
Accepted Manuscript

Half-plane partial slip contact problems with a constant normal load
subject to a shear force and differential bulk tension

M.R. Moore, R. Ramesh, D.A. Hills, J.R. Barber

PII: S0022-5096(18)30077-2
DOI: 10.1016/j.jmps.2018.05.017
Reference: MPS 3354

To appear in: Journal of the Mechanics and Physics of Solids

Received date: 26 January 2018
Revised date: 17 May 2018
Accepted date: 23 May 2018

Please cite this article as: M.R. Moore, R. Ramesh, D.A. Hills, J.R. Barber, Half-plane partial slip contact
problems with a constant normal load subject to a shear force and differential bulk tension, Journal of
the Mechanics and Physics of Solids (2018), doi: 10.1016/j.jmps.2018.05.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-
nd/4.0/

https://doi.org/10.1016/j.jmps.2018.05.017
https://doi.org/10.1016/j.jmps.2018.05.017


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Half-plane partial slip contact problems with a constant normal load subject to a
shear force and differential bulk tension

M. R. Moorea, R. Rameshb,∗, D. A. Hillsb, J. R. Barberc

aDepartment of Mathematics, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, OX2 6GG, Oxford, UK.
bDepartment of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, Oxford, UK.

cDepartment of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA.

Abstract

This article provides a new form of solution to half-plane contact problems in partial slip where a normal load has been

applied, held constant and is subsequently loaded with both a shear force and differential bulk tension. It uses a formulation

where a displacement correction is made to the fully stuck solution. An approximate solution is used to study an isolated

contact edge, which employs an asymptotic solution to each edge of the contact. A comparison of the approximation with

the exact solution is given to show the range of loading where the asymptotic solution gives good results.

1. Introduction

Incomplete contacts between elastic components subject to time-varying loads are prone to regions of slip, even when

the net shear force is less than that needed to cause rigid body motion (sliding). They are of practical interest as many

contacts of this class exist in most mechanical assemblies. They provide frictional damping, which is beneficial, but also

cause surface damage, leading to the nucleation of ‘fretting’ fatigue cracks. The most noteworthy example, capable of

idealisation by half-plane theory, is the dovetail root of fan blades in gas turbines. This contact is of interest as fans are

becoming bigger, and there is a move to lighter but low-friction composite materials.

There are two methods by which surface shear tractions may be excited within the contact, which give rise to zones of slip:

one is through a shear force, the other is a differential bulk tension. The first solution for cyclically applied shear force

and bulk tension to a Hertzian contact, with application to fretting fatigue tests, was by Nowell and Hills [1]. They solved

the partial slip problem numerically by forming an integral equation in terms of the ‘corrective’ shear traction needed to

the slipping solution. Using the Ciavarella [2] - Jäger [3] theorem, Ciavarella and Macina [4] solved the problem of pure

bulk tension analytically for a Hertzian contact. Building on this, Vázquez et al. [5] obtained an exact solution when both

bulk tension and shear are present with slip zones of opposite sign, also for a Hertzian contact.

In this paper, we develop a method that allows us to solve problems with the above loading cases for a general half-

plane contact geometry whereas, many of the existing solutions are restricted to Hertzian contacts. Instead of a traction

correction to the slipping solution, the method uses a displacement correction to the fully stuck solution. The mathematical

framework for finding the corrective displacement and the slip stick boundary is given in the following section.

2. Mathematical framework

In contacts that may be modeled as half-planes the normal traction falls to zero at the edges in a square root manner.

Therefore, the edges are the first points to slip when subjected to a tangential shear force, Q, and/or differential bulk
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tension. We define the differential bulk tension as σ = σ1 − σ2 where σ1 is the tension in the top body and σ2 in the

bottom body. The size of the contact is independent of any tangential loads (we assume Dundurs parameter β = 0 [6])

and we let its half width be given by a. We want both the extent of slip and the slip displacement as the stick zone recedes,

due to both a shear force and bulk tension. Figure 1 shows a possible configuration for the slip stick boundaries.

-a -b2 b1
a

q(x)= fp(x)

stick zone slip zoneslip zone

Figure 1: Zones of stick and slip at the contact interface

We start by inhibiting slip at all points on the contact interface and find the corresponding shear traction. To introduce

slip we add glide dislocations [7] in the regions where slip is expected. The dislocations induce a shear traction over the

entire contact. In the areas which experience slip, this traction must equal the difference between the slipping, qsl(x), and

fully stuck shear traction, qst(x),

qc(x) = qsl(x) − qst(x); x ∈ slip zones. (1)

A single glide dislocation bx at a point c on the contact interface gives rise to

q(x) =
E∗

2π
bx(c)√
a2 − x2

√
a2 − c2

c − x
. (2)

If we introduce a distribution of dislocations, we can write down the following integral equation,

E∗

2π
√

a2 − x2

[
−
∫ a

b1

√
a2 − ξ2Bx(ξ)
ξ − x

dξ + −
∫ −b2

−a

√
a2 − ξ2Bx(ξ)
ξ − x

dξ
]

= qc(x) x ∈ slip zones, (3)

where the unknown function Bx(x) = dbx

dx is the dislocation density. The dislocation density, Bx(x), is the same as the slip

displacement gradient or relative surface strain. The slipping traction qsl = ± f p(x) where f is the coefficient of friction

and p(x) is the contact pressure. The size of the slip zones is given by b1 and b2. In Equation 3 and hereafter, a dash

through the integral sign indicates that the integral is evaluated in a Cauchy Principal Value sense. The integral equation

may be inverted analytically (Appendix A), leading to the following solution,

Bx(x) =
−2
E∗π

√
(x − b1)(x + b2)

−
∫ a

b1

qc(ξ)dξ√
(ξ − b1)(ξ + b2)(ξ − x)

−
∫ −b2

−a

qc(ξ)dξ√
(ξ − b1)(ξ + b2)(ξ − x)

 b1 ≤ x ≤ a, (4)

Bx(x) =
2

E∗π

√
(x − b1)(x + b2)


∫ a

b1

qc(ξ)dξ√
(ξ − b1)(ξ + b2)(ξ − x)

− −
∫ −b2

−a

qc(ξ)dξ√
(ξ − b1)(ξ + b2)(ξ − x)

 − a ≤ x ≤ −b2. (5)

The two side conditions generated from the inversion determine the slip-stick boundaries, and are

∫ −b2

−a

qc(s)ds√
(s − b1)(s + b2)

−
∫ a

b1

qc(s)ds√
(s − b1)(s + b2)

= 0, (6)

2
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∫ −b2

−a

qc(s)sds√
(s − b1)(s + b2)

−
∫ a

b1

qc(s)sds√
(s − b1)(s + b2)

= 0. (7)

3. Constant normal load

When the normal load (denoted by P) is held constant, the size of the contact does not change and so the behaviour over

a load cycle is relatively easier to study. For fully stuck half-plane contacts, the shear traction is given by

qst(x) =
Q

π
√

a2 − x2
+

σx

4
√

a2 − x2
|x| ≤ a, (8)

where the first term is generated by a transverse shear load (|Q| < f P) and the second term from a differential bulk tension.

This result depends only on the size of the contact, the exact geometry does not matter. If the contact is in partial slip,

the direction of slip is dependent upon the relative mix of the tangential loading. Slip in the two edge zones will occur in

the same direction if the shear force is dominant (Figure 2a), but in opposite directions if the differential bulk tension is

dominant (Figure 2b).

(a) (b)

Figure 2: (a) The sliding shear traction - slip zones of the same sign; and (b) The slipping shear traction - slip zones of opposite sign (positive σ)

When the normal load is held constant, we know qst(x) (Equation 8) together with the contact pressure distribution, p(x).

These may be substituted into the integrals in Equations 4 and 5 to find the dislocation density or displacement gradient.

Further details are given in Appendix B. The fully stuck traction, qst(x), does not affect the dislocation density but does

affect the slip-stick boundary. We are left with only the contribution from the slipping traction which is a scaled normal

traction,

Bx(x) =
−2 f
E∗π

√
(x − b1)(x + b2)

±−
∫ a

b1

p(ξ)dξ√
(ξ − b1)(ξ + b2)(ξ − x)

∓
∫ −b2

−a

p(ξ)dξ√
(ξ − b1)(ξ + b2)(ξ − x)

 b1 ≤ x ≤ a, (9)

Bx(x) =
2 f
E∗π

√
(x − b1)(x + b2)

±
∫ a

b1

p(ξ)dξ√
(ξ − b1)(ξ + b2)(ξ − x)

∓ −
∫ −b2

−a

p(ξ)dξ√
(ξ − b1)(ξ + b2)(ξ − x)

 − a ≤ x ≤ −b2.

(10)

The signs chosen depend on the signs and relative magnitudes of the shear force and differential bulk tension. The side

conditions are given by,

±
∫ −b2

−a

f p(s)ds√
(s − b1)(s + b2)

∓
∫ a

b1

f p(s)ds√
(s − b1)(s + b2)

= π
σ

4
, (11)

3
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±
∫ −b2

−a

f p(s)sds√
(s − b1)(s + b2)

∓
∫ a

b1

f p(s)sds√
(s − b1)(s + b2)

=
πσ(b1 − b2)

8
− Q. (12)

3.1. Shear force only

We now look at the simple case where only one tangential load is applied. In the absence of any bulk tension, we can

make a number of simplifications. The slip zones at either end of the contact will be of the same size and slip is in the

same direction, therefore b1 = b2 = b. This means,

qc(x) = f p(x) − Q

π
√

a2 − x2
b ≤ |x| ≤ a. (13)

The slip displacements are an even function of x so that the dislocation density is odd, and therefore Bx(x) = −Bx(−x),

giving

Bx(x) =
4 f
E∗π

√
x2 − b2

∫ a

b

ξp(ξ)dξ√
ξ2 − b2(ξ2 − x2)

b ≤ |x| ≤ a (14)

The first side condition (Equation 11) is automatically satisfied, the second may be written as

∫ a

b

sp(s)ds√
s2 − b2

=
Q
2 f

(15)

3.2. Bulk tension only

Analogously, in the absence of a shear force, we can make a number of simplifications. The slip zones at either end of the

contact will be of the same size but slip is in opposite directions and therefore, b1 = b2 = b. This allows us to say

qc(x) = sgn(x) f p(x) − σx

4
√

a2 − x2
b ≤ |x| ≤ a. (16)

The slip displacements are an odd function of x so that the dislocation density is even, and therefore Bx(x) = Bx(−x),

giving

Bx(x) =
4 f
E∗π

√
x2 − b2

∫ a

b

xp(ξ)dξ√
ξ2 − b2(ξ2 − x2)

b ≤ |x| ≤ a (17)

The first side condition is no longer automatically satisfied, and demands that

∫ a

b

p(s)ds√
s2 − b2

=
σπ

8 f
. (18)

On the other hand, the second side condition is now automatically satisfied (Equation 12).

4. Application to a Hertzian contact

So far, our results have been geometry independent. We consider a Hertzian contact to illustrate the proposed method for

a particular geometry to show that we get results consistent with existing theory. The normal traction distribution for a

Hertzian contact is given by,

p(x) =
2P
πa

√

1 −
( x
a

)2

= p0

√

1 −
( x
a

)2

. (19)

This may be substituted into Equations 11 and 12 to find the extent of the stick zone in the general case of combined shear

and bulk tension loading. If the slip directions are the same (positive Q and σ),

4
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b1

a
=

√
1 − Q

f P
+

σ

4 f p0
;

b2

a
=

√
1 − Q

f P
− σ

4 f p0
. (20)

We can also find the strains developed in the slip regions by substitution of the contact pressure into Equation 9 and

Equation 10,

Bx(x) = S ign(x)
2 f p0

aE∗
√

(x − b1)(x + b2) x ∈ slip zones. (21)

The limits of this solution can be found when the slip zone length becomes zero (either b2 → −a or b1 → a). To avoid

this and for the slip zones to be of the same sign,

σ

f p0
≤ 4(1 −

√
1 − Q/ f P). (22)

When this condition is violated, the slip zones are of opposite sign, and the following two conditions must be satisfied

(positive Q and σ),

−2√
(1 + β1)(1 + β2)

[
(1 + β1)(1 + β2)E



√
(1 − β2

1)(1 − β2
2)

(1 + β1)(1 + β2)


+ (1 + β2)

(
β1 − β2

2
+ 2

)
K



√
(1 − β2

1)(1 − β2
2)

(1 + β1)(1 + β2)



+(β1 − β2)Π
(
β2 − 1
β2 + 1

,

√
(1 − β2

1)(1 − β2
2)

(1 + β1)(1 + β2)

)
− β

2
1 − β2

2

2
Π

(1 − β1

1 + β2
,

√
(1 − β2

1)(1 − β2
2)

(1 + β1)(1 + β2)

)]
=

πσ

4 f p0

(23)

where β1 = b1
a and β2 = b2

a , and

−3a

2
√

(1 + β1)(1 + β2)

[
− (1 + β2)(1 + β1)(β1 − β2)E

(
√

(1 − β2
1)(1 − β2

2)

(1 + β1)(1 + β2)

)

−(1 + β2)((
β1

3
+ 2)β2 −

β2
2

2
− β

2
1

2
− 2β1

3
− 2

3
)K

(
√

(1 − β2
1)(1 − β2

2)

(1 + β1)(1 + β2)

)

−
(
β1 + β2

2

)(
β2

1 −
2β1β2

3
+ β2

2 −
4
3

)
Π

(1 − β1

β2 + 1
,

√
(1 − β2

1)(1 − β2
2)

(1 + β1)(1 + β2)

)]

=
πσ(b1 − b2)

8 f p0
− Q

f p0
.

(24)

Where, K(γ), E(γ) and Π(n, γ) are elliptic integrals of the first, second and third kind. The results are shown in Figure 3

where the dotted lines give the boundary between shear and bulk dominated behaviour at either end of the contact. To

find the corresponding values of b2 we just need to flip the y-axis, i.e. replace σ/ f p0 with −σ/ f p0.

5. Asymptotic approximation

We focus our attention on the slip zone at one end of the contact and introduce an asymptotic solution. The simplified

geometry is shown in Figure 4, which is similar to a semi-infinite crack, with the exception that the interface does not

support a tension, and that the symmetrical solution for loading (the contact pressure) falls smoothly to zero as the contact

edge is approached.

We consider only one edge of the contact, such that both a, b→ ∞ but a − b = d remains finite. The resulting problem is

to derive the shear traction due to a distribution of glide dislocations close to one edge of an adhered semi-infinite contact.

5
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-1
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Figure 3: Contours of b1/a

z,r

d

Figure 4: Dislocations at one edge of a half-plane contact

5.1. Glide dislocations on the centreline of a semi-infinite crack

The solution for a glide dislocation near the edge of a semi-infinite adhered contact is equivalent to one close to the tip of

a semi-infinite crack and may therefore be found readily. If we move the origin to the left-hand contact edge and make the

substitutions x = −a + z, ξ = −a + r, a distribution of glide dislocations (of density Bx (r)) will produce the shear traction

q(z) =
E∗

2π
√

z

∫ d

0

√
rBx(r)
r − z

dr, (25)

where d is the extent of slip. The dislocations must provide a corrective traction such that the shear traction in the slip

zone is equal to f p(z), which leads to the following integral equation

qc(z) =
E∗

2π
√

z

∫ d

0

√
rBx(r)
r − z

dr = f p(z) − qst(z), 0 ≤ z ≤ d. (26)

We now take a single-term description of the near-edge tractions and set p(z) = KN
√

z and q(z) = KT√
z

[8] where,

6
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KN =
1
π

√
2
a

dP
da

KT =
σ

4

√
a
2
± Q

π
√

2a
. (27)

Equations 25, 26 and 27 then become

f KNz − KT =
E∗

2π

∫ d

0

√
rBx(r)
r − z

dr, 0 ≤ z ≤ d, (28)

Which may then be inverted assuming that the solution is bounded both ends. We find that the dislocation distribution and

the size of the slip zone are given by

Bx(z) =
f KN

E∗
√

d − z; d =
2KT

f KN
. (29)

5.2. Limits of the approximation

To find the limits of the asymptotic approximation, we compare the work done against friction for a Hertzian contact

when subject to either a monotonically increasing shear force or differential bulk tension, since there is an exact solution

to the problem. For a given slip zone length (b/a), the work done is slightly different for the two problems because the

slip displacements are greater when induced by the exertion of bulk tension. For the case when the slip zone is 10% of

the contact half width (b/a = 0.9), the work done against friction, W(z/d) is shown in Figure 5. We also include the

work done calculated using the asymptotic approximation in Figure 5. It is apparent that the asymptotic approximation

always yields an underestimate of the work done if the slip is induced by pure shear and, conversely, always yields an

overestimate when induced by pure bulk tension. Any combination of shear and bulk loading will result in an energy

dissipation that lies between the two extremes; thus the pure loading cases are the extremes of error between the finite

solution and the asymptotic approximation.

Figure 5: Energy dissipation at one edge of a Hertzian contact (b/a = 0.9, d/a = 0.1)

In Figure 6, we plot for a given b/a, the fractional error in the total energy dissipated (the integral of W(z/d) over the

region 0 < z/d < 1) in the slip zone using an asymptotic form compared with the full solution. The ratio b/a = 0.9 gives

rise to a 10% error in the energy dissipated.

7
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6. Conclusion

In this paper, we have shown that it is possible to treat any combination of shear force and bulk tension when the normal

load is held constant by starting with the fully stuck solution and then introducing a corrective slip displacement. It

can be applied to any contact that may be idealised as two partially bonded half-planes. The advantage of the method

is the automatic preservation of any locked in slip displacements - which makes it easier to solve problems where the

stick zone is not at the centre of the contact. We also derived an asymptotic approximation that is much simpler to use

both numerically and theoretically. We showed that, when the slip zone is less than 10% of the overall contact size, the

approximation gives a good estimate of the energy dissipation.
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Appendix A. Inversion of the integral equation

We seek to invert the following singular integral equation in the two slip zones,

qc(x) =
E∗

2π
√

a2 − x2

−
∫ a

b1

√
a2 − ξ2Bx(ξ)dξ

ξ − x
+ −
∫ −b2

−a

√
a2 − ξ2Bx(ξ)dξ

ξ − x

 , x ∈ (−a,−b2) ∪ (b1, a). (A.1)

By scaling variables using the contact size,

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

x = at, ξ = as, Bx(as) = F(s),
2
√

1 − t2

E∗
qc(at) = Q(t) (A.2)

we reduce (A.1) to

Q(t) =
1
π


∫ −β

−1

√
1 − s2

s − t
F(s)ds + −

∫ 1

α

√
1 − s2

s − t
F(s)ds

 , t ∈ (−1,−β) ∪ (α, 1) (A.3)

where α = b1/a, β = b2/a. The problem is now to invert the singular integral equation

Q(t) =
1
π
−
∫

L

φ(s)
s − t

ds (A.4)

where φ(s) =
√

1 − s2F(s) and L is the union of disjoint contours (−1,−β), (α, 1). By extending the contour L to a

closed contour C, we can reformulate (A.4) as a Riemann-Hilbert problem with discontinuous coefficients for φ(z), which

is analytic except on C. We can solve this using the method of Gakhov [9], which reduces the problem to one with

continuous coefficients by considering functions with the appropriate local behaviour at the end points of L. There are

thus different solutions depending on which behaviour for φ(z) is most physically relevant; here we consider two, the

solution unbounded at all ends of L and the solution bounded at all ends of L.

Appendix A.1. Unbounded at all ends

If we seek a solution that is unbounded at ±1, α,−β, the Riemann-Hilbert problem has index 2, and the appropriate

inversion gives

φ(t) =
1

π
√

(1 − t2)(t − α)(t + β)


∫ −β

−1

√
(1 − s2)(s − α)(s + β)

s − t
Q(s)ds − −

∫ 1

α

√
(1 − s2)(s − α)(s + β)

s − t
Q(s)ds + ρ(t)

 ,

(A.5)

for t ∈ (α, 1), where ρ(t) is an arbitrary polynomial of maximum degree 2. In general, we must use physical constraints to

determine ρ(t). After returning to the unscaled variables, we find that the dislocation density is given by

√
1 − x2

a2
Bx(x) =

−1

π
√(

1 − x2

a2

) (
(x−b1)(x+b2)

a2

)
[
−
∫ a

b1

√
(1 − ξ2

a2 )( (ξ−b1)(ξ−b2)
a2 )

ξ − x


2

E∗

√
1 − ξ

2

a2
qc(ξ)

 dξ

−
∫ −b2

−a

√
(1 − ξ2

a2 )( (ξ−b1)(ξ−b2)
a2 )

ξ − x


2

E∗

√
1 − ξ

2

a2
qc(ξ)

 dξ + ρ(x)

]
(A.6)

for x ∈ (b1, a). A similar expression can be found for x ∈ (−a,−b2), but for brevity is omitted here.

Appendix A.2. Bounded at all ends

In the context of this paper, the more physically-relevant regime is that in which the function φ(z) is bounded at ±1, α,−β.

In this regime, the Riemann-Hilbert problem has index −2 and the appropriate solution is given by

φ(t) =
−

√
(t − α)(t + β)(1 − t2)

π

−
∫ 1

α

Q(s)√
(1 − s2)(s − α)(s + β)(s − t)

ds −
∫ −β

−1

Q(s)√
(1 − s2)(s − α)(s + β)(s − t)

ds

 (A.7)

for t ∈ (α, 1). Therefore, returning to unscaled variables, we find that the dislocation density for x ∈ (b1, a) is

Bx(x) =
−2
E∗π

√
(x − b1)(x + b2)

−
∫ a

b1

qc(ξ)√
(ξ − b1)(ξ + b2)

dξ
(ξ − x)

−
∫ −b2

−a

qc(ξ)√
(ξ − b1)(ξ + b2)

dξ
(ξ − x)

 . (A.8)
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Similarly for x ∈ (−a,−b2), the dislocation density is given by

Bx(x) =
2

E∗π

√
(x − b1)(x + b2)


∫ a

b1

qc(ξ)dξ√
(ξ − b1)(ξ + b2)(ξ − x)

−
∫ −b2

−a

qc(ξ)dξ√
(ξ − b1)(ξ + b2)(ξ − x)

 . (A.9)

Since the index of the Riemann-Hilbert problem is negative, we must also enforce two consistency conditions, which are

given by

∫ −b2

−a

qc(s)s j−1ds√
(s − b1)(s + b2)

−
∫ a

b1

qc(s)s j−1ds√
(s − b1)(s + b2)

= 0, (A.10)

for j = 1, 2. In general, for a given qc(x), (A.10) will allow us to determine expressions for b1 and b2, which we discuss

in more detail in Appendix B.

Appendix B. Integral evaluation for a fully stuck contact with a constant normal load

The function qc(x) is made up of three terms

qc(x) =
Q
π

q1
c(x) +

σ

4
q2

c(x) + q3
c(x) = − Q

π
√

a2 − x2
− σx

4
√

a2 − x2
+ f p(x), (B.1)

where the first two terms are general and the final term is specific to the geometry being considered. We aim to evaluate

the integral constraints (A.10), by using contour integration to evaluate each integral for qi
c, i = 1, 2, 3. In order to facilitate

this, throughout we shall consider the branch of the function
√

z2 − a2 that is real, positive and continuous across the real

axis for x > a and the branch of the function
√

(z − b1)(z − b2) that is real, positive and continuous across the real axis for

x > b1. We can calculate the two general parts of the consistency conditions directly. Evaluating (A.10) considering only

the first term, q1
c(x), we find that

∫ −b2

−a

q1
c(s)s j−1ds√

(s − b1)(s + b2)
−

∫ a

b1

q1
c(s)s j−1ds√

(s − b1)(s + b2)
=



0 for j = 1,

−π for j = 2.
(B.2)

Similarly, evaluating (A.10) considering only the second term, q2
c(x), we find that

∫ −b2

−a

q2
c(s)s j−1ds√

(s − b1)(s + b2)
−

∫ a

b1

q2
c(s)s j−1ds√

(s − b1)(s + b2)
=



−π for j = 1,

− (b1 − b2)π
2

for j = 2.
(B.3)

Appendix B.1. Side condition for a Hertzian contact

Finally, we shall consider the geometry-specific part of the consistency conditions (A.10) for the particular example of a

Hertzian contact,

q3
c(x) = f p(x) = p0

√
1 −

( x
a

)2
. (B.4)

Thus, we need to consider an integral of the form

I =

∫ −b2

−a

s j−1
√

a2 − s2ds√
(s − b1)(s + b2)

−
∫ a

b1

s j−1
√

a2 − s2ds√
(s − b1)(s + b2)

, (B.5)

which can also be evaluated using contour integration, giving

I =



(b1 − b2)π
2

for j = 1,
(

3
8

(b2
2 + b2

1) − b1b2

4
− a2

2

)
π for j = 2.

(B.6)
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