1	Transmission of butanol isomers in pervaporation based on series
2	resistance model
3	Chengye Zuo ^{1,2} , Jake Hindley ² , Xiaobin Ding ³ , Mark Gronnow ⁴ , Weihong Xing ^{1,*} , Xuebin Ke ^{2,*}
4	¹ National Engineering Research Center for Special Separation Membranes, Nanjing Tech
5	University, Nanjing 211816, China
6	² Department of Chemical Engineering, University of Hull, HU6 7RX, United Kingdom
7	³ Nanjing Jiusi High-Tech Co., Ltd., Nanjing 211816, Jiangsu, China
8	⁴ Biorenewable Development Centre, University of York, YO19 5SN, United Kingdom
9	*Corresponding author, E-mail: xingwh@njtech.edu.cn; x.ke@hull.ac.uk

11 Abstract

Pervaporation (PV) has shown great potential in the separation of butanol aqueous solutions due 12 to their economic and environmental benefits. This work applies polydimethylsiloxane (PDMS) 13 14 composite membrane to separate four butanol isomers (n-butanol, isobutanol, sec-butanol and tertbutanol) in aqueous solution. Based on physical and chemical properties of butanol isomers, such as 15 solubility, polarity and interaction parameter, we systematically study the transmission difference in 16 the pervaporation process. The influence of feed concentration, temperature and permeate pressure 17 on membrane performance of PDMS composite membrane are investigated. The results show that 18 the contact angles of butanol isomers on the PDMS layer are 51°, 42.7°, 37.7°, 29.1° and the fluxes 19 at 40 °C are 237.6 g·m⁻²·h⁻¹, 245.4 g·m⁻²·h⁻¹, 224.1 g·m⁻²·h⁻¹, 169.4 g·m⁻²·h⁻¹ for n-butanol, isobutanol, 20 sec-butanol, and tert-butanol, respectively. Moreover, the similar compatibility principle is 21 introduced to the series resistance model so the process simulation matches well with the antagonistic 22 effect of water molecules on mass transfer of butanol isomers. The permeation activation energy is 23 negative, indicating that the dissolution dominates the dissolution and diffusion process. In addition, 24 low vacuum is not conducive to the separation of n-butanol from water. The research on isomers 25 separation through pervaporation may pave a way to separate other solvents of similar properties. 26

27

28 Keywords: pervaporation; polydimethylsiloxane; butanol isomers; series resistance model

1 1. Introduction

The extensive application of new energy sources, including solar, wind, and nuclear energy, are 2 impeded by energy storage infrastructure that provides stable power transmission. Lithium-ion 3 batteries have the highest energy density among currently available energy storage systems, but the 4 maximal energy density of lithium-ion batteries is 2 MJ·kg⁻¹, still less than that of liquid fuels (27-47 5 MJ·kg⁻¹) [1]. To alleviate the global shortage of fossil fuels and reduce the solid emissions, people 6 turn the attention to biofuels [2]. Butanol has a high octane number and energy density. While blended 7 with other fuels, it can allow a relatively higher water content in the system and therefore is 8 convenient for transportation and storage [3]. 9

Butanol is always produced by fermentation of biomass and traditional separation includes 10 adsorption [4], extraction [5, 6], salting out [7], and membrane techniques [8]. The adsorption process 11 is impended by the high costs of the adsorbents. The extraction and salting out introduce the third 12 part that causes secondary pollution and increases the difficulty of subsequent separation. By contrast, 13 Pervaporation (PV) is an emerging technique with advanced membrane materials [9]. The membrane 14 materials mainly include water-selective membrane and organic-selective membrane [10, 11]. The 15 organic-selective membrane has obvious technical and economic benefits for the separation of 16 azeotropes or isomers at a low concentration [9, 12]. Among organic-selective membrane materials, 17 polydimethylsiloxane (PDMS) is relative cheap with an alternating O-Si-O unit structure. It is the 18 most promising membrane material for separation and recovery of butanol [13]. The differences of 19 separation system, such as solvent solubility in water, boiling point, molecular structure and inherent 20 properties of the solvent, and operating conditions, inevitably affect the mass transfer. 21

Many researches investigate some important parameters for the PV process, including molecular 22 size, equilibrium partial vapor pressure (P_i^{sat}), activity factor (γ_i), solubility parameter (δ), and 23 interaction parameter (χ). It partly explains the difference in mass transfer of different components. 24 To separate dimethyl carbonate from methanol, the solubility parameter is crucial for the component 25 to pass through [14]. For the separation of binary, ternary and guaternary acetone/butanol/ethanol 26 (ABE)/water mixed systems, the mass transfer of each solvent is correlated with its equilibrium partial 27 vapor pressure and solubility parameters [15]. In addition, the interaction force among the solvents 28 and that between the components and the membrane cause the permeate differences. The separation 29

factor of acetone is much larger than that of n-butanol and ethanol. For phenol and methanol, the preferential dissolution directly leads to different separation factors of solvents [16]. The solubility parameter is an important prerequisite for the solvent transfer in the composite membrane [17]. In the separation of n-butanol, ethanol, and ethyl acetate from aqueous solution, ethyl acetate has higher selectivity than n-butanol and ethanol due to the better solubility of ethyl acetate in PDMS [18].

Furthermore, much attention is focused on modeling of PV membranes with an emphasis of 6 interface action. The series resistance model is generally used to study the mass transfer of the 7 components in the boundary layer between the liquid feed and the composite membrane. The results 8 9 show that the resistance of the boundary layer has little effect on transfer process and it can be weakened by increasing flow velocity [19-22]. The study of permeation activation energy shows that 10 dissolution is the dominant step [23, 24]. Therefore, the resistance of the PV process is concentrated 11 in the dissolution process. So far, no systematical studies on the mass transfer state of butanol isomers 12 have been explored. Moreover, due to the similar compatibility principle, the resistance of the 13 boundary layer comes not only from the thickness of the boundary layer but also from the interaction 14 between solvents and water. Therefore, single factors such as solubility parameters or polarity cannot 15 describe the mass transfer of butanol isomers. 16

In this work, we systematically studied the mass transfer differences (binary and ternary) of butanol isomers in PDMS composite membranes. The preferred selectivity to the pure solvent of butanol isomers is obtained by calculating the interaction parameters, half-time empirical formula and swelling formula. The differences in terms of polarity, solubility parameter, and boiling points between solvents for separation and selectivity are explored by changing the concentration, temperature, and vacuum. This research is a reasonable guidance to separation of butanol isomers and other solvents with similar properties.

24 2. Experimental Section

25 2.1 Materials

All of the raw materials and regents (analytical grade) are purchased from commercial vendors and used without further purification: n-butanol (99%, Sinopharm Chemical Co. Ltd., China), isobutanol (99%, Sinopharm Chemical Co. Ltd., China), sec-butanol (99%, Sinopharm Chemical Co. Ltd., China), tert-butanol (Sinopharm Chemical Co. Ltd., China). The physicochemical properties of solvents are shown in Table S1of the support information and their polarity follows the order of nbutanol<isobutanol<sec-butanol<tert-butanol [25]. The commercial PDMS composite membranes
are provided by Nanjing Jiusi High-Tech Co., Ltd. This type of membrane consists of PDMS top
layer, polyvinylidene fluoride (PVDF) intermediate layer and non-woven fabrics substrate layer. The
top layer is 10 µm thickness and mean pore size of intermediate layer is around 76 nm.

6 2.2. Commercial membrane characterization

Fourier transform infrared spectra (ATR-FTIR, Thermo, Nicolet Nexus 470 spectrometer, USA)
are employed to characterize the surface properties of the PDMS membrane in the range of 500-4000
cm⁻¹. The morphology of the membrane materials is observed by field emission scanning electron
microscope (FESEM, Hitachi S-4800) using an acceleration voltage of 2 kV. The contact angle is
measured on JC2000D contact angle apparatus (Shanghai ZhongChen Digital Technology Apparatus
Co. Ltd).

13 2.3 Swelling experiments

Homogeneous PDMS membranes with the thickness of 2 mm are prepared referring to the 14 reported [26]. The solubility and diffusion rate of butanol isomers in the PDMS homogeneous 15 membrane is measured by weight method. Put the homogeneous membrane in a vacuum drying oven 16 at 60 °C for 24 hours and record the mass (W_d) of the dry membrane. Soak the membranes of known 17 weight and thickness (1) in pure solvents of n-butanol, isobutanol, sec-butanol and tert-butanol, 18 respectively. After a given time (*t*), take it out and wipe the membrane surface with a dust-free cloth. 19 The mass (Wt) of swollen homogeneous membrane is recorded and then put back into the pure solvent. 20 Repeat until no further weight gain and the final mass (W_s) of the membrane is the swelling limit. 21

22 2.4 Pervaporation

The PV device consists of feed tank, water bath, peristaltic pump, membrane module (membrane area of 153.86 cm²), cold trap, and vacuum pump (Fig. 1). The feed liquid is cross-flowed through the membrane module through the peristaltic pump at a flow rate of 68.4 L·h⁻¹ (Reynolds coefficient ≈ 253.8), and the retentate is cycled to the raw material tank. The permeation side of the membrane is connected to the vacuum system to form the driving force. A glass cold trap is installed between the membrane module and the vacuum pump to collect the permeate at -70 °C. For a high concentration of butanol, the permeate is stratified so the permeate is diluted 10 times before injecting into gas chromatograph for quantitative analysis. All experimental results are repeated three times
and have an error of <5 %.

The feed liquid of 1.2 L is preheated for half an hour and then sampled and analyzed after stabilized. Three experiments are performed in parallel and the average value is taken. The concentration of butanol isomers in the feed liquid is $1\sim3$ wt% and the temperature of the feed liquid is $30\sim60$ °C with the vacuum pressure is 0.3 kPa ~4 kPa.

8

9

7

2.5 Data analytic methods

Swelling degree (S) of the homogeneous membrane is calculated by Eq. (1). Theoretically, when a homogeneous membrane is swelled in different solvents, the diffusion coefficients (D) of the solvents are different. To simplify, we assume that the diffusion coefficient is constant during the dissolution process. Therefore, the half-time empirical formula [14] is used to calculate the diffusion coefficient of butanol isomers in a homogeneous membrane, by Eq. (2).

15
$$S = \frac{W_s - W_d}{W_d}$$
 (1)
16 $D = \frac{0.04919l^2}{t_{0.5}}$ (2)

Where W_d and W_s are the weight before and after swelling; *l* is the thickness and $t_{0.5}$ is the time to achieve solvent uptake $W_t/W_s = 0.5$.

Assuming that the adsorption isotherm of the solvent for the membrane is linear and the solvent 1 diffusion coefficient is independent of the solvent concentration, an ideal selectivity is calculated by 2 3 *Eq.* (3): $\beta_{ideal,i,n} = \frac{S_i D_i}{S_n D_n}$ 4 (3) Where *i* represents isobutanol, sec-butanol or tert-butanol, and *n* represents n-butanol; *S* is swelling 5 degree. 6 The PV performance of PDMS composite membrane is usually expressed in terms of the flux J_i 7 and separation factor α , which are determined by Eqs. (4) and (5): 8 $J_i = \frac{m_i}{\Delta t}$ 9 (4) $\alpha = \frac{y_i/(1-y_i)}{x_i/(1-x_i)}$ 10 (5)where m_i is the weight of component *i* in the permeate (g); A is the effective membrane area (m²); and 11 t is the permeation time interval for the pervaporation (hours); y_i and x_i are the weight fractions of 12 components in the permeate and feed, respectively 13 Since changes in flux and separation factor are easily affected by operating conditions, 14 normalizing the flux relative to the permeation driving force will help understand the permeability of 15 the membrane itself to the components. The inherent properties of the membrane can be expressed as 16 permeability P_i and selectivity β , which are determined by Eqs. (6) and (7): 17 $P_i = \frac{J_i \times l}{x_i^f \gamma_i p_i^{sat} - y_i p_i^P}$ 18 (6) $\beta = \frac{P_i}{P_i}$ 19 (7)

where *l* is the membrane thickness (No changes in thickness are involved so it can be ignored); γ_i is the activity of components *i*, p_i^{sat} is the equilibrium partial pressure of *i* in the feed, both are calculated by the non-random two-liquid model (NRTL) in Aspen; x_i^f and y_i are mole fraction of *i* in the feed and permeate, p_i^P is permeation pressure; P_i and P_j are permeability of solvent and water, respectively.

The relationship between the flux and temperature can be described by Arrhenius rule [27], it is obtained by *Eq.* (8):

26
$$J = J_0 \exp\left(-\frac{E_a}{R_g T}\right)$$
 (8)

Where J_0 is the pre-exponential factor; E_a is the apparent activation energy (J·mol⁻¹); R_g is the gas constant (J·mol⁻¹·K⁻¹); *T* is the kelvin temperature (K). E_a represents the relationship between flux and 1 temperature, and there is also a relationship between permeability *P* and driving force Δp , which 2 derived the *Eq.* (9): 3 $J = \frac{P}{l} \Delta p \rightarrow \frac{P}{l} = \frac{J}{\Delta p} = \frac{P_0}{l} \exp\left(-\frac{E_p}{R_g T}\right)$ (9) 4 The permeation activation energy E_p of the influence of temperature on membrane permeability 5 is the slope of the relationship between $\ln(J/\Delta p)$ and 1/T, not lnJ and 1/T. When the pressure on the 6 permeate side is lower than the feed side, the E_p value can be calculated by *Eq.* (10), subtracting the 7 enthalpy of evaporation (ΔH_v) from the apparent activation energy [28]:

$$8 E_p = E_a - \Delta H_v (10)$$

9 Where E_p is the permeation activation energy of each component (J·mol⁻¹); ΔH_v is the heat of 10 vaporization of each component (J·mol⁻¹). This equation expresses the influence of the enthalpy 11 change caused by the phase change on the permeability behavior of the component [29].

12 The interaction parameter χ is calculated by Flory-Huggins equation [30], by Eq. (11):

13
$$\chi = \frac{V_i}{R_g T} (\delta_2 - \delta_1)^2$$
(11)

14 Where δ_1 and δ_2 are the solubility parameters of PDMS and solvent respectively (J^{1/2}·cm^{-3/2}); V_i is the 15 molar volume of component *i* (cm³·mol⁻¹). The smaller the interaction parameter, the stronger the 16 affinity, the higher the solubility of the solvent in PDMS.

The total mass transfer coefficient represents the mass transfer rate of butanol isomers in a certain membrane area in a certain period, K_{ov} is calculated by *Eq.* (12):

$$=\frac{V}{At}In\left(\frac{x_i}{x_{i,t}}\right) \tag{12}$$

20 3. Results and Discussion

21 3.1 Characterization of PDMS selective layer

22 3.1.1 Surface properties and cross-section morphology of PDMS

23 membrane

The FTIR spectra show the absorption peaks at 2960 cm⁻¹ and 2900 cm⁻¹ (Fig. 2), which indicates the asymmetric stretching vibration and symmetric stretching vibration of the PDMS side chain (C-H bond), respectively. The peaks near 1410 cm⁻¹ and 1260 cm⁻¹ are the absorption peaks of Si-C bonds. The peaks at 1080 cm⁻¹ and 1010 cm⁻¹ indicate the asymmetric stretching vibration of the SiO-Si bonds, while 870 cm⁻¹ and 781 cm⁻¹ peaks are attributed to its symmetric stretching vibration.
The results show that the commercial composite membrane conforms to the reported [31]. The crosssectional morphology of the PDMS composite membrane is observed by a FESEM. The thickness of
the functional layer is 10 um and the interface is compatible without any fault (Fig. 2b).

Fig. 2. (a) ATR-FTIR spectra and (b) cross-section morphology of PDMS selective layer.

7 3.1.2 The affinity of PDMS membrane to butanol isomers and water

8 The affinity between the PDMS composite membrane and the solvents is measured by the 9 surface dynamic contact angle instrument. Fig. 3 shows that the PDMS layer has a higher hydrophobic 10 angle and a lower affinity butanol angle, indicating that butanols preferentially dissolve in the 11 functional layer. Comparing Fig. 3b-e, it can be found that the contact angle of butanol isomers 12 follows the order of n-butanol>isobutanol>sec-butanol>tert-butanol, consistent with the interaction 13 parameter rule in SI (Table S1).

14

Fig. 3. (a) Water dynamic contact angle and (b-e) butanol dynamic contact angle of the PDMS membranes.

3 3.1.3 Swelling of pure solvent in PDMS membrane

The process of dissolving the butanol isomers in the PDMS composite membrane is a process 4 of breaking the polymer chain and swelling the membrane, which changes the microstructure of the 5 composite membrane and affects the flux and separation factor of the composite membrane [15]. Fig. 6 7 4a depicts the swelling process of pure solvents of n-butanol, isobutanol, sec-butanol, and tert-butanol in the PDMS homogeneous membrane. As the interaction parameters between different solvents and 8 PDMS decrease, the solubility of the solvent in the composite membrane gradually increases. The 9 specific swelling degree is shown in Fig. 4b. As the molecular volume of the component increases 10 and the molecular structure becomes more complex, although the interaction between the solvent and 11 the PDMS layer becomes larger, the time required to reach the swelling equilibrium also becomes 12 longer. This indicates that the molecular structure and molecular volume will affect the diffusion rate 13 of butanol isomers in the PDMS composite membrane. 14

15 16

Fig. 4. (a)Swelling degree of PDMS membrane in butanol isomers;(b) Solubility and diffusion of butanol

In order to quantitate the diffusion of butanol isomers, the half-time empirical formula is used to estimate the diffusion coefficient of pure solvent in the PDMS homogeneous membrane. First, the

isomers in PDMS.

second-order polynomial fitting is performed on the curve of swelling degree with time while its R^2 1 ≥ 0.9 . Through Eq. (2) to obtain the diffusion coefficient of each solvent, as shown in Fig. 4b. The 2 tight cross-linking network in the homogeneous membrane of PDMS makes the molecular structure 3 and volume of the solvent particularly sensitive to the resistance of the diffusion process. Combining 4 the molecular volume and structure of the components (Table S1) and the diffusion coefficient of 5 each component (Fig. 4b), it can be seen that its diffusion coefficient gradually decreases as the 6 component structure becomes more complex and the molecular volume becomes larger. Moreover, 7 the swelling degree of each component has opposite trends. The dynamic swelling of polyethylene 8 9 (PE) membrane in pure butanol solvent had the similar outcomes [32]. This is due to the differences of solubility and molecular structure of the components. 10

11 3.2 PV performance

12 3.2.1 Effect of feed concentration in binary system

The pervaporation process is jointly controlled by dissolution and diffusion, and therefore, the 13 concentration of the solvent in the feed plays a crucial role. Fig. 5 describes the flux and separation 14 15 factor of the PDMS composite membrane for the butanol isomer/water binary system with different feed concentrations at 40 °C. For any one type of butanol, as the feed concentration increases, the 16 total flux gradually rises (Fig. 5). The separation factor maintains constant and the order is isobutanol 17 (15.5)>n-butanol (14.9)>sec-butanol (14.4)>tert-butanol (10.6). This result in Fig. 5(b) is contrary to 18 19 the interaction parameters, and does not comply with "stronger affinity will lead to higher permeation" [15], for reasons which will be discussed later. 20

23

21

temperature: 40 °C, Vacuum: 0.3 kPa).

Fig. 6a shows that the water fluxes in the four systems remain unchanged as the feed concentration increases. The sufficient water in the feed results in the solubility of water molecules in the membrane unchanged, as well as the mass transfer force of water molecules. Therefore, the increase in total flux in Fig. 5a is mainly due to the increase of butanol permeation.

5

Fig. 6. Effect of butanol isomers (dual system) feed concentration on (a) water flux, partial pressure and (b)
butanol flux (feed temperature: 40 °C, Vacuum: 0.3 kPa; the inserted is the correlation between the partial pressure
of water and the feed concentration of butanol isomers).

9 The Fig. 6b shows that the flux of each butanol component increases linearly with the increase 10 of the feed concentration. Therefore, the linear fit of the flux of each butanol with the concentration 11 is performed by the least square method while its $\mathbb{R}^2 \ge 0.99$. The transmission resistance ($f_{3,i}$) of 12 butanol isomers in the PDMS composite membrane (Figure S2) follows the order of tert-butanol>sec-13 butanol>isobutanol>n-butanol, consistent with the solvent diffusion coefficient in Fig. 4b.

The permeability and selectivity can better understand the transmission of butanol isomers in 14 the PDMS composite membrane [25]. As shown in Fig. 7, the permeability of butanol isomers 15 increases with the increasing feed concentration of butanol. As a result, the PDMS composite 16 membrane exhibits constant selectivity for the four structures of butanol isomers, which are 3.2, 0.55, 17 0.74, 0.46 for n-butanol, isobutanol, sec-butanol, and tert-butanol, respectively. It can be seen from 18 Fig. S1b that the partial pressure of butanol increases with the increasing feed concentration of 19 butanol, which makes the P_i^{sat} of the water drop (Fig. 6a). The water flux is unchanged during the 20 separation process but water permeability increases with the increasing feed concentration of butanol 21 isomers. Therefore, it can be concluded that the equilibrium partial pressure of water has little 22 influence on the water flux while feed concentration of butanol changes. 23

17 to different separation factors. The polar components have better compatibility and a stronger

interaction with water. In addition, the PDMS composite membrane is a hydrophobic and may also 1 affect the transfer of butanol isomers. The water fluxes in the n-butanol/water and isobutanol/water 2 systems are similar. With the increase of water ratio in the feed of binary system, the permeability of 3 tert-butanol is the lowest, while the permeability of n-butanol is greater than that of isobutanol [38]. 4 This phenomenon shows that the interaction between water and tert-butanol is stronger than that 5 between n-butanol/isobutanol and water. No matter how the water ratio changes, it has little effect on 6 the flux of n-butanol, isobutanol and sec-butanol, but when the water ratio rises to 70 wt%, the flux 7 of tert-butanol drops sharply [32]. By investigating the influence of the concentration of butanol in 8 the feed on the separation of the butanol isomers/water binary system, the interaction parameters 9 cannot be used to predict the separation effect of solvent and water, as the solubility of butanol isomers 10 in water may have a certain impact. 11

12 3.2.2 Binary system VS ternary system

Based on the research of the butanol/water binary system, water may have an antagonistic effect 13 on the PV separation process. Therefore, isobutanol, sec-butanol, and tert-butanol are used for 14 comparison. The two-structure butanol (50 wt%/50 wt%) binary system and the two-structure 15 butanol/water (1 wt%/1 wt%/98 wt%) ternary system are studied, as shown in Fig. 8. When isobutanol, 16 sec-butanol and tert-butanol are successively present in the binary mixture, the separation factor of 17 the three structures of butanol is much higher than that of n-butanol. According to the interaction 18 parameters in Table S1, the dissolution resistance $(f_{2,i})$ of butanol isomers in the membrane layer 19 follows the order of tert-butanol<sec-butanol<isobutanol<n-butanol. Therefore, the order for 20 separation factor of butanol binary system is tert-butanol>sec-butanol>isobutanol>n-butanol, which 21 is the same as the $\beta_{ideal,i,n}$ in Fig. 4(b). At this point, the interaction parameter has a decisive effect on 22 the mass transfer of the components. The separation factor and total flux of the binary mixture of n-23 butanol/tert-butanol are 1.87 and 3825.6 g·m⁻²·h⁻¹, respectively. Compared with the Polyamide/β-24 cyclodextrin mixed matrix membrane and Polyamide/modified β -cyclodextrin mixed matrix 25 membrane [34, 35], the PDMS membrane has more advantages in separating the binary mixture of 26 n-butanol/tert-butanol. 27

Fig. 8. Total flux and separation factor. (a) Butanol isomers with feed ratio of 1:1; (b) Binary butanol isomers in water with feed ratio of 1:1:98 (feed temperature: 40 °C, Vacuum: 0.3 kPa).

Fig. 8b shows that the separation factors for the ternary system follow an order of isobutanol>n-4 butanol>sec-butanol>tert-butanol, same as that for the butanol/water binary system. Comparing the 5 total flux in Fig. 8, we can find that with isobutanol, sec-butanol and tert-butanol in the system, the 6 7 total flux of the binary system is increasing, while the total flux of the ternary system is decreasing. This phenomenon is due to the stronger transmission resistance of water molecules to solvents of high 8 solubility. Therefore, the separation factor of butanol isomers follow the order of polarity. The 9 solubility of n-butanol and isobutanol in water is similar, and the interaction force between isobutanol 10 and the functional layer is greater than that of n-butanol, which results in a greater separation factor 11 of isobutanol than n-butanol. By comparing the binary and ternary systems, the polarity between the 12 solvent and water and the interaction parameters between the solvent and PDMS together determine 13 the separation performance in the pervaporation process. 14

15 3.2.3 Influence of feed temperature

Temperature plays an important role in the PV process. It not only affects the thermodynamic 16 process of dissolution, but also the kinetic process of component diffusion in the membrane. 17 Therefore, under the butanol concentration of 2 wt%, the effect of the feed temperature is investigated. 18 The results are shown in Fig. 9. As the temperature increases, the flux of each component increases 19 and the separation factor decreases. The temperature increase promotes mass transfer and the 20 migration of polymer chains, which increases the flux [32]. Moreover, the molecular dynamic 21 diameter of water molecules is smaller than that of butanol isomers, which makes it easier to pass 22 through the preferentially organic-permeable membrane and occupy the permeation channel. So the 23 separation factor is reduced. As the temperature increases, the water molecules show similar fluxes 24

in the four systems (Fig. 9a). The flux of butanol isomers is significantly smaller than the water flux
as the pervaporation process is jointly controlled by dissolution and diffusion (Fig. 9b). The higher
temperature increases the thermal motion of molecules and weakens the formation of water clusters.
The diffusion rate of water molecules in the PDMS layer is greater than that of butanol isomers [36].
As a result, the separation factor gradually decreases with increasing temperature (Fig. 9c).

6

7

8 Fig. 9. Effect of feed temperature (binary system) on (a) water flux, (b) butanol flux and (c) separation factor (feed
9 composition: 2 wt% butanol in water, Vacuum: 0.3 kPa).

To observe the energy requirement for mass transfer, the flux of the components corresponding 10 to the feed temperature fits to the Arrhenitz equation (Fig. 10a). The apparent activation energy of 11 butanol isomers is listed in Table 1. The apparent activation energy of tert-butanol is the largest, 12 indicating that higher energy is needed to pass through the PDMS composite membrane [36]. The 13 final osmotic activation energy of each component is calculated by Eq. (10). When the osmotic 14 15 activation energy is negative, the dissolution process dominates the separation process [24]. The 16 difference in apparent activation energy between butanol isomers may come from the volume difference and the solubility parameters [34, 37]. By comparing with PE membrane, the mass transfer 17

resistance of PDMS composite membrane is lower than that of PE membranes [32]. 1

3 Fig. 10. The relation of temperature and flux to fit the Arrhenius formula (a) and total mass transfer coefficient (b) (feed composition: 2 wt% butanol in water, Vacuum: 0.3 kPa). 4

According to the Eyring diffusion theory [39], the higher temperature makes the osmotic 5 molecules more active and easier to diffuse and migrate, which improves the thermodynamic process 6 of dissolution. Moreover, the amplitude and frequency of polymer chain movement increase with the 7 rising temperature, which in turn leads to an increase in the free volume of the preferentially organic-8 9 permeable membrane for molecular diffusion [34]. Therefore, the increase in free volume reduces the difference in separation factor of butanol /water. The total mass transfer coefficient of each component 10 increases with the rising temperature (Fig. 10b). 11

Component	$\Delta H_{\nu}/J \cdot \mathrm{mol}^{-1}$	$E_a/J \cdot mol^{-1}$	$E_p/\mathbf{J}\cdot\mathbf{mol}^{-1}$
N-butanol	43.86	25.7	-18.16
Isobutanol	42.56	16.68	-25.88
Sec-butanol	41.7	24.16	-17.54
Tert-butanol	39.49	23.25	-16.24

12 Table 1. Activation energy of butanol isomers (feed composition: 2 wt% butanol in water, Vacuum: 0.3 kPa).

3.2.4 Influence of vacuum 13

In the PV process, the pressure on the permeate side (degree of vacuum) is much lower than the 14 saturated vapor pressure of each component, thus the solvents vaporize instantly. The influence of the 15 osmotic pressure on the mass transfer of butanol isomers is investigated. With the decrease of vacuum 16 17 (from 0.3 kPa to 4 kPa), the flux of butanol isomers gradually decreases (Fig. 11), which is consistent 18 with the literature [41]. With the decrease of vacuum, the separation factor of n-butanol decreased but the separation factor of tert-butanol rise [42]. The decrease in the degree of vacuum increases the P_t^p 19

of each component. The saturated vapor pressure of each solvent follows n-butanol<isobutanol<isobutanol<isobutanol<isobutanol<isobutanol<isobutanol<isobutanol<isobutanol<isobutanol<isobutanol<isobutanol<isobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobutanol</sobut 1 butanol<tert-butanol (Table S1). The difference in the boiling point of the solvents causes the mass 2 transfer driving force between the solvents, and thus leads to the difference in the separation factor. 3 The reduction in vacuum caused the separation factor of n-butanol to drop from 12.1 to 8.9, isobutanol 4 from 14.3 to 13, tert-butanol increased from 9.4 to 10.3, and sec-butanol unchanged (Fig. 11c). When 5 the pressure on the permeate side increased from 0.5 kPa to 3 kPa, the separation factor for the n-6 butanol/water binary system decreased from 30.5 to 7.4 [43]. When the degree of vacuum is low, the 7 separation of butanol isomers in the water phase has a limiting effect on high-boiling substances, such 8 9 as n-butanol and isobutanol. As the pressure on the permeate side increases, the flux of each component gradually decreases. Moreover, the separation factor of solvents with a boiling point 10 higher than water decreases, and the solvents with a boiling point similar to water remains unchanged, 11 while the solvents with a boiling point lower than water gradually increases. 12

14

13

Fig. 11. Effect of vacuum (binary system) on (a) butanol flux, (b) water flux and (c) separation factor (feed
 composition: 2 wt% butanol in water, feed temperature: 40 °C).

17 3.2.5 Long-term stability and membrane performance comparison

Fig. 12 shows the variations of total flux and separation factor with the operation time. 10 h long-term test of PDMS commercial composite membrane for separating 2 wt% butanol isomers aqueous solution at 40 °C is performed. It can be observed that the separation factor changed slightly during the 10 h continuous. In addition, the concentration in feed decreased from 2 wt% to 0.3~ 0.5 wt%, indicating that the PDMS composite membrane has stable separation performance.

6

9

7

Fig. 12. Long-term PV performance of PDMS commercial composite membrane (feed composition: 2 wt% butanol in water, feed temperature: 40 °C, Vacuum: 0.3 kPa).

10 The pervaporation performance of our PDMS composite membrane is compared with those of 11 other PDMS membranes reported in the literature as summarized in Fig. S3 and Table S2 (support 12 information for details). PDMS commercial composite membrane (this study) has a good flux for 13 butanol/water separation, for instance, the flux of isobutanol/water in literature is $193\sim210 \text{ g}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$, 14 while the flux of the membrane in this study is $1238.1 \text{ g}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$. The pervaporation process shows a 15 great potential in the application of butanol/water separation.

16 4. Conclusions

17 The transmission difference of butanol isomers in the PDMS composite membrane is 18 systematically studied. As feed concentration increases, the flux of butanol isomers increases and its

order follows tert-butanol <sec-butanol <isobutanol <n-butanol. This is consistent with the theoretical 1 value calculated by the half-time empirical formula. Meanwhile, water flux remains basically 2 unchanged and has little correlation with its partial pressure. Comparing the binary and ternary 3 systems, The PV resistance of butanol isomers is concentrated in three steps which based on the series 4 resistance model: 1) leave the boundary layer; 2) dissolve into the functional layer; 3) diffuse through 5 the functional layer. Moreover, water molecules have an antagonistic effect on the penetration of 6 butanol. The separation of butanol isomers in the aqueous solution should combine polarity and 7 solubility parameters. The separation factors of butanol are n-butanol (14.9), isobutanol (15.5), sec-8 9 butanol (14.4), tert-butanol (10.6).

As the temperature rises, the flux of butanol isomers gradually increases while the separation 10 factors decrease. The permeation activation energy of butanol isomers is n-butanol (-18.16 J·mol⁻¹), 11 isobutanol (-25.88 J·mol⁻¹), sec-butanol (-17.54 J·mol⁻¹), tert-butanol (-16.24 J·mol⁻¹), and the order 12 is the same as the total mass transfer coefficient. As the pressure on the permeate side increases, the 13 flux of butanol isomers gradually decreases, the separation factor of n-butanol and isobutanol 14 gradually decreases, that of sec-butanol is basically unchanged, and that of tert-butanol gradually 15 rises. This research provides an engineering point of view for PV separation of butanol isomers and 16 have potential to be applied for separating other solvents with similar properties. 17

18

19 Acknowledgement

This work is supported by the National Natural Science Foundation of China (No. 21921006).
We also thank the support of the State Key Laboratory of Materials-Oriented Chemical Engineering
(KL17-04) and THYME project (Research England).

23

24 Notes

25 The authors declare no competing financial interest.

26

27 Supplementary data

28 Supplementary data to this article including physical properties of the components, mass transfer

20

1 resistance model and membrane performance comparison can be found online at XXX

2

Nomenclature

А	effective area of the membrane, m ²
D	diffusion coefficient, cm ² ·s ⁻¹
Ea	apparent activation energy, J·mol ⁻¹
E _p	permeation activation energy, J·mol ⁻¹
$f_{1,i} \\$	boundary layer resistance
$f_{2,i} \\$	PDMS membrane surface resistance
f _{3,i}	PDMS membrane internal resistance
J_0	pre-exponential factor
$\mathbf{J}_{\mathbf{i}}$	flux of component i, g·m ⁻² ·h ⁻¹
Kov	total mass transfer coefficient
1	membrane thickness, um
mi	weight of component i in the permeate, g
Pi	permeability of component i, g·m ⁻² ·h ⁻¹ ·kPa ⁻¹
P_i^{p}	permeate pressure of component i, kPa
P_i^{sat}	equilibrium partial vapor pressure of i in the feed, kPa
Rg	gas constant, J·mol ⁻¹ ·K ⁻¹
S	swelling degree
t	permeation time interval for the pervaporation, min
Т	kelvin temperature, K
t _{0.5}	time when M_t/M_s is 0.5
\mathbf{V}_{i}	molar volume of component i, cm ³ ·mol ⁻¹
W_d, W_t, W_s	mass of the dry membrane, mass of membrane after t, Saturated swelling mass of
	membrane, g
Xi	weight fractions of components in the feed, wt%
$x_i{}^f$	mole fraction of i in the feed, mol%
yi	weight fractions of components in the permeate, wt%

Δp	driving force
$\Delta H_{\rm v}$	enthalpy of evaporation, J·mol ⁻¹
Greek	
α	separation factor
R R	selectivity and ideal selectivity for isobutanol or sec-butanol or tert-butanol and n-
p, pidea,i,n	butanol
γ_i	activity of components i
χ	interaction parameter
δ_1, δ_2	solubility parameters of PDMS and solvent, J ^{1/2} ·cm ^{-3/2}

Subscript

PV	pervaporation
PDMS	polydimethylsiloxane
SI	support information
Ν	n-butanol
Ι	isobutanol
S	sec-butanol
Т	tert-butanol
W	water

1 References:

2 [1] J.H. Kim, M. Cook, L. Peeva, J. Yeo, A.G. Livingston, Low energy intensity production of fuel-grade bio-

3 butanol enabled by membrane-based extraction, Energ. Environ. Sci. 13 (2020) 4862-4871.

4 [2] S.H. Park, D. Shin, J. Park, Effect of ethanol fraction on the combustion and emission characteristics of a

5 dimethyl ether-ethanol dual-fuel reactivity controlled compression ignition engine, Appl. Energ. 182 (2016) 243-

6 252.

7 [3] Y. Celebi, H. Aydin, An overview on the light alcohol fuels in diesel engines, Fuel 236 (2019) 890-911.

8 [4] S. Bhattacharyya, K.C. Jayachandrababu, Y. Chiang, D.S. Sholl, S. Nair, Butanol separation from humid CO₂-

9 containing multicomponent vapor mixtures by zeolitic imidazolate frameworks, ACS Sustain. Chem. Eng. 5

10 (2017) 10-20.

11 [5] H. Gai, K. Lin, Y. Feng, M. Xiao, K. Guo, H. Song, Conceptual design of an extractive distillation process for

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

- 1 the separation of azeotropic mixture of n-butanol-isobutanol-water, Chinese J. Chem. Eng. 26 (2018) 44-51.
- 2 [6] X. Shi, X. Zhu, X. Zhao, Z. Zhang, Performance evaluation of different extractive distillation processes for
- 3 separating ethanol/tert-butanol/water mixture, Process Saf. Environ. 137 (2020) 31-39.
- 4 [7] C. Fu, Z. Li, W. Song, C. Yi, S. Xie, A new process for separating biofuel based on the salt + 1-butanol + water
- 5 system, Fuel 278 (2020) 402-415.
- 6 [8] J. Ravindran, Membrane separation technologies for downstream processing, first ed., Biovalorisation of
- 7 Wastes to Renewable Chemicals and Biofuels, Chennai, 2021.
- 8 [9] P. Mondal, M.K. Purkait, R. Singh, D. Haldar, Pervaporation, first ed., American Cancer Society, American,
 9 2020.
- 10 [10] R. Castro-Muñoz, F. Galiano, A. Figoli, Chemical and bio-chemical reactions assisted by pervaporation
- 11 technology, Crit. Rev. Biotechnol. 39 (2019) 884-903.
- 12 [11] R. Castro-Mu Oz, F. Galiano, V. Fíla, E. Drioli, A. Figoli, Mixed matrix membranes (MMMs) for ethanol
- 13 purification through pervaporation: current state of the art, Rev. Chem. Eng. 35 (2018) 5-16.
- 14 [12] T. Mohammadi, M.P. Rezaeian, Separation of Isomeric Xylenes: Experimental and Modeling, Sep. Sci.
- 15 Technol. 44 (2009) 817-840.
- 16 [13] N. Qureshi, H.P. Blaschek, Butanol recovery from model solution/fermentation broth by pervaporation:
- 17 evaluation of membrane performance. Biomass Bioenerg. 17 (1999) 175-184.
- 18 [14] H. Zhou, L. Lv, G. Liu, W. Jin, W. Xing, PDMS/PVDF composite pervaporation membrane for the separation
- 19 of dimethyl carbonate from a methanol solution, J. Membrane Sci. 471 (2014) 47-55.
- 20 [15] G. Liu, L. Gan, S. Liu, H. Zhou, W. Wei, W. Jin, PDMS/ceramic composite membrane for pervaporation
- 21 separation of acetone-butanol-ethanol (ABE) aqueous solutions and its application in intensification of ABE
- 22 fermentation process, Chemical Engineering & Processing Process Intensification 86 (2014) 162-172.
- 23 [16] A. Bakhshi, T. Mohammadi, A. Aroujalian, Pervaporation separation of binary and ternary mixtures with
- 24 polydimethylsiloxane membranes, J. Appl. Polym. Sci. 107 (2010) 1777-1782.
- 25 [17] S. Mandal, V.G. Pangarkar, Separation of methanol-benzene and methanol-toluene mixtures by
- 26 pervaporation: effects of thermodynamics and structural phenomenon, J. Membrane Sci. 201 (2002) 175-190.
- 27 [18] W. Zhang, W. Sun, J. Yang, Z. Ren, The study on pervaporation behaviors of dilute organic solution through
- 28 PDMS/PTFE composite membrane, Appl. Biochem. Biotech. 160 (2010) 156-167.
- 29 [19] C. Du, J.R. Du, X. Feng, J. Wang, Green extraction of perilla volatile organic compounds by pervaporation,
- 30 Sep. Purif. Technol. 261 (2021) 118-125.

- 1 [20] S. Li, R. Srivastava, R.S. Parnas, Separation of 1-butanol by pervaporation using a novel tri-layer PDMS
- 2 composite membrane, J. Membrane Sci. 363 (2010) 287-294.
- 3 [21] Y. Zhang, N.E. Benes, R.G.H, Lammertink, Performance study of pervaporation in a microfluidic system for

4 the removal of acetone from water, Chem. Eng. J. 284 (2016) 1342-1347.

- 5 [22] C. Arregoitia-Sarabia, D. González-Revuelta, M. Fallanza, D. Gorri, I. Ortiz, Polymer inclusion membranes
- 6 containing ionic liquids for the recovery of n-butanol from ABE solutions by pervaporation, Sep. Purif. Technol.
- 7 248 (2020) 101-112.
- 8 [23] G. Zhang, H. Cheng, P. Su, X. Zhang, J. Zheng, Y. Lu, Q. Liu, PIM-1/PDMS hybrid pervaporation membrane
- 9 for high-efficiency separation of n-butanol-water mixture under low concentration, Sep. Purif. Technol. 216
- 10 (2019) 83-91.
- 11 [24] X. Wang, J. Chen, M. Fang, T. Wang, L. Yu, J. Li, ZIF-7/PDMS mixed matrix membranes for pervaporation
- recovery of butanol from aqueous solution, Sep. Purif. Technol. 163 (2016) 39-47.
- 13 [25] W. Guo, T. Chung, T. Matsuuraa, Pervaporation study on the dehydration of aqueous butanol solutions: a
- 14 comparison of flux vs. permeance, separation factor vs. selectivity, J. Membrane Sci. 245 (2004) 199-210.
- 15 [26] L. Ji, B. Shi, L. Wang, Pervaporation separation of ethanol/water mixture using modified zeolite filled PDMS
- 16 membranes, J. Appl. Polym. Sci. 132 (2015) 17-26.
- 17 [27] E. Drioli, L. Giorno, Membrane Operations, Integr. Membr. Processes. 79 (2009) 265-283.
- 18 [28] J. G. Wijmans, R. W. Baker, A simple predictive treatment of the permeation process in pervaporation, J.
- 19 Membrane Sci. 79 (1993) 101-113.
- 20 [29] X. Feng, R. Y. M. Huang, Estimation of activation energy for permeation in pervaporation processes. J.
- 21 Membrane Sci. 118 (1996) 127-131.
- 22 [30] T. Tadros, Flory-Huggins Interaction Parameter, first ed., Springer, Berlin, 2013.
- 23 [31] X. He, T. Wang, Y. Li, J. Chen, J. Li, Fabrication and characterization of micro-patterned PDMS composite
- 24 membranes for enhanced ethanol recovery, J. Membrane Sci. 563 (2018) 447-459.
- 25 [32] R. Petrychkovych, K. Setnickova, P. Uchytil, The influence of water on butanol isomers pervaporation
- transport through polyethylene membrane, Sep. Purif. Technol. 107 (2013) 85-90.
- 27 [33] N.L. Le, Y. Wang, T.S. Chung, Pebax/POSS mixed matrix membranes for ethanol recovery from aqueous
- solutions via pervaporation, J. Membrane Sci. 379 (2011) 174-183.
- 29 [34] X. Qiao, T.S. Chung, W.F. Guo, T. Matsuura, M.M. Teoh, Dehydration of isopropanol and its comparison
- 30 with dehydration of butanol isomers from thermodynamic and molecular aspects, J. Membrane Sci. 252 (2005)

- 1 37-49.
- 2 [35] W.A. Yan, S. Tai, B. Hw, A. Shg, Butanol isomer separation using polyamide-imide/CD mixed matrix
- 3 membranes via pervaporation, Chem. Eng. Sci. 64 (2009) 5198-5209.
- 4 [36] S.Y. Li, R. Srivastava, R.S. Parnas, Separation of 1-butanol by pervaporation using a novel tri-layer PDMS
- 5 composite membrane, J. Membrane Sci. 363 (2010) 287-294.
- 6 [37] Y. Wang, X. Mei, T. Ma, C. Xue, Y. Li, Green recovery of hazardous acetonitrile from high-salt chemical
- 7 wastewater by pervaporation, J. Clean. Prod. 197 (2018) 742-749.
- 8 [38] O. Segarceanu, M. Leca, Improved method to calculate Hansen solubility parameters of a polymer, Prog.
- 9 Org. Coat. 31 (1997) 307-310.
- 10 [39] W.H. Rinkenbach, Preparation and properties of diethyleneglycol dinitrate1,2, Int. J. Quantum Chem. 110
- 11 (2010) 2355-2359.
- 12 [40] C.C. Pereira, C.P. Ribeiro, R. Nobrega, C.P. Borges, Pervaporative recovery of volatile aroma compounds
- 13 from fruit juices, J. Membrane Sci. 274 (2006) 1-23.
- 14 [41] R. Martínez, M. Teresa Sanz, S. Beltrán, Concentration by pervaporation of brown crab volatile compounds
- 15 from dilute model solutions: Evaluation of PDMS membrane, J. Membrane Sci. 428 (2013) 371-379.
- 16 [42] K.W. Böddeker, G. Bengtson, H. Pingel, Pervaporation of isomeric butanols, J. Membrane Sci. 54 (1990) 1-
- 17 12.
- 18 [43] G. Xue, B. Shi, Performance of various Si/Al ratios of ZSM-5-filled polydimethylsiloxane/polyethersulfone
- 19 membrane in butanol recovery by pervaporation, Adv. Polym. Tech. 37 (2018) 3095-3105.