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We study the initial evolution of the coffee ring that is formed by the evaporation of a
thin, axisymmetric, surface tension-dominated droplet containing a dilute solute. When
the solutal Péclet number is large, we show that diffusion close to the droplet contact
line controls the coffee-ring structure in the initial stages of evaporation. We perform a
systematic matched asymptotic analysis for two evaporation models — a simple, non-
equilibrium, one-sided model (in which the evaporative flux is taken to be constant across
the droplet surface) and a vapour-diffusion limited model (in which the evaporative flux
is singular at the contact line) — valid during the early stages in which the solute remains
dilute. We call this the ‘nascent coffee ring’ and describe the evolution of its features,
including the size and location of the peak concentration and a measure of the width of
the ring. Moreover, we use the asymptotic results to investigate when the assumption of a
dilute solute breaks down and the effects of finite particle size and jamming are expected
to become important. In particular, we illustrate the limited validity of this model in the
diffusive evaporative flux regime.

1. Introduction

A droplet of coffee left to evaporate into the surrounding air leaves behind a stain
that is darkest towards its edge, a phenomenon known as the ‘coffee ring effect’. While
there are variations depending on the particular properties of the liquid and solute under
consideration, as well as the dominant mode of evaporation, the fundamental mechanism
for the coffee ring is as follows. For many substrates, the droplet contact line becomes
pinned by surface roughness or inhomogeneities. As the volatile liquid evaporates, an
outward radial flow develops to replace the fluid evaporating from the pinned contact
line (Deegan et al. 1997, 2000). This outward radial flow carries solute along with it. As
further fluid is lost, this solute build up at the contact line eventually reaches its packing
density, forming the coffee ring (Popov 2005). This phenomenon is not just restricted
to coffee and is ubiquitous in situations involving liquids carrying a solute. It has even
been shown to be possible in initially-pure liquid droplets that evaporate on a substrate
that dissolves on a faster timescale than the evaporative process (Mailleur et al. 2018).
Depending on the physical situation, the coffee ring effect may be advantageous. For
example, the outward flow that drives the effect can be used to align DNA to aid map-
ping (Jing et al. 1998; Smalyukh et al. 2006), to order arrays of nanoscopic structures
(Kimura et al. 2003) or colloids (Koh & Wong 2006), or to aid the patterning of colloidal
films (Harris et al. 2007). However, in other situations, the tendency of this flow to pro-
duce an inhomogenous deposit may be undesirable. Examples include when one requires
a uniform deposit in dip-coating (Berteloot et al. 2008) or in the formation of cDNA
microarrays (Blossey & Bosio 2002; Blossey 2003).

This article has been published in a revised form in Journal of Fluid Mechanics https://dx.doi.org/10.1017/jfm.2021.463. This version is 
free to view and download for private research and study only. Not for re-distribution, re-sale or use in derivative works. © Cambridge 
University Press.

http://arxiv.org/abs/2011.11978v2


2 M. R. Moore, D. Vella & J. M. Oliver

Given the ubiquity of volatile liquid droplets containing a solute, an understand-
ing of the physical mechanisms behind the coffee ring effect has been of great inter-
est to researchers over the recent decades. The seminal work of Deegan et al. (1997)
and Deegan et al. (2000) first linked the appearance of the coffee ring to the flow in-
duced by evaporation. Since Deegan and coworkers assumed that the evaporation of
the droplet is dominated by diffusive processes in the vapour, the evaporative flux is
singular at the pinned edge of the droplet and so, moving to preserve conservation of
mass, an outward flow develops in the droplet, taking fluid and solute to the contact
line. Deegan et al. (1997) and Deegan et al. (2000) developed an analytical model for an
axisymmetric droplet, deriving an expression for the amount of solute mass transported
to the contact line as a function of the drying time. They show that the stagnation point
flow of the droplet drives all the solute mass to the contact line by the time the droplet
has completely evaporated. This mass is concentrated into a ring of infinitesimal width
at the contact line.
For droplets with larger initial contact angles, Kang et al. (2016) describe an alterna-

tive mechanism for solute transport, in which the solute particles are captured by the
rapidly diminishing droplet free surface and subsequently transported along the free sur-
face to the pinned contact line. However this process is dominated by the radial capillary
flow in the thin-drop (vanishing contact angle) limit.
Hu & Larson (2002) extended the analysis of Deegan et al. (2000) to consider the

role of the droplet contact angle in determining the diffusive evaporative flux from the
surface of the droplet, concluding that it plays an important role only for droplets whose
(macroscopic) contact angle is larger than 40◦. In the limit of thin droplets, the diffusive
evaporative flux is well approximated by that for a flat disk of liquid.
Of course, no coffee ring is really completely located at the contact line — the coffee

ring must in fact have a concentration profile. Kajiya et al. (2008) performed a number of
fluorescent microscopy experiments that show how the coffee ring varies for two different
evaporative flux laws. They show that for droplets that are confined within a box —
which restricts how the vapour concentration can move away from the droplet — the
evaporation rate is essentially uniform across the droplet. Moreover, although the coffee
ring effect is still observed, the thickness of the ring is much larger in the constant-
evaporation case compared to droplets that are allowed to evaporate naturally into the
surrounding gas, i.e. diffusively. It is this idea of using geometry to alter the evaporative
flux of the droplet that is used in, for example, the patterning techniques of Harris et al.
(2007).
The evaporative flux can also be manipulated by changing the surrounding environ-

ment. Boulogne et al. (2016) compare the evaporative fluxes for an evaporating water
droplet sitting on a dry substrate to a droplet sitting within a large hydrogel bath. In the
latter case, the singular diffusive evaporative flux at the pinned contact line is greatly
diminished by the hydrogel, which alters the vapour concentration in the surrounding
gas. Even though there are weak convective effects, the evaporative flux can be well-
approximated as a constant, and the authors demonstrate that, despite the change in
flux, a coffee-ring still forms.
The pinned contact line plays a crucial role in the formation of a coffee ring. Indeed, if

pinning can be inhibited by removing surface roughnesses (Maŕın et al. 2012) or coating
the substrate in a hydrophilic oil (Li et al. 2020), the coffee ring effect can be suppressed.
Moreover, in cases where the contact line undergoes a stick-slip motion, multiple rings
can form, see for example Adachi et al. (1995) and Shmuylovich et al. (2002).
While a large amount of the literature has concentrated on the problem of an axisym-

metric droplet due to its physical significance, there have been several recent studies
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analysing the effect of more general droplet profiles, including Witten (2009) and Zheng
(2009). In particular, Witten (2009) derives a power law profile for the late-time deposit
density, showing that it depends on the ratio of the evaporative flux above the stagnation
point within the drop to the average evaporative flux over the whole droplet. Freed-Brown
(2015) and Sáenz et al. (2017) have investigated the role of variable contact line curva-
ture on the coffee ring effect, revealing that it is enhanced towards highly-curved parts
of the contact line for a variety of different evaporative fluxes.

An outstanding issue in the current analyses of the transfer of solute is that, while
solute is transported advectively to the contact line, the mass at the contact line itself
must vanish as the thickness of the droplet vanishes there. One way to address this
deficiency is to consider the effect of the particle size in the model. In the model of
Deegan et al. (1997), the solute particle size is assumed to have no effect on the flow
dynamics in the bulk — an assumption that breaks down close to the contact line, where
the concentration increases as the droplet evaporates. When the solute concentration
reaches a sufficient level, the size of the particles has a leading-order effect on the local
flow, so that two-phase suspension models are appropriate to describe the dynamics
(see Guazzelli & Pouliquen (2018) and references therein). Furthermore, eventually the
particle packing density is reached, leading to the possibility of the solute jamming close
to the contact line. Such a model is considered by Popov (2005), who allows the solute to
effectively jam within the fluid when the local solute concentration reaches a threshold
value. When this occurs, no further solute can be transported into this region and is
instead deposited sooner, leading to a thickening of the ring back towards the centre
of the drop. Kaplan & Mahadevan (2015) extend this idea by considering the growing
jammed region near the contact line as a porous medium, which in turn changes the local
evaporative model. Kaplan & Mahadevan (2015) were able to show a transition from ring
deposits to uniform deposits depending on the size of the capillary number and the initial
solute concentration.

Jamming effects only come into play when the local solute concentration approaches
the particle packing fraction. However, even before the packing fraction is reached, the
evaporation-induced flow causes spatial gradients in the concentration, which must be
resisted by diffusion (see figure 1). The effect of diffusion in countering advection of solute
is often neglected for one of two reasons. Firstly, the pertinent physical effect of interest
is usually how much mass is transferred to which part of the boundary of the droplet.
Secondly, the matched asymptotic analysis required to resolve the boundary layer in
which diffusion matters is not straightforward, even in the limit in which the droplet is
very thin. Our aim in this paper is to address this deficiency in the literature by consid-
ering a detailed matched asymptotic analysis for the solute transfer in an evaporating,
pinned, axisymmetric droplet. In particular, we will describe the asymptotic structure
and the resulting properties of the nascent coffee ring for two evaporation models: a ki-
netic evaporation model, in which the flux is taken to be constant, and a diffusive model,
in which the flux is singular. We discuss the predictions of this model for the appearance
of the characteristic ‘coffee ring’ shape in the concentration profile well before jamming
occurs, giving insight that may approximate the coffee ring height and thickness while
the solute is still dilute. Crucially, our asymptotic predictions can also be used to assess
the applicability of the dilute model and we demonstrate the particular importance of
considering finite-particle-size effects in the diffusive evaporative flux regime.
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ū∗r(r
∗, t∗)

Figure 1: Schematic view of an axisymmetric liquid droplet evaporating on a substrate.
The droplet footprint has radius R∗ and the liquid–air interface is denoted by z∗ =
h∗(r∗, t∗). As the droplet evaporates, the contact line remains pinned. Thus, to replace
the mass lost to evaporation, an internal flow towards the contact line develops, which
advects solute to the contact line with flux J∗

adv. As the solute concentration φ∗ increases
close to the contact line, this induces a competing diffusive flux J∗

diff that opposes solute
advection. This interplay leads to the formation of the nascent coffee ring.

2. Formulation of the mathematical model

2.1. The dimensional problem

We consider the configuration in figure 1 in which a droplet of liquid of volume V ∗ lies on
a rigid, planar substrate. The substrate lies along z∗ = 0, where (r∗, θ, z∗) are cylindrical
polar coordinates defined with respect to the centre of the droplet footprint, which is
taken to be a circle of radius R∗. Here and hereafter, an asterisk denotes a dimensional
variable. The droplet contact line is assumed to remain pinned throughout the motion,
which is a reasonable assumption for the majority of the drying time (see Hu & Larson
2002) and certainly while the solute remains dilute.
Following the symmetry of the problem, we make the assumption that the dynamics

are independent of the polar angle θ. The free surface delineating the droplet from the
surrounding air is thus denoted by z∗ = h∗(r∗, t∗). We shall make the assumption that
the droplet is thin so that H∗ = h∗(0, 0) ≪ R∗.
The liquid contains a non-volatile solute of initial concentration φ∗

init, which we shall
assume to be evenly distributed throughout the droplet. We also assume throughout
that the solute is sufficiently dilute that the flow within the drop is unaffected by its
presence. This means that, crucially, we can decouple the flow in the liquid drop from
solute transport.

2.1.1. Flow problem

The liquid has density ρ∗ and viscosity µ∗, while the surface tension of the air-liquid
interface is denoted by σ∗; all of these material parameters are taken to be constant. For
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the purposes of our analysis, we shall neglect the effect of gravity; that is, we assume the
Bond number Bo = ρ∗g∗R∗2/σ∗ is small, where g∗ is the gravitational acceleration. The
liquid velocity and pressure are denoted by u∗ = u∗

rer + u∗
zez and p∗ respectively, where

er, ez are the unit vectors in the r∗- and z∗-directions.

Evaporation of the liquid into the surrounding air induces a flux of vapour E∗ at the
droplet surface. We shall assume that the evaporation is a quasi-steady process, which is
reasonable for a wide range of applications, including the evaporation of water on glass
(Hu & Larson 2002). The evaporative flux in turn drives a flow within the droplet whose
size U∗ depends upon the dominant evaporative process, as discussed in more detail in
§2.2.

In each of our evaporation models, the induced velocity will be assumed to be suf-
ficiently small and the droplet sufficiently thin that, to leading-order in δ = H∗/R∗,
the equations of fluid motion within the drop are well-approximated by the lubrication
equations (Deegan et al. 2000; Freed-Brown 2015), i.e.

∂h∗

∂t∗
+

1

r∗
∂

∂r∗
(r∗h∗ū∗

r) = −E∗

ρ∗
, ū∗

r = − h∗2

3µ∗

∂p∗

∂r∗
, p∗ = p∗atm − σ∗

r∗
∂

∂r∗

(

r∗
∂h∗

∂r∗

)

(2.1a, b, c)
for 0 < r∗ < R∗, t∗ > 0, where p∗atm denotes atmospheric pressure and ū∗

r is the depth-
averaged radial velocity. (Note that, in a slight abuse of language, we shall often refer to
ū∗
r as simply the radial velocity for brevity.) Equations (2.1) must be solved subject to

the symmetry conditions

∂h∗

∂r∗
= r∗h∗ū∗

r = 0 at r∗ = 0, t∗ > 0, (2.2a, b)

and the zero-thickness and no-flux conditions at the contact line

h∗ = r∗h∗ū∗
r = 0 at r∗ = R∗ t∗ > 0. (2.3a, b)

While the initial droplet profile should capture its shape shortly after being deposited
on the substrate and must be prescribed to close the problem (2.1)–(2.3), after an initial
transient on the timescale of capillary action (in which t∗ = µ∗R∗/δ3σ∗ by balancing
the first two terms on the left-hand side of (2.1a)), the free surface rapidly approaches a
spherical cap, see Lacey (1982). Hence, for simplicity, we shall impose the initial profile

h∗(r∗, 0) = 2V ∗(R∗2 − r∗2)/πR∗4 for 0 < r∗ < R∗. (2.4)

This fixes H∗ = 2V ∗/πR∗2 and hence we require that δ = 2V ∗/πR∗3 ≪ 1.

Assuming h∗ > 0 for 0 < r∗ < R∗ for 0 < t∗ < t∗f , where t
∗
f is the evaporation or dryout

time of the drop (Deegan et al. 2000), integrating (2.1a) from r∗ = 0 to r∗ = R∗ and
applying the no-flux conditions (2.2b) and (2.3b), we obtain an expression representing
global conservation of mass of the liquid phase, namely

d

dt∗

∫ R∗

0

r∗h∗(r∗, t∗) dr∗ = −
∫ R∗

0

r∗E∗(r∗)

ρ∗
dr∗; (2.5)

integrating and applying the initial condition (2.4) then gives

∫ R∗

0

r∗h∗(r∗, t∗) dr∗ =

∫ R∗

0

r∗h∗(r∗, 0) dr∗ −
(

∫ R∗

0

r∗E∗(r∗)

ρ∗
dr∗

)

t∗, (2.6)
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so that,

t∗f =
V ∗

2π

(

∫ R∗

0

r∗E∗(r∗)

ρ∗
dr∗

)−1

. (2.7)

For a given evaporative flux, (2.1)–(2.4) and (2.7) fully specify the flow problem for
h∗(r∗, t∗), ū∗

r(r
∗, t∗), p∗(r∗, t∗) and t∗f .

2.1.2. Solute problem

Since we are assuming that the dilute solute has no effect on the liquid flow, the
solute concentration φ∗ simply satisfies an advection-diffusion equation. In the limit in
which δ ≪ 1 and δ2U∗R∗/D∗

φ ≪ 1 where D∗
φ is the solutal diffusion coefficient, it is

straightforward to show that φ∗ is independent of z∗ at leading order. Hence averaging
the advection-diffusion equation across the droplet thickness yields

∂

∂t∗
(h∗φ∗) +

1

r∗
∂

∂r∗

[

r∗h∗φ∗ū∗
r −D∗

φr
∗h∗ ∂φ

∗

∂r∗

]

= 0 (2.8)

for 0 < r∗ < R∗, t∗ > 0 (Wray et al. 2014; Pham & Kumar 2017). There are two clear
competing physical effects in (2.8). The first is an advective flux of solute mass φ∗h∗ū∗

r,
where the evaporation-induced flow carries solute to the contact line. The solute concen-
tration thus increases local to the contact line, in turn driving a competing diffusive flux
−D∗

φh
∗∂φ∗/∂r∗ towards the droplet bulk. The relative importance of these effects is what

drives the formation of the nascent coffee ring in our analysis. We have schematically
illustrated these competing fluxes in figure 1.
By symmetry, we have

∂φ∗

∂r∗
= 0 at r∗ = 0, t∗ > 0, (2.9)

while there can be no flux of particles through the contact line, so that

r∗h∗φ∗ū∗
r −D∗

φr
∗h∗ ∂φ

∗

∂r∗
= 0 at r∗ = R∗, t∗ > 0. (2.10)

Finally, the initial solute distribution is taken to be uniform and given by

φ∗(r∗, 0) = φ∗
init for 0 < r∗ < R∗. (2.11)

For a given flow, (2.8)–(2.11) completely specify the solute transport problem for φ∗(r∗, t∗).
We emphasize that, in the thin-droplet, dilute-solute limit, the solute problem decou-

ples from the flow problem, so that we can solve (2.1)–(2.4), (2.7) for ū∗
r, p

∗, h∗ and t∗f ,
before solving for the solute concentration φ∗ from (2.8)–(2.11).
To close the problem, we require the velocity field ū∗

r , which depends on the evapora-
tive flux via (2.1). The evaporative flux (and hence the induced flow and structure) is
dependent on the dominant evaporative process. However, we stress that, in our analysis,
we are interested in the structure of the solute concentration profile near the contact line
rather than determining which evaporative model is the most appropriate for a given
problem. To that end, we shall consider two well-established evaporative models in this
paper: a kinetic evaporation model and a diffusive evaporation model, as we shall now
describe.

2.1.3. Evaporation models

In a kinetic evaporation model, it is often the case that either the surrounding gas
consists entirely of the droplet vapour, or that diffusion away from the droplet surface
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happens sufficiently quickly that evaporation is limited by the liquid phase alone. As
described in, for example, Murisic & Kondic (2011), the evaporative flux in this regime
is well approximated by the expression E∗ = A∗

k/(h
∗ + B∗

k), where A∗
k and B∗

k depend
on the properties of the droplet and thermodynamic properties of the system. For a thin
droplet, Murisic & Kondic (2011), note that there are liquid/substrate systems (such as
water/silicon) for which B∗

k ≫ h∗, so that E∗ ≈ A∗
k/B∗

k, a constant. For the purposes of
this paper we therefore take the evaporative flux in this regime to be

E∗(r∗) = E∗
k (2.12)

for 0 < r∗ < R∗, where E∗
k is a constant.

A constant evaporative flux may also be a reasonable approximation in other regimes
for which kinetic evaporation is not the dominant effect. For example, Boulogne et al.

(2016) consider water droplets evaporating on a glass substrate resting in a large hydrogel
bath. Since the hydrogel dries at a similar speed to the water, the vapour concentration
in the surrounding gas is greatly affected by the bath. For sufficiently large baths, the
flux around the droplet is well-approximated by a constant flux, although Boulogne et al.

(2016) note that convective effects may also be important in the air.
In a diffusive evaporation model, the dominant transport of the liquid vapour away

from the droplet-air interface is diffusion, and for a wide range of problems, the vapour
Péclet number is sufficiently large that this process is quasi-steady (Deegan et al. 2000;
Hu & Larson 2002). The vapour concentration thus satisfies a mixed boundary value
problem for Laplace’s equation in the air. Since the droplet is thin, this problem is
equivalent to solving for the potential outside a charged disk in classical electrostatics
(Sneddon 1966), with the resulting evaporative flux given by

E∗(r∗) =
2R∗E∗

d

π

1√
R∗2 − r∗2

, (2.13)

for 0 < r∗ < R∗, where again E∗
d depends on the properties of the system (Murisic & Kondic

2011).

2.2. Non-dimensionalization

The evaporative flux E∗ has a typical scale E∗ that is given by E∗
k and E∗

d in the kinetic and
diffusive evaporation models respectively. The induced radial velocity is U∗ = E∗/ρ∗δ.
Hence, we non-dimensionalize (2.1)–(2.4), (2.7), (2.8)–(2.11) and (2.12)–(2.13) by setting:

(r∗, z∗) = R∗(r, δz), ū∗
r =

E∗

δρ∗
ūr, t

∗
f =

δρ∗R∗

E∗
tf , t

∗ =
δρ∗R∗tf

E∗
t

h∗ = δR∗h, p∗ = p∗atm +
µ∗E∗

ρ∗R∗δ3
p, E∗ = E∗E, φ∗ = φ∗

initφ.

(2.14)

We note that in (2.14), the dimensionless dryout time tf is given by

tf =
1

4

(
∫ 1

0

rE(r) dr

)−1

=











1

2
in the kinetic regime, (2.15)

π

8
in the diffusive regime, (2.16)

and we have rescaled time to fix its domain to be 0 < t < 1, which will simplify substan-
tially numerous expressions in the sequel.
Under the scalings (2.14), the flow problem (2.1)–(2.4) becomes

1

tf

∂h

∂t
+

1

r

∂

∂r
(rhūr) = −E, ūr = −h2

3

∂p

∂r
, p = − 1

Ca

1

r

∂

∂r

(

r
∂h

∂r

)

(2.17a, b, c)
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for 0 < r < 1, t > 0, such that

∂h

∂r
= rhūr = 0 at r = 0, t > 0, (2.18a, b)

and

h = rhūr = 0 at r = 1, t > 0, (2.19a, b)

along with the initial condition

h(r, 0) = 1− r2 for 0 < r < 1, (2.20)

where,

Ca =
E∗µ∗

σ∗ρ∗δ4
(2.21)

is an enhanced droplet capillary number.
Similarly, the solute problem (2.8)–(2.11) becomes

1

tf

∂

∂t
(hφ) +

1

r

∂

∂r

[

rhφūr −
rh

Pe

∂φ

∂r

]

= 0 (2.22)

for 0 < r < 1, t > 0, such that

∂φ

∂r
= 0 at r = 0, t > 0, rhφūr −

rh

Pe

∂φ

∂r
= 0 at r = 1, t > 0, (2.23a, b)

and initially

φ(r, 0) = 1 for 0 < r < 1. (2.24)

Here, the solutal Péclet number, Pe, is defined by

Pe =
E∗R∗

ρ∗D∗
φδ

. (2.25)

Finally, the dimensionless evaporative flux is given for 0 < r < 1 by

E(r) =











1 in the kinetic regime, (2.26)

2

π

1√
1− r2

in the diffusive regime. (2.27)

2.3. Small capillary number limit

There are two dimensionless parameters in the problem: Ca and Pe. We shall consider
the regime in which Ca ≪ 1, so that the fluid motion is dominated by surface tension. We
shall then proceed to consider the large-Pe sublimit of this model, so that the importance
of solute diffusion is confined to a region near the pinned contact line. Firstly, however, we
will briefly illustrate the validity and applicability of these limits by considering several
experimental studies from the literature.
For a wide range of physical problems, the relevant limit for the flow model is that in

which the droplet capillary number is small, so that surface tension dominates viscous
forces in determining the droplet profile. To illustrate the pertinence of this assumption,
consider a typical example from Hu & Larson (2002): a water droplet of volume and
radius V ∗ = 0.5µl and R∗ = 1mm respectively sits on a glass substrate and evaporates
diffusively (cf. §4) into the surrounding air. The typical flow velocities induced by the
evaporation are reported to be on the order of U∗ = 1µms−1. Thus, δ ≈ 0.3 and Ca ≈
4.3× 10−7 ≪ 1.
We see similar orders of magnitude for the droplet aspect ratio and the capillary
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number for other common liquids as well. Kajiya et al. (2008) study the coffee ring
structure for evaporating droplets of anisole, for which µ∗ = 1.03 × 10−3Pa·s and σ =
3.5 × 10−2Nm−1. Again, the anisole droplet has volume and radius V ∗ = 0.5µl and
R∗ = 1mm respectively, while the authors report a drying time of ≈ 8 minutes, which
gives a fluid velocity U∗ ∼ 0.8µms−1. Hence, for this example, we find that δ ≈ 0.3 and
Ca ≈ 7.47× 10−7.

As a final example, we consider the experimental and numerical analysis of evaporat-
ing ethanol droplets in Sáenz et al. (2017). The authors present experiments for a wide
variety of droplet geometries, with the circular geometry of interest to the present study
concerning droplets of radius R∗ ≈ 2mm and volume V ∗ = 7µl. Although the authors
do not explicitly estimate the induced flow velocity, they state that the final evaporation
time of the droplets is O(100)s, which leads to U∗ ≈ 10µms−1. Thus, since ethanol has
viscosity µ∗ = 1.15× 10−3Pa·s and surface tension 2.1× 10−2Nm−1, we find that δ ≈ 0.6
and the droplet capillary number is given by Ca ≈ 2.49× 10−6.

Hence, as we see, for a wide variety of different liquids, we are very much entrenched
in the small-Ca regime, so that in what follows, we shall assume that surface tension
dominates the fluid motion.

For all of these examples, we have seen that R∗ ≈ 1mm and U∗ ≈ 1−10µms−1. Hence,
perhaps unsurprisingly, the size of the solutal Péclet number is most dependent on the
size of the diffusion coefficient, D∗

φ. If we return to the evaporating anisole droplets in
Kajiya et al. (2008), in which the solute is a fluorescent polystyrene for which the authors
note D∗

φ ≈ 2× 10−11m2s−1, we find that Pe ≈ 40.

More generally, if we assume that the solute particles are approximately spherical and
hence that D∗

φ is well-modelled by the Stokes-Einstein equation, it is the size of the
solute particles that is the dominant factor in determining the size of the solutal Péclet
number (note that for all three fluids considered above, the viscosities were approximately
10−3Pa·s). Thus, if we consider solute particle radii varying from 10µm (e.g. polystyrene
microspheres, as in Deegan et al. (2000)) to 5 × 10−4µm (e.g. a sugar molecule), the
Péclet number varies from Pe ∼ 3 to Pe ∼ 5× 104. Thus, it is clear our assumption that
Pe ≫ 1 is applicable to a wide range of problems.

It is worth noting that, in the examples considered above, δ is not particularly small
initially, so that we must be careful in the assumption of small-reduced Péclet num-
ber, δ2Pe, that is made in writing down (2.8). However, during evaporation the droplet
necessarily becomes more slender, so that this assumption becomes more reasonable.

The above estimates motivate us to pursue a small-Ca, large-Pe solution of (2.17)–
(2.24). Firstly, let us consider the flow in the droplet. As Ca → 0, it is evident that

h ∼ (1− t) (1− r2), (2.29)

p ∼ 4

Ca
(1− t), (2.30)

ūr ∼ − 1

4tfr

(1− r2)

(1− t)
+

1

r(1 − t)(1− r2)

∫ 1

r

sE(s) ds (2.31)

to leading order (Deegan et al. 2000). Inspecting the final term in (2.31) reveals that,
depending on the exact form of the evaporative flux, the depth-averaged radial velocity
may be bounded as r → 1 (for (2.26)) or singular as r → 1 (for (2.27)). The behaviour of
ūr as r → 1 will play an instrumental role in determining the structure of the diffusive
boundary layer governed by (2.22)–(2.24) close to the contact line, further justifying our
consideration of these two possible behaviours in §§3–4.
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2.4. Formulation in terms of the solute mass

Having determined the leading-order flow in the droplet, we turn to the solute problem.
We assume that ūr and h are well-approximated by their leading-order forms in the small-
Ca expansion and now concentrate on determining the asymptotic solution to (2.22)–
(2.24) in the limit in which ε := 1/Pe → 0+. Note, to be asymptotically consistent
with our derivation of (2.22)–(2.24), we are therefore considering the regime in which
δ2 ≪ ε ≪ 1. While the concentration, φ, is important in determining when the dilute
regime breaks down within the boundary layer (as we discuss in detail in §5), we find
it is convenient to proceed with our asymptotic analysis by introducing the solute mass
per unit area, m = φh, which satisfies

1

tf

∂m

∂t
+

1

r

∂

∂r

[

r

(

ūr +
ε

h

∂h

∂r

)

m− εr
∂m

∂r

]

= 0 for 0 < r < 1, t > 0, (2.32)

subject to

∂m

∂r
= 0 at r = 0, t > 0, r

(

ūr +
ε

h

∂h

∂r

)

m− εr
∂m

∂r
= 0 at r = 1, t > 0 (2.33a, b)

and

m(r, 0) = h(r, 0) = 1− r2 for 0 < r < 1. (2.34)

Finally, since it will be useful in what follows, we note that global conservation of solute
dictates that

∫ 1

0

rm(r, t) dr =

∫ 1

0

rm(r, 0) dr =
1

4
. (2.35)

We also note that, in addition to being mathematically convenient, using the solute
mass has an advantage over φ because it is related to the absorbance of the deposit via the
Beer-Lambert law (Swinehart 1962); it may therefore be easier to compare predictions
of m directly to experimental data.
As mentioned previously, the asymptotic structure is sensitive to the behaviour of the

radial velocity, which is given by (2.31), close to the contact line. For a kinetic evaporative
flux, the velocity is bounded at the contact line, which we consider in §3. On the other
hand, for a diffusive evaporative flux, the velocity is singular at the contact line, and we
consider this case in §4. Our goal is to formulate a composite expansion for the solute
mass valid everywhere in the droplet to leading order and to use the asymptotic results
to establish thereby the dynamics of the nascent coffee ring for each flux law. We will
compare these predictions to numerical simulations of the full system (2.32)–(2.34) (aided
by a further reformulation that is motivated, described and assessed in Appendix B).

3. Boundary layer structure for kinetic evaporation

Substituting the kinetic evaporative flux (2.26) and the dryout time (2.15) into (2.31)
yields

ūr =
r

2(1− t)
. (3.1)

We may then proceed to seek an asymptotic solution of (2.32), (2.33b) and (2.34) as
ε → 0. We note at the outset that it is straightforward to show that the outer solution we
find satisfies the symmetry condition (2.33a), so we do not need to introduce a boundary
layer at r = 0.
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3.1. Outer region

In the outer region, we näıvely expand m = m0 + εm1 + O(ε2) as ε → 0, where, as we
shall shortly see, we must proceed to O(ε) in the outer region in order to be able to
construct a composite mass solution that vanishes at the contact line. To leading order
in ε, (2.32) and (2.34) become

∂m0

∂t
+

1

r

∂

∂r

(

r2

4(1− t)
m0

)

= 0 for 0 < r < 1, t > 0, (3.2)

with m0(r, 0) = 1 − r2 for 0 < r < 1. Hence, as expected, the leading-order solute mass
is simply advected to the contact line by the radial flow. We can solve (3.2) using the
method of characteristics, finding

m0(r, t) = a(t)
(

1− r2a(t)
)

, (3.3)

where we have introduced the function a(t) =
√
1− t. We note that (3.3) can be used to

determine, to leading order in ε, the total amount of solute swept into r = 1 by time t,
denoted by M(t), namely

M(t) = tf

∫ t

0

ūr(1
−, τ)m0(1

−, τ) dτ =
1

2

(

1−
√
1− t− t

2

)

, (3.4)

which was previously reported for a kinetic evaporative flux by Freed-Brown (2015) and
Boulogne et al. (2016).
At O(ε), we have

∂m1

∂t
+

1

r

∂

∂r

(

r2

4(1− t)
m1

)

=
2a(t)(1− a(t))

(1− r2)2
for 0 < r < 1, t > 0, (3.5)

where m1(r, 0) = 0 for 0 < r < 1. This can be solved in a similar manner, yielding

m1(r, t) =
1

r

∂

∂r

[

r2a(t)

(

(1− r2a(t))t − 2

3

(

1− a(t)3
)

−

2a(t)r2
(

1− r2a(t)
)

(

a(t)− 1 + a(t)r2 log

(

a(t)(1− r2)

1− a(t)r2

)))]

. (3.6)

Note that, as r → 1, m0 → a(t)(1 − a(t)) and m1 = O(1/(1 − r)), both of which
are physically unreasonable, as the mass should vanish at the contact line because the
droplet thickness vanishes there. This is a clear indication of the need to consider the
behaviour close to r = 1, where the effects of solute diffusion become relevant.

3.2. Inner region

We scale into the inner region by setting

r = 1− εR, m = ε−1M (3.7)

in (2.32)–(2.34), where the scaling for the mass has been determined from the global
conservation of mass condition, (2.35). Then, to account for the logarithmic terms in the
local expansion of (3.6) at the contact line, we seek an asymptotic series of the form

M = M0 + (ε log ε)M1 + εM2 +O(ε2 log ε) (3.8)

as ε → 0. The leading-order inner problem is given by

∂

∂R

[(

α(t)− 1

R

)

M0 +
∂M0

∂R

]

= 0 for R > 0, t > 0, (3.9)



12 M. R. Moore, D. Vella & J. M. Oliver

such that
(

α(t) − 1

R

)

M0 +
∂M0

∂R
= 0 at R = 0, t > 0, (3.10)

where we have introduced the function α(t) = 1/(2(1 − t)). Equations (3.9)–(3.10) are
readily solved, yielding

M0 = A(t)R exp (−α(t)R), (3.11)

where A(t) is a function of time that we shall determine shortly. The functional form of
M0 — which may be viewed as the probability density function for a gamma distribution
— drives the characteristic nascent coffee ring profile in the boundary layer. We shall
discuss this further in §3.5.

At O(ε log ε), the inner problem is the same as that at leading order, so that

M1 = B(t)R exp (−α(t)R), (3.12)

where B(t) is to be determined.

At O(ε), we find that

∂

∂R

[(

α(t) − 1

R

)

M2 +
∂M2

∂R

]

= 2
∂M0

∂t
− ∂

∂R

[(

3

2
− 2α(t)R

)

M0 −R
∂M0

∂R

]

(3.13)

in R > 0, t > 0, such that

(

α(t)− 1

R

)

M2 +
∂M2

∂R
+

(

3

2
− 2α(t)R

)

M0 −R
∂M0

∂R
= 0 at R = 0, t > 0. (3.14)

The solution to this problem is given by

M2 =
[

C1(t)R+ C2(t)R
2 + C3(t)R

3 + C4(t)R (Ei(α(t)R) − log(α(t)R))
]

exp (−α(t)R)
(3.15)

where Ei(x) is the exponential integral, C1(t) is to be determined and

C2(t) =
15

2
A(t)− 2

α(t)
Ȧ(t), C3(t) =

5α(t)

2
A(t), C4(t) =

2

α(t)2
Ȧ(t)− 8

α(t)
A(t). (3.16)

3.3. Determining the unknown coefficients

It remains to determine the unknown coefficients A(t), B(t) and C1(t) in (3.11), (3.12)
and (3.15) respectively. In principle, we can obtain these by matching between the inner
and outer solutions, although this is notably challenging as (3.11) and (3.12) decay expo-
nentially in the far-field, so we must proceed to higher order to complete the matching.
We already have enough information to match for A(t) in this manner, but we would
need to go to even higher order in the inner region to match for B(t) and C1(t), which
becomes algebraically taxing. To avoid this work, we can instead appeal to global con-
servation of solute, (2.35). The details of this approach are given in Appendix A, and
show that

A(t) =
1

4(1− t)2

[

1

2
−

√
1− t

2
− t

4

]

, B(t) =
1−

√
1− t

2
√
1− t

(3.17)
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and

C1(t) = −α(t)2a(t)

[

(1 − a(t))t− 2

3

(

1− a(t)3
)

−

2a(t) (1− a(t))

(

a(t)− 1 + a(t) log

(

2a(t)

1− a(t)

))]

−

2(C2(t)−A(t))

α(t)
− 6C3(t)

α(t)2
− 2C4(t)(γ − 1)− C4(t) logα(t). (3.18)

Note that the term in square brackets in A(t) is simply the total solute mass advected
into the boundary layer from the outer region at leading-order, (3.4).

3.4. Composite expansion

Having determined the unknown coefficients in the inner and outer expansions, we are
left to form a composite mass profile. A natural first attempt would be to simply write
down

mcomp = m0(r, t) +
1

ε
M0

(

1− r

ε
, t

)

, (3.19)

where m0 and M0 are given by (3.3) and (3.11) respectively. As we shall see, while (3.19)
does a fine job in approximating the mass profile in the droplet bulk, close to the contact
line, there is an O(1) error in the mass profile caused by the fact that m0 is finite as
r → 1.
As forecast by our consideration of the higher-order outer and inner problems, to

remedy this we can write down a second composite expansion that is valid up to O(1)
for all r. This entails using m0,M0,M1 and M2. To form the composite, we turn to
Van Dyke’s matching rule (Van Dyke 1964), which requires a knowledge of the common
contribution from the outer and inner solutions. We introduce the intermediate variable
r = 1− εkr̄ = 1− εR, where 0 < k < 1. Substituting this scaling into the inner and outer
solutions and expanding as ε → 0, we see that

minner =
C4(t)

α(t)2
+o(1) = a(t)(1−a(t))+o(1), mouter = a(t)(1−a(t))+o(1), (3.20a, b)

where we have exploited the known value of A(t) in the inner expansion to evaluate the
expression in (3.20a).
Therefore, the appropriate composite expansion valid to O(1) for all r is

mcomp = m0(r, t) +
1

ε
M0

(

1− r

ε
, t

)

+

(log ε)M1

(

1− r

ε
, t

)

+M2

(

1− r

ε
, t

)

− a(t)(1 − a(t)), (3.21)

where M1 and M2 are given by (3.12) and (3.15) respectively and we recall a(t) =
√
1− t.

We note that, although we do not need the precise form of m1 to write down this
composite solution, we did need to ascertain its behaviour as r → 1 to perform the
correct asymptotic expansion in the inner region, which is why we considered the O(ε)-
outer problem in §3.1. Moreover, the logarithmic singularity in m1 given by (3.6) makes
it challenging to write down a higher-order composite expansion that is valid everywhere.

3.5. Profiles and properties of the coffee ring

Now we have determined two composite solutions for the solute mass, we are able to
demonstrate the formation and evolution of the nascent coffee ring effect as solute is
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advected from the outer region into the diffusive boundary layer, which grows in a char-
acteristic gamma distribution-type profile.
In the following, an important quantity is the modified time-dependent Péclet number

(henceforth the modified Péclet number):

Pet =
Pe

1− t
, (3.22)

which is the ratio of advective to diffusive transport modified to take into account the time
dependence of the evaporation-induced velocity, the latter scaling with the reciprocal of
the time to dryout, i.e. (1 − t)−1. Since we shall see that at leading order the thickness
and height of the diffusive boundary layer scale with functions of the modified Péclet
number, it captures in a single quantity the scaling behaviour of the nascent coffee ring
with respect to both the Péclet number, Pe, and the time remaining until dryout.
Of particular note is that our asymptotic analysis suggests that the form of the nascent

coffee ring is dominated by the leading-order-inner solution (3.11) for Pet ≫ 1. In par-
ticular, we expect the nascent coffee ring to tend to the similarity form given by

M0(R, t)

M(t)Pet
=

R

4
e−R/2 = f

(

R; 2,
1

2

)

, R = Pet(1− r), (3.23)

where M(t) is given by (3.4) and f(x, k, l) = lkxk−1e−lx/Γ(k) is the probability density
function of a gamma distribution.
To validate our asymptotic predictions, we have also solved (2.32)–(2.34) numerically.

This solution is hindered by the boundary layer thickness and height scaling with 1/Pet
and Pet as Pet → ∞; we have ensured that this boundary layer is resolved by discretizing
in a suitable manner, as described in Appendix B.
We plot both the numerical and asymptotic predictions of the solute mass profile in

figure 2 for Pe = 100. In the top row, we compare the composite mass solution given
by (3.19) to the numerical solution, while in the bottom row we show the comparison
for the composite mass profile given by (3.21). In each plot, we see the evolution of the
solute mass from the initial profile (bold, black curve). As the droplet evaporates, the
geometry of the droplet induces a radial flow towards the contact line, which advects
solute outwards. In the boundary layer, diffusion leads to the characteristic coffee-ring
spike, which is clearly seen in the insets to each plot. While it is clear that both composite
profiles do an excellent job of capturing the solute in the droplet bulk, there is a clear
deviation of the lower-order composite (3.19) from the expected solution in the boundary
layer, leading to O(1) errors. The higher-order inner solutions accounted for in (3.21)
rectify this deficiency, and we see excellent agreement between the asymptotics and the
numerics, particularly as t increases. We note in particular that, at 90% of the dryout
time (the final curve in each plot), the peak mass in the boundary layer is approximately
22 times the initial peak at the centre of the drop (for which mmax = 1).
We depict in figure 3 the anticipated collapse of the nascent coffee ring onto the sim-

ilarity form (3.23). For a wide range of Pe, we see clear evidence of this similarity form
emerging after an initial transient, demonstrating the universality of the gamma distri-
bution profile (3.23) in the diffusive boundary layer.
Since we are now armed with sufficient evidence of the validity of our asymptotic

results, we can use them to investigate various aspects of the solutal flow dynamics and
the development of the nascent coffee ring. In particular, this analysis was motivated
by establishing the competition between the advective mass flux Jadv = ūrhφ and the
diffusive mass flux Jdiff = −(h/Pe)∂φ/∂r in different regions of the droplet. We display
both of these leading-order fluxes and the resulting leading-order mass flux at various
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Figure 2: Profiles of the solute mass as the droplet evaporates under a kinetic flux, E = 1,
with Pe = 100. In each figure, the bold, black curve represents the initial mass profile
(which is identical to the droplet profile since φ(r, 0) = 1). Also shown are plots at time
intervals of 0.1 up to t = 0.9 in which solid, blue curves represent the numerical results
and the dashed, red curves show the composite mass profiles predicted by (3.19) (a, b)
and (3.21) (c, d) for large-Pe. Figures b, d display a doubly-logarithmic plot of the mass
profile near the contact line, where we can clearly see the formation of the concentration
spike that becomes the nascent coffee ring as t increases.

times for Pe = 100 in figure 4. As is clearly seen, the advective flux carries solute particles
towards the contact line, while the diffusive flux acts to take particles away from the high
concentration at the contact line. The magnitude of the maximum advective and diffusive
fluxes is comparable at each instant, which is expected from the asymptotic structure of
the model: in the boundary layer, the dominant balance is between these fluxes at the
expense of the time derivative term in (2.32). In each of the profiles shown in figure 4, it is
clear that the advective flux is larger, so that the resultant movement of solute is towards
the pinned contact line, which leads to the development of the coffee ring. At each time
instant, there is a slow increase of the overall mass flux towards the contact line, which
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Figure 3: The scaled solute mass m/M(t)Pet against the radial similarity coordinate
Pet(1 − r) as a function of time. The dashed, black curve represents the scaled leading-
order-inner solute mass profile (3.23). The coloured curves are results from the numerical
simulations at t = 0.3 (dark purple), t = 0.6 (blue) and t = 0.9 (light green) for Pe = 10
(solid), Pe = 100 (dots) and Pe = 1000 (dash-dots). As t → 1 and Pe → ∞, the results
collapse onto the similarity form given by (3.23), as expected.
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Figure 4: Transient profiles of the advective particle flux Jadv (left), the diffusive particle
flux Jdiff (centre) and the overall mass flux (right) for a droplet evaporating in the kinetic
evaporative flux regime with Pe = 100 at times t = 0.3 (dark purple), t = 0.6 (blue) and
t = 0.9 (light green). These profiles have been calculated from the composite solution
(3.21).

rapidly falls as we enter the boundary region where the diffusive flux is important. It
should be noted that, as we can see in figure 4, the peak mass flux moves towards the
contact line as t → 1; this is indicative of the majority of mass having been advected
radially out from the droplet centre as it dries. Moreover, it is clear that, while the overall
mass flux towards the contact line generally increases in magnitude as t increases, the
relative mass flux has fallen: at time t = 0.9, the maximum advective and diffusive fluxes
are roughly three orders of magnitude larger than those at t = 0.3, while the maximum
overall mass flux has increased by just a factor of 4.
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Figure 5: The maximum height of the solute mass profilemmax (left), its location 1−rmax

(centre) and the profile full-width at half-maximum w1/2 (right) as a function of time in
the kinetic evaporative flux regime. In this figure, we consider the numerical results for
three different Péclet numbers, Pe = 102 (dark purple), Pe = 103 (blue), Pe = 104 (light
green). For each case, the dashed, black curve corresponds to the asymptotic predictions
(3.24) and (3.25). Note that w1/2 is only well-defined for t & 0.2 (t & 0.5 for Pe = 100);
see main text for details.

We conclude by using our asymptotic results to predict characteristics of the nascent
coffee ring that may be of use in applications and, in particular, measurable in an ex-
perimental setting. As it forms, the maximum height, mmax, of the solute profile and
the radial position of the maximum, rmax, can be well approximated by maximizing the
leading-order-inner solution, (3.11), yielding

mmax(t) =
M(t)Pet

2e
, rmax(t) = 1− 2

Pet
, (3.24)

where M(t) is given by (3.4). In particular, we note that, as the droplet evaporates, the
peak moves closer to the contact line and the maximum solute profile height diverges
as t → 1. This is illustrated for three different Péclet numbers in figure 5. The figure
also demonstrates that the asymptotics provide a good approximation of the numerical
results at an earlier time for larger Péclet numbers, as expected. We note that the sharp
changes in the figure correspond to the maximum in the solute mass profile moving from
the droplet centre to the nascent coffee ring in the boundary layer. This happens at
earlier times for larger Péclet numbers.
Finally, we consider a measure of the size of the coffee ring by considering the width of

the profile at half its peak height — the full-width at half-maximum — which we denote
by w1/2. Asymptotically, this is given by

w1/2(t) =
2

Pet

[

W0

(

−1

2e

)

−W−1

(

−1

2e

)]

, (3.25)

where W0(x) and W−1(x) are the Lambert-W functions (i.e solutions to wew = x);
(Olver et al. 2010). Clearly, the width of the nascent coffee ring shrinks as the drop
evaporates, with the majority of the mass confined to a sharp, narrow peak — note that
(3.11) tends to a delta function, δ(R), as t → 1. We plot the asymptotic prediction (3.25)
in figure 5 alongside the evolution of w1/2 extracted from the numerical results. We note
that results are only shown for t such that this definition makes sense: for small times, the
minimum in the solute mass profile between the coffee ring and the droplet bulk lies above
half the maximum height, making w1/2 ill-defined. As the Péclet number increases, w1/2
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is well-defined for a longer time period. As with the comparisons for mmax and rmax, we
see that the leading-order asymptotic prediction holds over a longer time interval as Pe
increases, while even for the smallest Péclet number depicted, the asymptotic prediction
captures the behaviour of the half-width w1/2 well as t → 1.

4. Boundary layer structure for diffusive evaporation

We now move on to consider the equivalent boundary layer structure and nascent
coffee-ring properties under a diffusive evaporative flux, (2.27). Notably, this flux is sin-
gular at the contact line, so that evaporation is strongest there, enhancing the liquid flow
towards the contact line that is required to replace the lost fluid (Deegan et al. 1997).
With the evaporative flux (2.27) and the dryout time given by (2.16), the depth-

averaged radial velocity ūr can be determined from (2.31), giving

ūr =
2

πr(1 − t)

(

1√
1− r2

− (1− r2)

)

. (4.1)

As in the kinetic regime, we now seek an asymptotic solution of (2.32), (2.33b) and (2.34)
as ε → 0; note that, again the symmetry condition (2.33a) is automatically satisfied at
leading order so a boundary layer is not needed at r = 0.

4.1. Outer region

In the outer region, we expand m = m0+O(ε) as ε → 0 in (2.32)–(2.34). Then, to leading
order in ε, we obtain the advection equation:

∂m0

∂t
+

1

r

∂

∂r

[

1

4(1− t)

(

1√
1− r2

− (1− r2)

)

m0

]

= 0 for 0 < r < 1, t > 0, (4.2)

with m0(r, 0) = (1 − r2) for 0 < r < 1.
Equation (4.2) can again be solved by the method of characteristics: we find that

m0 =
√

1− r2(1− t)3/4
[

1− (1− t)3/4(1− (1− r2)3/2)
]1/3

. (4.3)

In particular, we note that m0 vanishes as r → 1, in contrast to the kinetic regime for
which m0 was bounded, but finite at the contact line. We will show that it is for this
reason that we do not need to proceed to higher order here: the leading-order outer
solution is sufficient to construct a composite mass profile that is accurate enough for
our purposes. We also note that we can use (4.3) to recover (to leading-order in ε) the
total mass of solute advected into r = 1 by the radial outward flow as a function of time,
viz:

M(t) = tf

∫ t

0

ūr(1
−, τ)m0(1

−, τ) dτ =
1

4

(

1− (1− t)3/4
)4/3

, (4.4)

a result previously reported in Deegan et al. (2000) and Popov (2003).

4.2. Inner region

In the diffusive regime, we scale into the contact line region by setting

r = 1− ε2R, m = ε−2M, (4.5)

where, as previously, the scaling for m can be determined from the conservation of solute
condition, (2.35). We can see immediately that the diffusive boundary layer is an order of
magnitude thinner, while the solute mass profile is an order of magnitude larger for this
evaporation model than in the kinetic evaporation model (in which the width and height
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are of O(ε) and O(ε−1) respectively). This is consistent with the experimental results
of Kajiya et al. (2008), in which droplets allowed to evaporate naturally (i.e. diffusively)
produced thinner coffee rings than those constrained to evaporate in a box (i.e. closer to
the kinetic regime).
Upon substituting the scalings (4.5) into (2.32)–(2.34) and expanding the mass in an

asymptotic series of the form M = M0 +O(ε) as ε → 0, we find to leading order that

∂

∂R

[(

1

4
√
2(1 − t)

√
R

− π

8R

)

M0 +
π

8

∂M0

∂R

]

= 0 for R > 0, t > 0, (4.6)

such that
(

1

4
√
2(1 − t)

√
R

− π

8R

)

M0 +
π

8

∂M0

∂R
= 0 at R = 0, t > 0. (4.7)

The leading-order-inner solute mass profile is therefore given by

M0 = F (t)Rexp

(

− 2
√
2

π(1− t)

√
R

)

, (4.8)

where F (t) is an arbitrary function of t.

4.3. Determining the unknown coefficient F (t)

Since the leading-order-inner solution is exponentially small as R → ∞, we again appeal
to conservation of solute to find an expression for F (t). Although the evaporative flux
has changed, conservation of solute (2.35) must still hold. We can then determine F (t)
in a similar manner to the kinetic regime, see Appendix A; we find that

F (t) =
16

3π4

1

(1 − t)4

[

1

4

(

1− (1− t)3/4
)4/3

]

. (4.9)

We have written this in a slightly unusual manner in order to highlight that, as with
A(t) in the kinetic regime, the term in square brackets is the total solute mass advected
into the contact line region up to time t, (4.4).

4.4. Composite expansion

We can write the leading-order composite mass solution for the diffusive evaporative flux
model as

mcomp = m0(r, t) +
1

ε2
M0

(

1− r

ε2
, t

)

, (4.10)

where m0 and M0 are given by (4.3) and (4.8) respectively. To obtain a higher-order
composite approximation for the solute mass in this regime requires tackling the second-
order-outer problem, which will typically need to be done numerically. However, as we
shall see, the leading-order composite expansion (4.10) is in excellent agreement with our
numerical simulations.

4.5. Profiles and properties of the coffee ring

With a diffusive evaporative model, the stronger evaporative flux at the contact line
leads to a sharper, thinner solute profile in the boundary layer. In particular, as the
modified Péclet number, Pet, increases, we expect the nascent coffee ring to approach
the similarity form given by

M0(R, t)

M(t)Pe2t
=

16R

3π4
e−2

√
2
√
R/π =

√
2

3π
f

(

√
R; 3,

2
√
2

π

)

, R = Pe2t (1− r), (4.11)
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Figure 6: Profiles of the solute mass as the droplet evaporates under a diffusive flux
given by (2.26) with Pe = 100. In each figure, the bold, black curve represents the initial
droplet solute profile (which mimics the initial droplet profile). Plots at time intervals of
0.1 up to t = 0.9 show the results of numerical simulations (solid, blue curves) and the
composite mass profile (dashed, red curves) predicted by our large-Pe asymptotics (4.10).
The right-hand figure is a doubly-logarithmic plot of the mass profile near the contact
line, where we can clearly see the formation of the nascent coffee ring as t increases.

where M(t) is given by (4.4) and we again see the emergence of a gamma distribution
probability density function, f , although with an increased shape parameter (3 rather
than 2 in the kinetic case).
To check the veracity of our asymptotic predictions, we again compare them to nu-

merical simulations of the full system (2.32)–(2.34). The nature of the extremely thin
boundary layer with diffusive evaporation — recall, an order of magnitude thinner than
the kinetic regime — means more care has to be taken in the range of Péclet numbers
considered to balance numerical convergence with remaining in the large-Pe asymptotic
regime. In figure 6, we consider both numerical solutions (solid curves) and the asymp-
totic predictions (dashed curves) of the solute mass profiles as t increases up to 90% of
the drying time for Pe = 100. Again, we can clearly see the formation of the peak in the
solute profile that should ultimately become the coffee ring as the drop evaporates. We
note that the stronger evaporative flux in this regime induces a much sharper increase
in the coffee ring height: in the inset to figure 6, we see that by t = 0.9, the solute mass
is ≈ 7000, which is two orders of magnitude larger than the height of the mass profile
in the kinetic regime at the same stage of the dynamics. Nevertheless, we again see ex-
cellent agreement between the asymptotic predictions and the results of our numerical
simulations.
In figure 7, we demonstrate the collapse of the nascent coffee ring to (4.11) as Pet

increases. The convergence to the similarity profile is very rapid in the diffusive regime
and gives us confidence, alongside the excellent comparisons of the composite mass profile
in figure 6, in using our model to predict features of the nascent coffee ring.
The maximum height, mmax, and its radial position, rmax, can again be well approxi-

mated by considering the leading-order-inner solution M0, yielding

mmax =
8M(t)Pe2t

3π2e2
, rmax = 1− π2

2Pe2t
. (4.12)
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Figure 7: The scaled solute mass m/M(t)Pe2t against the radial similarity coordinate
Pe2t (1− r) as a function of time. The dashed, black curve represents the scaled leading-
order-inner solute mass profile (4.11). The coloured curves are results from the numerical
simulations at t = 0.3 (dark purple), t = 0.6 (blue) and t = 0.9 (light green) for Pe = 10
(solid), Pe = 100 (dots) and Pe = 1000 (dash-dots). We see the expected collapse to the
similarity form (4.11) as Pet increases.

As with the kinetic regime (3.24), mmax diverges and rmax approaches the contact line as
t → 1, although for diffusive evaporation, these effects are much more pronounced. This
can clearly be seen in figure 8, where we plot the numerical and asymptotic predictions
for Pe = 50, 100 and 200. In comparison to, in particular, the Pe = 100 curve in figure
5, we see that the concentration peak forms much sooner in the diffusive regime than in
the kinetic regime due to the enhanced effects of evaporation. We can also see that, even
compared to the Pe = 1000 case in figure 5, the concentration peak is much closer to the
contact line in this regime, driven by the stronger velocity profile.
The width of the concentration peak at half of its maximum height in the diffusive

regime can be found analytically to be

w1/2 =
π2

2Pe2t

[

W−1

(

−1√
2e

)2

−W0

(

−1√
2e

)2
]

, (4.13)

which, consistent with the behaviours of mmax and rmax, shrinks more rapidly than its
equivalent in the kinetic regime (3.25) as the droplet evaporates. We plot (4.13) alongside
the corresponding numerical results in figure 8. Commensurate with the rapidity with
which the nascent coffee ring forms in this regime, we are able to capture w1/2 much
sooner than in the kinetic regime, and we see that even for Péclet numbers as small
as 50, there is excellent agreement between the asymptotic prediction (4.13) and the
numerical results.
Finally, we note that it is more difficult to display the competing fluxes in the diffusive

evaporative regime than it was for the kinetic evaporative regime (cf. figure 4). This
is primarily due to the fact that, while the composite asymptotic expansion (4.10) is
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Figure 8: The maximum height of the solute mass profilemmax (left), its location 1−rmax

(centre) and the full-width at half-maximum w1/2 (right) as a function of time in the
diffusive regime. In this figure we consider three different Péclet numbers, Pe = 50 (dark
purple), Pe = 100 (blue), Pe = 200 (light green). For each case, the dashed, black curve
corresponds to the asymptotic predictions (4.12) and (4.13).

asymptotically consistent for the solute mass, m, it loses this consistency if we attempt
to differentiate it, which is necessary when computing Jdiff = −(h/Pe)∂φ/∂r. The in-
consistency arises from the fact that, although the leading-order-outer solute mass (4.3)
is square-root bounded at the contact line, ∂φ/∂r ∼ (1− r)−3/2 as r → 1. Hence, Jdiff is
inverse square-root singular at the contact line. In order to address this singularity, we
would need to proceed to higher order in both the inner and outer regions of our asymp-
totic analysis, which is a challenging procedure and beyond the scope of the present paper.
However, as we shall now discuss, there are even more significant challenges facing the
diffusive evaporative flux regime.

5. Breakdown of the dilute approximation

One result of the rapid formation of a thin, relatively-concentrated profile is that the
concentration of solute is likely to rapidly reach the limits of the dilute approximation
employed here. A variety of finite concentration effects may enter including concentration-
dependent diffusivity or suspension viscosity, ultimately leading to solute jamming. We
do not consider such effects here, but rather seek to use our analysis to understand when
the dilute approximation is likely to break down. We suppose that the characteristic
packing fraction at which the dilute approximation ceases to be valid is given by φ∗ = φ∗

c

and we refer to this as the limiting concentration. The largest value of the (rescaled)
solute concentration, φmax(t), is at the contact line, and we use the large-Pe asymptotics
to approximate φmax(t) and compare it to the rescaled limiting concentration, φ∗

c/φ
∗
init.

For the kinetic regime, we may use the composite mass profile (3.21) to show that

φmax(t) ∼
Pe2

2(1− t)

[

A(t) +
log 1/Pe

Pe
B(t) +

1

Pe
(C1(t) + γC4(t))

]

+ 1. (5.1)

Matters are less straightforward for the diffusive regime: as alluded to at the end of §4,
since m0 is only square-root bounded as r → 1, mcomp/h is unbounded as we approach
the contact line. Instead, we simply use the leading-order-inner solute mass (4.8), yielding

φmax(t) ∼
2Pe4

3π4(1− t)5

[

1− (1− t)3/4
]4/3

. (5.2)
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Figure 9: The evolution of the maximum solute concentration (that at the contact line)
under the kinetic (left) and diffusive (right) evaporation models. We show the evolution of
φmax(t) for Pe = 10, 50, 100, 500 and 1000 in the kinetic regime and for Pe = 10, 50, 100
and 200 in the diffusive regime. The dashed lines represent the asymptotic predictions
given by (5.1) and (5.2), while the solid lines depict the results of our numerical simula-
tions. Our dilute analysis is expected to hold while φmax(t) < φ∗

c/φ
∗
init — as illustrated

by the dashed lines corresponding to φ∗
c/φ

∗
init = 102− 105. Note that the diffusive case is

plotted on a doubly-logarithmic scale to highlight the extremely rapid growth of φmax(t)
predicted by (5.2).

A drawback of having only the leading-order-inner term in this approximation is that as
t → 0, we have φmax(0

+) → 0, rather than φmax(0
+) = 1, as demanded by the initial

condition (2.24). This deficiency arises because we have not proceeded to high enough
order in the inner expansion to pick up order unity contributions to φ. Nonetheless, we
anticipate there to be a non-uniformity in our asymptotic expansion in the inner region as
t → 0+ since, at sufficiently small times, the ∂M/∂t term must enter the inner problem
at leading order in order to satisfy the local form of the initial condition. Since this
early-time deficiency is absent from our composite expansions for the solute mass and
does not affect our asymptotic predictions for t = O(1), we do not analyse it further here
— except to emphasize the caveat concerning the deficiency of the approximation in the
diffusive regime (5.2) as t → 0+.
This caveat notwithstanding, in figure 9 we plot these maximum concentrations as

functions of time for different Péclet numbers varying from 10− 1000. Since the critical
value φ∗

c/φ
∗
init varies depending both on the solute under consideration and its initial

concentration within the droplet, we take indicative values of φ∗
init = 10−6 − 10−2 from

Deegan et al. (2000) and indicate threshold values of φ∗
c/φ

∗
init at increasing powers of

10 for illustrative purposes assuming that φ∗
c = 0.1. In both regimes, as Pe increases,

the solute concentration at the contact line rapidly grows and the corresponding time
interval for which it is below each of the threshold values shrinks. Therefore, as Pe

increases, our analysis holds for shorter periods of time. However, in the kinetic regime,
even for moderately large values of the Péclet number, the solute remains dilute even at
the contact line for a substantial part of the evaporative process. This suggests that there
is a significant window over which the analysis presented in this paper may provide an
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accurate description of the early-stage formation of the coffee ring. This window grows
as the Péclet number decreases or the threshold concentration φ∗

c/φ
∗
init increases. Indeed,

for Pe = 10 and φ∗
c/φ

∗
init = 105, we are still in the dilute regime at ≈ 97% of the drying

time.
In the diffusive regime, however, things change much more rapidly because of the

larger Pe scaling in (5.2). For the most moderate Pe and largest threshold φ∗
c/φ

∗
init

considered, we remain in the dilute regime only for ≈ 82% of the drying time, which is a
significant reduction from the kinetic regime. Moreover, this window of validity decreases
as Pe increases and as φ∗

c/φ
∗
init decreases. Even though for all cases there is a time-frame

over which the dilute model presented here is relevant, it is clear that, for the case
of diffusive evaporation in particular, one certainly needs to assess the importance of
finite concentration effects to predict the growth and features of the coffee ring, perhaps
adapting the models of Popov (2005) or Kaplan & Mahadevan (2015) to include the
effects of the diffusive boundary layer discussed here.

6. Summary and discussion

In this paper, we have presented a systematic asymptotic analysis of the solute profile
as an axisymmetric droplet with a pinned contact line evaporates in the limit of large
solutal Péclet-number, Pe. Throughout, we have assumed that the droplet is thin and
that the capillary number is small, so that surface tension dominates the droplet shape.
Our analysis demonstrates that it is the effect of solute diffusion close to the contact line
that can, at dilute stages of the evaporative process, drive the formation of a nascent
coffee ring with its characteristic thin, narrow peak. In particular, we illustrated this
behaviour for two physically-relevant evaporation models.
Firstly, we considered the simplest kinetic regime in which the evaporative flux is

constant across the drop. Even though the evaporation is uniform, the geometry of the
droplet induces a radial flow of solute to the contact line, where it builds up under the
effects of diffusion. Our asymptotic analysis in this boundary region produced several
time-dependent coefficients that were determined by demanding that the solute is con-
served within the drop (as it is non-volatile). In the kinetic regime, the boundary layer
thickness is O(R∗/Pet), the height of the solute mass profile is O(R∗Pet) and the solute
concentration is O(φ∗

initPe
2
t/(1 − t∗/t∗f )), where R∗ is the radius of the circular contact

set, φ∗
init is the initial solute concentration, Pet = Pe/(1 − t∗/t∗f) is the modified Péclet

number, t∗ is time and t∗f is the dryout time. Asymptotic predictions of the maximum
height, its radial location, the full width of the profile at half its maximum height and the
composite solute mass profile were shown to be in excellent agreement with numerical
solutions of the full solute problem.
Our second example considered an evaporative model in which the liquid vapour is

carried away from the droplet-air interface under the effects of diffusion. In this regime,
the evaporative flux is singular at the contact line, which in turn induces a singular
radial velocity. These effects combine to produce, sharper, thinner solute profiles: with a
diffusive flux, the boundary layer thickness is O(R∗/Pe2t ), the height of the solute mass
profile is O(R∗Pe2t ) and the solute concentration is O(φ∗

initPe
4
t /(1 − t∗/t∗f )), with the

corresponding asymptotic predictions again shown to be in very good agreement with
numerical simulations.
We then moved on to investigate the limitations of the dilute regime by using the

leading-order-inner asymptotic predictions to track the growth of the solute concentration
at the contact line, where it is maximal. We showed that, in each regime, there is a window
in which the concentration remains below a critical value at which the effects of the finite
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Figure 10: A comparison between the solute mass profiles in Kajiya et al. (2008) (black
circles) and the asymptotic (solid, blue line) and numerical (dashed, red line) predictions
of the axisymmetric model in the diffusive evaporative flux regime at 10% (left) and 25%
(right) of the drying time. In each case, we can see that the model does well in capturing
the profile towards the centre of the drop, but towards the contact line, the coffee ring is
significantly thicker than the model predicts. This is due to the effect of finite particle size
and solute jamming becoming important at very early times in the process as discussed
in §5.

solute particle size become important. For a fixed Péclet number, this window is longer
for kinetic evaporation: indeed for Pe = 10, small seeding concentration, φ∗

init = 10−6

and threshold value φ∗
c = 0.1, the dilute regime is still valid at 97% of the drying time,

while this falls to only 3% of the drying time for Pe = 103 and φ∗
init = 10−2. In the case

of diffusive evaporation, while for moderate Pe = 10 and a small seeding concentration,
φ∗
init = 10−6, we remain in the dilute regime at 82% of the drying time, as Pe increases and

the seeding concentration increases this window diminishes quickly. Indeed, for Pe = 10
and φ∗

init = 10−2, the dilute window is only up to 4% of the drying time.
These results mean that it is quite challenging to compare our theoretical and numerical

results to existing experimental data for the diffusive evaporative model. Since our results
concern the early stages of the development of the coffee ring, we require mass profiles
long before the final deposit, which is by far the most commonly reported in existing
experimental studies. However, even in cases for which transient mass profiles are given
— for example Deegan et al. (2000), Kajiya et al. (2008) and Kajiya & Doi (2011) —
the limited range of applicability for the dilute regime makes comparisons unfeasible.
To take an example, Figure 2 of Kajiya et al. (2008) shows intensity profiles for an

evaporating anisole droplet containing fluorescent polystyrene, with Pe ≈ 40 and φinit =
0.02. In figure 10, we compare the asymptotic prediction (4.10) and the numerical results
to the experimental data at 10% and 25% of the drying time. In the bulk of the droplet,
the profiles agree extremely well, but it is clear that, as we approach the contact line,
the experimental data suggests the coffee ring is much thicker than the predictions of the
model. This is for precisely the reasons discussed in §5: for the above parameters, the
dilute model breaks down when t∗/t∗f ≈ 10−4 − 10−3. Hence, our analysis provides clear
evidence that the dilute model in the diffusive evaporative regime suffers a significant
deficiency by discounting finite particle size effects close to the contact line.
On the other hand, as demonstrated by the large window of applicability of the dilute

assumption, the kinetic evaporative problem is much riper for experimental comparison.



26 M. R. Moore, D. Vella & J. M. Oliver

However, much of the existing experimental literature has focused on the diffusive evap-
orative regime and, as far as we are aware, there is no experimental data for transient
mass profiles with kinetic evaporation. It would be of great interest to conduct such
comparisons between our predictions and experimental data in the future.

Our asymptotic analysis is readily extended to other geometries or physical situations.
One interesting avenue for future investigation is to derive asymptotic predictions for
the effect of variations in contact line curvature on the coffee ring structure. Sáenz et al.

(2017) showed experimentally and numerically that the coffee ring is enhanced at more
highly-curved parts of the contact line and it would be interesting to predict this formally
in the large-solutal Péclet number regime. While for general droplet geometries much of
the problem must be tackled numerically — particularly the Poisson problem for the free
surface and finding the induced liquid velocity — the local analysis is tractable provided
that the contact line geometry is sufficiently smooth.

It would also be of interest to consider the effect of two or more droplets evaporating
simultaneously, in which there is known to be a shielding effect that reduces the evapora-
tive flux for the parts of each droplet that are closest to each other (Castanet et al. 2016;
Hu et al. 2017). This reduction in evaporative flux will lower the droplet flow velocities
and hence weaken the coffee ring effect, and our asymptotic analysis lends itself well to
predicting quantitatively how this weakening manifests itself.

Finally, there has been a great deal of recent interest into the evaporation of binary
droplets, that is droplets consisting of more than one fluid, and the resulting effects
on the deposition pattern, see for example, Kim et al. (2016); Zhong & Duan (2016);
Li et al. (2018). The dynamics of evaporating binary droplets is more complicated than
the single liquid case presented here, with, for example, Marangoni effects becoming
important. Nevertheless, it would be interesting to adapt our model for solute diffusion
to investigate the role of multiple liquids.
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Appendix A. Exploiting global mass conservation

To determine the unknown functions A(t), B(t) and C1(t) in (3.11), (3.12) and (3.15),
we appeal to global conservation of solute (2.35). We split the range of integration such
that

∫ 1

0

rm(r, t) dr = I1 + I2, I1 =

∫ 1−ξ

0

rm(r, t) dr, I2 =

∫ 1

1−ξ

rm(r, t), dr, (A 1)

where 0 < ε ≪ ξ ≪ 1.

In I1, we substitute the expansion m = m0(r, t) + εm1(r, t) + o(ε) and integrate to
obtain

I1 =
a(t)

2

(

1− a(t)

2

)

+ ε

[

a(t)

(

(1− a(t))t− 2

3

(

1− a(t)3
)

−

2a(t) (1− a(t))

(

a(t)− 1 + a(t) log

(

2a(t)ξ

1− a(t)

)))]

+ o(ε, ξ). (A 2)

In I2, we make the rescaling r = 1− εR, and then expand m = ε−1M0+ log εM1+M2 +
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o(1), so that after integrating and expanding as ξ/ε → ∞, we find

I2 =
A(t)

α(t)2
+ ε log ε

(B(t)− C4(t))

α(t)2
+ ε

(

2(C2(t)−A(t))

α(t)3
+

C1(t)

α(t)2
+

6C3(t)

α(t)4
+

2C4(t)(γ − 1)

α(t)2
+

C4(t)

α(t)2
logα(t) +

C4(t)

α(t)2
log (ξ)

)

+ o(ε, ξ), (A 3)

where γ is the Euler-Mascheroni constant. Then, combining (2.35), (A 2) and (A3), we
arrive at (3.17) and (3.18).
In the diffusive regime, the analysis is very similar, except that we must now demand

0 < ε2 ≪ ξ ≪ 1, due to the different boundary layer scalings for this evaporative flux.
In this case, we have

I1 =
1

4

[

1−
(

1− (1− t)3/4
)]4/3

, I2 =
3F (t)π4

16
(1 − t)4, (A 4)

which, combined with (2.35), leads to (4.9).

Appendix B. Numerical method

In order to solve (2.32)–(2.34) numerically, we first define the integrated mass variable

G(r, t) =
∫ r

0

r̄m(r̄, t) dr̄. (B 1)

Under this transformation, the advection-diffusion equation (2.32) becomes

1

tf

∂G
∂t

+

(

ūr + ε

(

1

r
+

1

h

∂h

∂r

))

∂G
∂r

− ε
∂2G
∂r2

= 0 (B 2)

for 0 < r < 1, t > 0. This must be solved subject to

G(0, t) = 0, G(1, t) = 1

4
for t > 0, (B 3a, b)

where the second condition (B 3b) replaces the no-flux condition (2.33b). The initial
condition is

G(r, 0) = r2

2
− r4

4
for 0 < r < 1. (B 4)

The formulation in terms of G has advantages over its counterparts for the solute con-
centration, φ, and the solute mass, m, since it is mass-preserving and less singular at the
contact line.
We discretize (B 2) and (B 4) using central differences, with the gridpoints suitably

chosen to cluster in the boundary layer close to the contact line. In particular, we use a
uniform grid on the computational domain ζ ∈ [0, 1], where

r =
1− ℓζ

1− ℓ
(B 5)

and we set the boundary layer thickness ℓ to be ℓ = ε (1− tc) in the kinetic regime and

to be ℓ = ε2 (1− tc)
2
in the diffusive regime, where tc is the end time of the simulations.

The resulting system is solved using ode115s in MATLAB with stringent error toler-
ances of 10−12 and using complex step differentiation to compute the Jacobian (Shampine
2007). On a standard office computer, the code runs in a few minutes for the largest num-
bers of gridpoints considered here (of the order of 105). The solute mass, m, is recovered
by differentiating (B 1). The standard convergence checks have been performed, with an
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Figure 11: The ∞-norm error, L∞ in our numerical solution for the kinetic (left) and
diffusive (right) evaporative fluxes as the number of gridpoints N is increased. In this
figure, we take Pe = 100. The dashed line in each figure denotes the error in the integrated
mass variable G, while the solid line is the resulting error in the mass, m.

example illustrated in figure 11 for Pe = 100. We clearly see the expected quadratic
convergence in G as the number of gridpoints, N , is increased. Note that the sensitivi-
ties in the diffusive code are much starker due to the extremely thin boundary layer in
this regime. Nonetheless, this convergence gives us confidence in our numerical scheme,
which is strengthened further by the excellent agreement with our asymptotic predictions
illustrated in figures 2–9.
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