MVa

O3�1

" #

; ð13Þ

where M contains the airship mass and added mass terms. Wind forces disturb the airship

total velocity, angle of attack, and sideslip angle. Hence, its modified form can be represented

by Vt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

a þ v2
a þ w2

a

p
; a ¼ tan� 1ðwa=uaÞ; b ¼ sin� 1ðva=VtÞ.

The UETT airship flight is intended to be a low-altitude flight over around 300–400 feet of

altitude because the airship will be used for low-altitude monitoring tasks. According to the

military references [32], for low-altitude flights (below 1750 feet) and small aircraft, the turbu-

lence scale length for clear air turbulence can be approximated by the following relations:

Lw ¼ h; ð14Þ

Lu ¼ Lv ¼
h

ð0:177þ 0:000823hÞ1:2
; ð15Þ

where h is the altitude in feet. Typically, Taxila and Islamabad areas of Pakistan are marginal

wind speed areas. In these areas, the wind speed varies between 3 and 6.2 ms-1 at about 200–

400 feet of altitude [33]. Therefore, the turbulence intensities can be given as follows:

sw ¼ 0:1W200� 400; ð16Þ

su ¼ su ¼
1

ð0:177þ 0:000823hÞ0:4
0:1W200� 400; ð17Þ

where W200−400 is the wind speed (in feet/sec) at fifty meters of altitudes. Therefore, the value

of W200−400 will be 17.7165 feet/sec.

Assumption 1. The derivation of the 6-DOF model considers an airship as a rigid body and

ignores the aeroelastic effects. Further, it is considered that the CG point of the airship lies

beneath the CV. However, the variations of CG and aeroelastic effects are treated as model

uncertainties, estimated using a lumped uncertainties estimation approach.

Assumption 2. The mass matrix parameters mi = mi0+Δmi (i = 1,2,. . .,16) are uncertain

with a known part ai0 and an uncertain part Δmi. The uncertain part is bounded by some

upper bound �mimax. The aerodynamic model coefficients Cij = Cij0+CijΔ (i = X,Y,Z,L,M,N;

j = 1,2,3,4) are uncertain, where Cij0 is a known part and CijΔ is an unknown part bounded by

some upper bound �Cijmax. The CG point {ax = ax0+Δax, az = az0+Δaz} is uncertain with a

known part {ax0, az0} and an uncertain part {Δax, Δaz}. The uncertain part is bounded by an

upper bound f�axmax; �azmaxg.

Assumption 3. The airship is equipped with GPS and IMU and pressure measuring sensors

from which its current position and attitude estimates are made. This assumption is realistic

because the available off-the-shelf solutions perform sensor fusion using nonlinear estimators

and provide the estimates of UAV position and attitude. According to the first assumption, the

CG point lies beneath the CV. So, it is further assumed that the gondola and payload location

constrain the airship roll angle and pitch angle to the limits {j�j < p

2
; jyj < p

2
}, ensuring that

the rotation matrix remains nonsingular.

Assumption 4. The airship is equipped with a pitot tube sensor that provides the measure-

ment of its speed Vt.
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3. Unscented Kalman filter design for airship model uncertainties

and wind disturbance estimation

In engineering, filtering and estimation are inescapable tools that are almost a part of every

control and signal processing problem. The estimators play a key role in finding the true state

information from the noisy sensor measurements [34–37]. If the problem lies in the linear

domain, then the best optimal minimum least square estimator is the Kalman filter. In theoret-

ical terms, the Kalman filter is an estimator for the linear-quadratic problem where it is desired

to estimate the instantaneous state of a linear system perturbed with white noise. This is done

by utilizing measurements that are linearly related to the system’s states but corrupted with

white noise. Practically, it is one of the important discoveries in statistical estimation theory. It

enabled engineers to solve many problems that were not possible without it.

However, for nonlinear dynamical systems, Schmidt has discovered the improved version

of the Kalman filter, i.e., Extended Kalman Filter (EKF), a recursive filter that linearizes the

system on every sampling instant and applies linear Kalman filter equations. EKF has wide-

spread utility in many important real-world applications, such as the control of ships, aircraft,

and spacecraft. Although the utility of EKF in practical applications cannot be denied, its per-

formance may be degraded in some cases where strong nonlinearities exist or the equations

for the nonlinear dynamical system are not well known. In such cases, it suffers from imple-

mentation issues due to the calculation of the Jacobian matrix.

In 1997, Julier and Ohlmen introduced the basic equations for the UKF that address the

deficiencies of EKF and avoid the calculation of the Jacobian matrix [38]. Contrary to the EKF,

UKF accurately captures the mean and covariance up to the second order of Taylor series

expansion for any nonlinear system. UKF is based on the deterministic sampling approach

where a few sample points are carefully chosen, called sigma points. The state distribution is

again assumed as Gaussian random variables. The carefully selected sigma points are passed

through Unscented Transformation (UT). In UT, the sigma points are passed through the

actual nonlinear system model and transformed points are obtained. The mean and covariance

of the transformed points are calculated. This mean and covariance represent the true mean

and covariance of the system.

UKF algorithm can be divided into two steps: the prediction step and the correction step.

In both steps, the same UT is used for the system state model and measurement model. Fig 2.

shows the basic flowchart for the Kalman filter algorithm. It highlights the basic governing

steps for the Kalman filter and its variants. The Kalman filter algorithm and its variants have

been utilized to estimate system measurable and unmeasurable states, unknown parameters,

disturbances, and system faults. For such applications, the system is represented in state-space

form. The unknown parameters of interest, such as unknown model parameters, disturbances,

and system faults, are represented as additional state variables. In such a situation, it estimates

both system states and additional unknown variables of interest.

For airship states, aerodynamic model parameters estimation, and aerodynamic model esti-

mation, few contributions can be found in the literature as mentioned earlier. The airship

aerodynamic model parameters are estimated using UKF; however, this approach is computa-

tionally overburdened and cannot be preferred as an online estimation solution. To overcome

its deficiencies, the estimation strategy for the complete aerodynamic model (instead of its

individual parameters) is also proposed using only six augmented state variables. The sug-

gested approach is computationally efficient and can provide an online estimate of the airship

aerodynamic model. However, it is based on the assumption that airship mass matrix and

dynamic and aerostatic force vectors are known. Moreover, airship parameters are not varying

during the complete flight operation.
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This article proposes a general estimation solution without considering such an assump-

tion. An estimation framework is presented where airship model uncertainties, airship states,

and wind disturbance are estimated by introducing only six auxiliary state variables. The pro-

posed work is intended to be computationally less intensive and it aims to provide a compre-

hensive online estimation solution for implementing a nonlinear controller. A lumped

estimation approach based on UKF is proposed where changes in the airship model due to

model uncertainties and wind disturbances are combined in a single vector. First, the airship

known model (model with nominal parameters) is separated from the uncertain part (per-

turbed part). Then, the complete airship model is represented in terms of a known part and an

uncertain part. For the uncertain part, a lumped uncertainty vector is introduced. For the

known part of the airship model, the following assumption is introduced.

Assumption 5. The only known part of the airship model as defined in Assumption 2 is

actually available. While the vector of wind forces Fw is unknown, it is bounded by a scalar

Fwmax>0, i.e., kFwk<Fwmax.

By utilizing Assumption 5, the known part of the airship model can be formulated as fol-

lows:

_̂x 1 ¼ RðYÞx̂2; ð18Þ

_̂x 2 ¼ M� 1ðFD þ FAS þ FAD þ BUÞ; ð19Þ

where the terms M, FD, FAS, FAD, and B are defined in (5–8), respectively, with known values

(nominal values) as given in Assumption 2. In lumped approach, a unified term (lumped

term) in the known airship model (18–19) covers the deficiencies in the model. The modified

model incorporating model uncertainties can be represented by the following equations:

_x1 ¼ RðYÞx2; ð20Þ

_x2 ¼ M� 1ðFD þ FAS þ FAD þ BUÞ þ DFMu; ð21Þ

Fig 2. Generalized flowchart for the estimator.

https://doi.org/10.1371/journal.pone.0257849.g002
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where

DFMu ¼
�M � 1ð�FD þ

�FAS þ
�FAD þ FW þ BUÞ � M� 1ðFD þ FAS þ FAD þ BUÞ: ð22Þ

For the application of the UKF algorithm, the airship model defined in (16–17) is repre-

sented in nonlinear state-space form, and six additional state variables are introduced for

lumped model uncertainty vector.

Let

F ¼ FD þ FAS þ FAD þ BU: ð23Þ

Moreover, the lumped uncertainty vector is defined as follows:

DFMu ¼ ½DFu DFv DFw DFp DFq DFr�: ð24Þ

The uncertainty vector estimates the total effect on airship body axes’ linear and angular

acceleration due to the variations that occur in the airship model. ΔFu, ΔFv, and ΔFw represent

the effects on the forward, sway, and vertical acceleration, while the effects on the roll, pitch,

and yaw acceleration are represented by ΔFp, ΔFq, and ΔFr, respectively. The modified model

can be formulated as follows:

_x1

_x2

D _FMu

2

6
4

3

7
5 ¼

RðYÞx2

M� 1F þ DFMu

O6�1

2

6
4

3

7
5; ð25Þ

where O6×1 is the matrix with all zero elements. The new model state vector consists of eigh-

teen state elements defined as follows:

X ¼ ½P F n O DFMu�: ð26Þ

According to Assumption 3, the state measurement vector can be defined as follows:

Y ¼ CX ¼ ½I12�12 O12�6�X: ð27Þ

Eq (21) represents the continuous-time state-space representation of the airship model. Its

compact representation is given in Eq (24).

_X ¼ f ðX; uÞ: ð28Þ

For the discrete-time UKF algorithm implementation, explicit first-order Euler integration

is performed in (24). Moreover, it is augmented with process and measurement noise. The dis-

crete-time representation of the model (28) is given as follows:

Xkþ1 ¼ IXk þ Tsf ðXk; ukÞ þWp; ð29Þ

Y ¼ CXk þWm; ð30Þ

where Xk represents the discrete-time state vector, Ts is the sampling time, Wp is the process

noise vector, and Wm is the measurement noise vector. Wp and Wm have white noise with zero

mean. The process noise and measurement noise covariance matrixes are represented by Q
and R, respectively.

UKF algorithm at each sampling time is summarized as follows.
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Prediction

The sigma point at time step k is selected:

χ̂ð0Þk� 1 ¼ X̂k� 1; ð31Þ

χ̂ðjÞk� 1 ¼ ½X̂k� 1 þ ð
ffiffiffiffiffiffiffiffiffiffiffiffi
NPk� 1

p
ÞjX̂ k� 1 � ð

ffiffiffiffiffiffiffiffiffiffiffiffi
NPk� 1

p
Þj� j ¼ 1; . . . ;N ð32Þ

UT is applied to the state function:

χ̂ðjÞk ¼ f ðχ̂ðjÞk� 1; ukÞ; ð33Þ

X̂k ¼
P2N

j¼0
Wj

N χ̂
j
k j ¼ 1; . . . ;N; ð34Þ

Pk ¼
P2N

j¼0
Wj

Nðχ̂
ðjÞ
k � X̂kÞ

T
ðχ̂ðjÞk � X̂kÞ þ Q: ð35Þ

Correction

UT is applied to the measurement function:

Ŷ j
k ¼ hðχ̂ðjÞk ; ukÞ; ð36Þ

Ŷ k ¼
P2N

j¼0
Wj

NŶ
j
k; ð37Þ

Py ¼
P2N

j¼0
Wj

cðŶ
j
k � Ŷ kÞ

T
ðŶ j

k � Ŷ kÞ þ R; ð38Þ

Wj
c ¼

1

2N
j ¼ 1; 2; . . . ; 2N: ð39Þ

The cross-correlation is calculated:

Pxy ¼
1

2N
P2N

j¼0
ðχ̂ðjÞk � X̂kÞðŶ

j
k � Ŷ kÞ: ð40Þ

The Kalman gain, corrected state vector, and error covariance matrix are calculated:

Kk ¼ PxyP
� 1

y ; ð41Þ

X̂kþ1 ¼ X̂k þ KðYk � Ŷ kÞ; ð42Þ

Pkþ1 ¼ Pk � KkPyK
T
k ; ð43Þ

where Pk is the state error covariance matrix. In the prediction phase, the first step is to select

sigma points, which are actually spread around the current state value. The number of sigma

points depends on the total number of states. Then, these points are passed through UT. In

UT, sigma points are subjected to the nonlinear airship model and transformed points are

obtained. Further, the weighted mean and covariance of transformed points are calculated. In

the correction step, first, the transformed sigma points are passed through UT, where they are

subjected to the measurement model. Then, the current output measurement covariance is cal-

culated. Cross-covariance of data is calculated using transformed sigma points obtained

PLOS ONE State estimation using UKF

PLOS ONE | https://doi.org/10.1371/journal.pone.0257849 November 5, 2021 11 / 25

https://doi.org/10.1371/journal.pone.0257849


through state model, measurement model estimated state, and estimated measurement. In the

last step, Kalman gain is calculated and utilized for the correction of state and state error

covariance.

4. Results and discussion

The performance of the proposed estimator has been verified by developing the simulation

environment for the experimental UETT airship under the autonomous UAV development

project for environmental monitoring tasks. A nonlinear 6-DOF simulation model of the air-

ship is developed in MATLAB/Simulink R2019b with a variable step R-K (Runga-Kutta)

method on a computer having a CPU frequency of 2.5 GHz and 8 GB of RAM. For the simula-

tion, 0.002 s sampling time is used. Fig 3 shows the block diagram of the proposed algorithm

to estimate the required parameters. The airship simulator uses the nonlinear dynamic equa-

tions of the airship model for UETT airship [39, 40]. Mass matrix parameters for the airship

are given in S1 Appendix.

For comparative study, EKF is designed for the same application. EKF requires the compu-

tation of the Jacobian matrix. Therefore, the analytical expressions for the Jacobian matrix are

established and given in S2 Appendix. EKF algorithm is based on the same prediction and cor-

rection steps; however, it goes through the linearization step following the flow illustrated in

Fig 2.

For performance evaluation, three different cases have been considered. The first case deals

with the estimation of the uncertainty vector defined in (24). Estimation is performed subject

to the variation in the airship aerodynamic model. The second case is about the estimation of

mass matrix parameters. The third case discusses wind disturbances as applied to the airship

during its aerodynamic flight. For all cases, a controlled flight is considered. A change in the

parameters of an aerodynamic model and a mass matrix is introduced during the flight.

4.1. Airship aerodynamic model estimation

The airship-controlled flight is illustrated in Fig 4. The airship moves along the predefined

three-dimensional straight-line trajectory while executing controlled aerodynamic flight. In

order to get the transient flight state, different initial conditions for the desired trajectory and

airship simulator are considered. Large variations in all the states can be seen in the transient

part of the flight. In a steady state, the airship follows the desired trajectory and starts executing

the smooth flight by stabilizing all the states. The desired trajectory starts from the point [45

m, 60 m, −80 m]. The airship simulator is initialized with P0,F0, υ0, O0 values as given in

Table 1. The initial conditions used for the estimator are given in Table 2.

Generally, the accuracy of the initial values facilitates the convergence of a system. The best

initial values give the best convergence. In our case, to give an allowance for inaccurate initial

values, we have tested our algorithm for a change of 20% in the accurate initial values.

For the present case, it is assumed that airship mass matrix parameters remain unchanged

and wind disturbances are not acting on the airship. So, we can say that �M ¼
M; �FD¼ FD;

�FAS ¼ FAS and FW = 0. The lumped uncertainty vector is simplified to

DFMu ¼ M� 1ð�FAD � FADÞ. It indicates that the lumped uncertainty vector encapsulates the dif-

ference between the actual aerodynamic forces acting on the airship and the aerodynamic

model used in the estimator design. After 15 seconds of flight, a change δ, in the aerodynamic

force vector �FAD, is introduced such that �FAD ¼ FAD þ d where δ is a six-dimensional vector

and its value in simulation is selected as given in (27).

We have used the analytical expression for the aerodynamic modeling equation as given in

[27]. The comparative study of the analytical model with Gomez’s wind tunnel model shows
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Fig 3. Block diagram of the simulation environment involving the estimation of the proposed estimator.

https://doi.org/10.1371/journal.pone.0257849.g003
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that the analytical aerodynamic modeling equations have 20% error in the side force coeffi-

cient, 10% error in the rolling moment coefficient, and 25% error in the yaw moment coeffi-

cient. To be on the safe side, we have considered a 30% change in the steady-state

aerodynamic forces and torques.

d ¼ ½� :45 :6 :09 :3 :6 3:6�: ð44Þ

After 15 seconds of flight, the estimator estimates the change ΔFMu = M−1(δ). The estima-

tion results for the uncertainty vector are summarized in Fig 5. The value of ΔFMu before 15

seconds is zero because �FAD ¼ FAD, where �FAD is the aerodynamic model used in the simulator

design and FAD is in the estimator design. However, the simulator model observes δ change

that alters the model uncertainty vector. Fig 6 shows the estimation error and error bounds for

the estimated states and uncertainty vector.

Fig 4. Airship-controlled flight. The dashed green line indicates the actual path traveled by the airship, and the red

line shows the desired trajectory. At the 15 sec point, the airship reaches the desired trajectory and starts a steady-state

flight. The start of steady-state flight is indicated by a red rectangle.

https://doi.org/10.1371/journal.pone.0257849.g004

Table 1. Initial conditions for airship simulator.

State Symbol Value Units

Position P0 [−20, −10, −80] m

Attitudes F0 [0, 0, 0.5] rad

Linear velocities υ0 [0.4, 0.2, 0.1] ms-1

Angular velocities O0 [0, 0, 0.001] rads-1

https://doi.org/10.1371/journal.pone.0257849.t001
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4.2. Mass matrix parameter variations

In this case, it is considered that the airship aerodynamic model is known while its airship mass

matrix suffers from parameter variations. Moreover, wind disturbances are not acting on the

airship. Hence, the model uncertainty vector will be DFMu ¼
�M � 1ð�FD þ

�FAS þ FAD þ BUÞ�
M� 1ðFD þ FAS þ FAD þ BUÞ. The changes in mass matrix parameters are actually unavoidable

in a real flight. During the airship flight for controlling buoyancy, the air from the air ballonet is

charged in and out, which causes variation in an airship mass, and also a small amount of

helium gas leakage is inevitable. These variations also change the CG point. The performance of

an autonomous flight controller can be improved if the model uncertainty information is calcu-

lated online and provided to the controller.

During the flight, the random error in mass matrix parameters can happen; that is, why the

researchers have used a change of 20% in airship model parameters [41]. For further overcon-

fidence of our proposed techniques, we have used 30% changes in mass matrix parameters

after 15 seconds of the airship aerodynamic flight. The proposed estimation scheme is used to

Table 2. Initial conditions for estimatior.

State Symbol Value Units

Position P0 [−24, −12, −96] m

Attitudes F0 [0.2, 0.2, 0.6] rad

Linear velocities υ0 [0.48, 0.24, 0.12] ms-1

Angular velocities O0 [0.2, 0.2, 0.0012] rads-1

Uncertainty vector ΔFMu0 [0 0 0.2 0 0 0].

https://doi.org/10.1371/journal.pone.0257849.t002

Fig 5. Estimation of model uncertainty and disturbance vector. In this case, it estimates the total effect on airship

body axes linear and angular acceleration due to the variations that occur in the airship aerodynamic model: (i) ΔFu;

(ii) ΔFp; (iii) ΔFv; (iv) ΔFq; (v) ΔFw; (vi) ΔFr.

https://doi.org/10.1371/journal.pone.0257849.g005
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estimate the changes. Fig 7 shows the filter estimated model uncertainty vector. Moreover,

their estimation error and uncertainty bounds are given in Fig 8.

4.3. Wind disturbance case

In order to evaluate the estimator performance subject to the wind disturbances, the following

assumptions are made:

Assumption 6. Airship mass matrix parameters remain the same during the course of the

flight.

Assumption 7. The aerodynamic model given in (7) is not considered in the estimator

design because the aerodynamic forces depend on an airship’s relative velocity. This assump-

tion will simplify the process of estimating wind forces along with aerodynamic forces instead

of estimating them separately.

Hence, the lumped model uncertainty vector estimated by the estimator will reduce to

DFMu ¼ M� 1ðFD þ FAS þ FAD þ Fw þ BUÞ � M� 1ðFD þ FAS þ BUÞ ¼ M� 1ðFAD þ FwÞ, since,

in this case, �M ¼ M; �FD¼ FD;
�FAS ¼ FAS. The same autonomous flight is considered, as dis-

cussed in case 1. Wind disturbances are applied after 20 seconds of the airship flight and the

estimation results for the model uncertainty vector are illustrated in Fig 9 and their respective

error bounds are given in Fig 10.

Fig 9 shows the estimation of the uncertainty vector under variations in aerodynamic forces

and wind disturbances. As it is assumed that wind acts on the airship after 20 seconds of flight,

the uncertainty vector initially captures only the aerodynamic forces. Fig 9 (a) shows the drag

force acting on the airship. The initial value of the drag force is high due to the high initial

value of the airship forward velocity component. When the airship starts following the desired

Fig 6. Estimation error and error bounds for lumped uncertainty vector showing the error and sigma bounds

corresponding to (i) ΔFu; (ii) ΔFp; (iii) ΔFv; (iv) ΔFq; (v) ΔFw; (vi) ΔFr.

https://doi.org/10.1371/journal.pone.0257849.g006
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trajectory, then its forward velocity and drag force stabilize to the steady-state values. Initially,

the airship is at a different position from the planned trajectory and the controller tries to

maneuver it toward the planned trajectory. Consequently, the airship experiences side and lift

aerodynamic forces.

Although from Fig 4, in steady state, it can be seen that airship executes rectilinear motion

in 3D space, it has a positive value of only forward velocity component. This is because, in a

steady state, the airship is heading in the direction of motion with a small pitch and has zero

sideslip and angle of attack. After 20 seconds of flight, wind disturbance is applied from inertial

Xe-axis in XeYe plane. It affects the airship belly at the left side and tries to push the airship out

of the desired path. This effect can be seen in Fig 10, where the changes in the side force, rolling

torque, and yaw torque are produced by wind.

4.4. Performance analysis and comparative study

In all cases, we can see that the proposed approach is able to estimate the model uncertainties

and external disturbances applied to the system. Model uncertainties can be due to deficiencies

in modeling, incorrect model parameters, parameter variations, or unmodelled dynamics. In

the cases presented above, we have discussed all of these uncertainties like the parameter varia-

tion of the mass matrix (in case 2), aerodynamic model (in case 1), and unmodelled dynamics

(in case 3), where the aerodynamic model is assumed to be unknown. In this section, to ascer-

tain the quality of estimates, a kind of error analysis is performed. To obtain the confidence on

estimates, a comparative study is conducted where the proposed estimator’s results are com-

pared with the EKF.

Fig 7. Estimation of model uncertainty and disturbance vector. In this case, it estimates the total effect on airship

body axes’ linear and angular acceleration due to the variations that occur in the airship mass matrix. (i) ΔFu; (ii) ΔFp;

(iii) ΔFv; (iv) ΔFq; (v) ΔFw; (vi) ΔFr.

https://doi.org/10.1371/journal.pone.0257849.g007
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Although the plots in Figs 5, 7, and 9 indicate that the proposed estimation method has a

small estimation error; however, statistical analysis has to be performed to quantify it. The

error between the true values and the estimated ones is calculated and they are evaluated using

1σ uncertainty bounds, where σ is the standard deviation of error. It refers to the amount of

variability in a given set of data: whether the data points are all clustered together or are heavily

spread out. For Gaussian distributions, the statistical rule says that about 68% of the data

should lie within one standard deviation about the mean value, 95% within two standard devi-

ations, and 99.7% within three standard deviations [42].

In this work, the error analysis is performed for each state and for all the cases. the mean

estimation error (Me) and standard deviation (σ) are calculated for the states and model uncer-

tainty vector. Results are summarized in Tables 3–5. The criteria of judgment for Me are as fol-

lows [43]:

1. Me should be less than ε, where ε is an upper bound specified by the designer of the control-

ler for an airship.

2. It should be centered on zero.

The results of the tables show that both estimators obey the minimum judgment criteria,

thus indicating the reliability of the estimates.

For case 1, the estimation error and uncertainty bounds for the airship uncertainty and dis-

turbance vector are given in Fig 6. From the figure, it can be seen that both estimators perform

adequately. The filter’s performance in the transient state is quantified from the figure where

convergence time for each estimate can be noted. Moreover, from the data in the table,

Fig 8. Estimation error and error bounds for lumped uncertainty vector showing the error and sigma bounds

corresponding to (i) ΔFu; (ii) ΔFp; (iii) ΔFv; (iv) ΔFq; (v) ΔFw; (vi) ΔFr.

https://doi.org/10.1371/journal.pone.0257849.g008
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estimator performance for a steady state is quantified. The data in the table shows that Me val-

ues for the airship states are close to zero.

As given in (17), side velocity (ΔFv) and roll rate uncertainty (ΔFp) terms have deviations in

errors. The EKF uncertainty bounds for ΔFv and ΔFp are 43.6 ms-2 and 51.3 rads-2, respectively.

However, these values are 1.9 ms-2 and 2.3 rads-2, respectively, for UKF. It is because EKF esti-

mation accuracy for side velocity and roll rate uncertainty terms are low compared to UKF.

The large standard deviation in these terms means that large estimation error may occur with

the probability of 0.68. The estimation error in ΔFv can reach up to 43.6 ms-2 and for ΔFp, it

can rise up to 51.3 rads-2 with a probability of 0.68. However, for UKF, the estimation error for

both terms can rise up to 1.15 ms-2 and 1.41 rads-2, respectively. It is because the UKF does not

rely on the first-order linear approximation of the system. Also, it propagates the true mean

and covariance.

EKF linearizes the system based on the current state estimates. If the initial state estimate is

away from the true value, then the transient response of the filter is affected. Apart from the

steady-state estimation accuracy, EKF converges late to the true value while UKF takes less

time for convergence. To quantify the convergence time, the uncertainty term related to the

vertical velocity is initialized with a 20% error, affecting the estimate of vertical velocity for

EKF. EKF converges to the true estimate after 10 seconds and UKF converges after 1 second.

The other notable figures in the table are related to the pitch rate. The analysis shows that for

both transient and steady-state cases, UKF performs better than EKF.

Fig 7 shows the estimation error and uncertainty bounds for case 2, from which the assess-

ment for transient response can be made. For the quantitative analysis of the steady-state

Fig 9. Estimation of model uncertainty and disturbance vector. In this case, the total effect on airship body axes

linear and angular acceleration is estimated due to the aerodynamic model and wind disturbance corresponding to (i)

ΔFu; (ii) ΔFp; (iii) ΔFv; (iv) ΔFq; (v) ΔFw; (vi) ΔFr.

https://doi.org/10.1371/journal.pone.0257849.g009
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response, the data for mean estimation error and the steady-state value of uncertainty bounds

are given in Table 4. The plots show that the estimation error for the last two cases is more

than that of case 1. This is because in case 2, the change in mass matrix parameters induces

high-frequency changes in the uncertainty vector, for which it becomes difficult for both EKF

and UKF to detect the changes. Actually, in the simulation, we have taken the worst-case sce-

nario where a sudden change in mass matrix parameters is applied after 20 seconds of a simu-

lation run. However, in a real-world scenario, mass matrix parameters vary smoothly.

Although the estimation error in case 2 exists, it remains within uncertainty bound and obeys

the minimum performance criteria and the estimation error for the steady state is less than

that of the transient state.

From Fig 7, we can see that in the transient state, the estimation error for ΔFMu for EKF is

more. In some cases, like for ΔFp, the error deviation is 1.61 rads-2; for ΔFv and ΔFp, it is

Fig 10. Estimation error and error bounds for lumped uncertainty vector, with the error and sigma bounds for (i)

ΔFu; (ii) ΔFp; (iii) ΔFv; (iv) ΔFq; (v) ΔFw; (vi) ΔFr.

https://doi.org/10.1371/journal.pone.0257849.g010

Table 3. Case 1: Mean estimation error for all states.

State EKF UKF

Me σ Me σ
ΔFu 4.5e-3 0.48 -1.7e-3 0.011

ΔFv 0.4687 43.6 0.1346 1.906

ΔFw 6.2e-3 0.49 4.2e-3 0.017

ΔFp 0.9830 51.3 0.2751 2.396

ΔFq 5e-4 0.29 1.3e-4 0.002

ΔFr -3.6e-2 1.92 -1.56e-2 0.136

https://doi.org/10.1371/journal.pone.0257849.t003
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46.6 ms-2 and 61.1 rads-2, respectively. It shows that for EKF, the estimation error for these

terms can be large compared to the magnitude of the estimate. Moreover, for EKF, the state

error covariance does not converge to zero and the probability of error remains high for steady

states. In contrast, for UKF, we can see that the error deviations for ΔFv and ΔFp are 1.723 ms-2

and 0.331 rads-2, respectively, which is small compared to the EKF. Furthermore, UKF quickly

converges to the true estimates with its estimation error within the minimum performance

bounds.

In case 3, the estimation error for the airship states and uncertainty vector is around zero.

This is because the estimation of uncertainty term for sway velocity is high. As in this case,

after 20 seconds of flight, wind disturbance is applied that affects the lateral motion of the air-

ship. A sudden change occurs in the sway velocity uncertainty (ΔFv) term that is approximately

200 ms-2, the same value as that of roll rate uncertainty term (ΔFp). The estimator detects the

change after a delay, which induces a large estimation error. However, in a steady state, the

estimator follows the true values. For UKF, the estimation error in the transient state is small

compared to that in EKF.

From the above analysis, we can observe that in a transient state, UKF outperforms the

EKF. In the steady state, large error bounds for EKF reveal that the estimator state error covari-

ance does not converge to zero. This implies that in a steady state, EKF estimates have a high

probability of a large estimation error.

For the analysis of the computational overhead of both estimators, few test scenarios are

considered where the running time of both estimators is recorded. The observations indicate

that the EKF method takes 60.38 milliseconds on average, while UKF takes 350.28 milliseconds

per estimate. The computational intensiveness of the UKF algorithm is obvious because it has

to handle all sigma points and performs fifteen Runge-Kutta integrations to propagate the

sigma points. If Julier and Uhlmann’s method is used for reducing the number of sigma points

[43], eight Runge-Kutta integrations will still be required. However, the EKF algorithm needs

only one integration to complete the computation. For the airship, there are twelve actual state

Table 5. Case 3: Mean estimation error for all states.

State EKF UKF

Me σ Me σ
ΔFu -5.1e-2 5.17 4.1e-3 0.052

ΔFv -5.4 33.2 -1.13 32.77

ΔFw -1.1e-2 4.81 5.1e-3 0.095

ΔFp -11.09 53.9 -2.1 9.33

ΔFq 2.4e-2 5.08 -2.3e-2 0.094

ΔFr 0.29 4.86 0.17 0.138

https://doi.org/10.1371/journal.pone.0257849.t005

Table 4. Case 2: Mean estimation error for all states.

State EKF UKF

Me σ Me σ
ΔFu 1.5e-3 0.46 6e-4 0.011

ΔFv -7.7e-3 46.5 -5.06e-3 1.723

ΔFw -5e-3 0.49 2.3e-3 0.017

ΔFp -1.8e-2 61.9 -1.06e-2 0.331

ΔFq -1.1e-3 0.28 4e-4 0.002

ΔFr 1e-4 2.01 2.5e-3 0.134

https://doi.org/10.1371/journal.pone.0257849.t004
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variables and six augmented ones, so a total of 18 states require the computation of a large

Jacobian matrix. If the numerical computation method for calculating the Jacobean matrix is

used, then EKF will require more computational time. Moreover, the analytical calculation of

the Jacobian matrix is cumbersome, though it reduces the computational overhead. However,

in the case of UKF, computation of the Jacobian matrix is not required.

From the above discussion, we can conclude that for an airship state and uncertainty esti-

mation, the UKF algorithm performance is better than that of EKF but with the cost of compu-

tational overburden. As an airship is a slow-moving platform and has slow dynamics due to its

large size, in our case, we prefer UKF over EKF estimation as the former provides more

accuracy.

5. Conclusion

The strength of the proposed estimation method lies in the provision of a unified estimation

solution for airship states, model uncertainties, and wind disturbances. The presented method

suggests a lumped model uncertainties vector that introduces six augmented state variables for

approximating model uncertainties and wind disturbances. First, the airship model is pre-

sented with a suitable assumption for accommodating system unmodelled dynamics and

parameter variation. Then, an extended nonlinear state-space representation is given for the

estimator design. From the information of a pitot tube sensor, airship position, attitudes, and

airship known dynamic model, one can estimate the effects induced by wind forces instead of

measuring wind velocities by costly instrumentation. The proposed method is easily realizable,

cost-effective, and understandable.

Compared to intelligent estimation solutions, such as neural networks, the proposed

method is a unified solution for estimating airship parameters. It does not assume the avail-

ability of all states and their derivatives. For all the three cases presented in the article, the com-

parison of UKF and EKF indicates a better performance of UKF for both transient and steady

states. The analysis reveals that in a transient state, EKF converges late compared to the UKF.

The magnitude of error bounds for EKF is very large in the steady state. It has a probability of

0.68 for a large estimation error. Overall, the results suggest that the proposed method can be

utilized in airship autonomous flight with nonlinear controllers. The method can provide state

and model uncertainty information that will enhance the controller performance in terms of

its robustness.
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