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We present a model for ice formation in a thin, viscous liquid film driven by a Bla-
sius boundary layer after heating is switched off along part of the flat plate. The flow
is assumed to initially be in the Nelson et al. (1995) steady-state configuration with a
constant flux of liquid supplied at the tip of the plate, so that the film thickness grows
like x1/4 in distance along the plate. Plate cooling is applied downstream of a point,
Lx0, an O(L)-distance from the tip of the plate, where L is much larger than the film
thickness. The cooling is assumed to be slow enough that the flow is quasi-steady. We
present a thorough asymptotic derivation of the governing equations from the incom-
pressible Navier-Stokes equations in each fluid and the corresponding Stefan problem for
ice growth. The problem breaks down into two temporal regimes corresponding to the
relative size of the temperature difference across the ice, which are analysed in detail
asymptotically and numerically. In each regime, two distinct spatial regions arise, an
outer region on the lengthscale of the plate, and an inner region close to x0 in which the
film and air are driven over the growing ice layer. Moreover, in the early-time regime,
there is an additional intermediate region in which the air-water interface propagates a
slope discontinuity downstream due to the sudden onset of the ice at the switch-off point.
For each regime, we present ice profiles and growth rates, and show that for large times,
the film is predicted to rupture in the outer region when the slope discontinuity becomes
sufficiently enhanced.
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1. Introduction

When an aircraft flies through clouds at an ambient temperature close to or below
freezing, supercooled water droplets can accrete on elements of the aircraft, forming
ice. The growth of ice is of significant industrial and commercial importance due to
its detrimental effect on the aerodynamics, through increasing drag and loss of lift. Such
changes can reduce fuel efficiency and, in the worst possible cases, cause serious accidents.
Engine intakes and wings are particularly affected by ice accretion. Correspondingly,

these areas are often protected by anti-icing or de-icing systems. These vary from using
the hot bleed from the engine to heat components, to electro-thermal elements embed-
ded below the component surfaces, to actuators that dislodge ice off the aircraft. Ice
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protection measures can be run continuously to prevent icing altogether (anti-icing), or
intermittently to remove ice that forms periodically (de-icing). In the latter case, it is
naturally of significant interest to understand how quickly ice forms, how much ice forms
between de-icing events and what the influence on the aerodynamics is between events.
However, even in anti-icing regimes, the resulting liquid films can flow aft and form
runback ice on unprotected areas of the aircraft.
There are two main types of ice formation in flight conditions. When the ambient air is

cold, the airspeed is low and the liquid water content of the clouds is low, the supercooled
droplets typically freeze completely on contact with the aircraft. The resulting ice is
called rime and is typically white and opaque. When the air temperature is closer to
freezing, the speed is higher or the liquid water content of the air is larger, the droplets
do not completely freeze: ice and liquid co-exist. In this case, ice tends to be paler and
translucent and is known as glaze icing. Unsurprisingly, glaze icing is most associated
with the runback of liquid causing ice ‘horns’ or ‘beaks’ to form aft of the droplet impact
region.
Naturally the processes involved in ice accretion and its removal or prevention are

very complicated, and have therefore been of interest to a plethora of researchers. Gent
et al. (2000) give a comprehensive review of the field, concentrating in particular on
the physical processes involved in ice accretion, the trajectory of water droplets and the
collection efficiency of components of various aircraft. A number of factors can influence
the amount of water that is ‘caught’ by the aircraft, including angle of attack, incoming
airspeed, liquid water content of the air and ambient temperature. Lynch & Khodadoust
(2001) give a review of various forms of ice accretion and the resulting degradation on
the aerodynamics of an aircraft: namely loss of lift, an increase in drag and a decrease
in stall angle. A discussion of various anti-icing and de-icing techniques can be found in
Thomas et al. (1996).
The classical model used to predict ice accretion is the Messinger (1953) model. This

model is a one-dimensional surface energy balance accounting for effects such as aerody-
namic heating, the release of latent heat in freezing, kinetic heating of droplet impacts,
evaporation and the sensible heat needed to increase the droplets to the freezing tem-
perature. The resulting balance returns a fraction representing the amount of fluid that
freezes. If this fraction is larger than 1, then the model predicts rime icing conditions,
while a value between 0 and 1 indicates glaze conditions.
Myers & Hammond (1999) and Myers (2001) improve upon the Messinger model by

proposing a one-dimensional Stefan problem formulation of ice growth on a flat sub-
strate. They specify a sub-freezing temperature on an initially dry plate, with ice growth
occurring in two stages. In the first stage, the incoming droplets freeze completely on
impact until, at a specific time, the ice layer is sufficiently thick to act as an insulator,
allowing a water film to persist on top of the ice.
Myers et al. (2002b) incorporate the water flow as part of their model of a thin film

of fluid on a cold plane sustained by an influx of droplets. The air dynamics are not
considered, with the role of the air limited to the influx of droplets and a shear applied
on the film surface. Assuming the film is thin and that conduction is the dominant
method of heat transfer, Myers et al. (2002b) reduce the model to two coupled equations
for the free surface of the film and the ice thickness, which are solved numerically. Myers
et al. (2002a) present an equivalent model for arbitrary three-dimensional bodies, which
Myers & Charpin (2004) then apply to a realistic airfoil shape. More recently, Mitchell
& Myers (2008) and Mitchell & Myers (2012) have used heat balance integral methods
to tackle similar Stefan problems, including de-icing scenarios.
At a more local scale, there are several recent studies on the freezing of a supercooled
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droplet as it impacts a substrate: see, for example, Quero et al. (2006) for numerical sim-
ulations of droplet impact; Vargas (2007) for a simple ballistic model for several droplet
impacts and comparisons to experimental pictures; Jung et al. (2012) who consider the
freezing front in a droplet placed on a cold plate; and Elliott & Smith (2015) for droplet
freezing in the context of classical impact theory.
Rothmayer (2003b) presents an in depth scaling analysis for supercooled droplet collec-

tion near the stagnation point of an airfoil. The analysis not only predicts the collection
efficiency of the airfoil, but also thin-film and ice formation in the boundary layer as
accretion occurs. The Mach number is small, so the flow is effectively incompressible and
the thickness of the film and ice layers are found in terms of the liquid water content
of the air, the air-water density ratio, the Reynolds number of the flow and the Mach
number. The analysis is extended by Rothmayer (2006) and Otta & Rothmayer (2009),
who use a multiple timescale analysis to investigate the stability of the ice and film on an
airfoil nose. Otta & Rothmayer (2007) use the model of Rothmayer (2003b) to develop a
model for icing in transonic and subsonic boundary layer flows. Ice and film profiles are
derived for a given liquid collection efficiency and compared to numerical simulations,
with good agreement found for rime icing conditions.
In this paper, we will be concentrating on predicting ice growth in liquid films within

an aerodynamic boundary layer. In particular, we will study ice growth in an established
liquid film after freezing is initiated downstream, perhaps modelling the switch-off of a
heating element between de-icing events or the malfunction of an anti-icing system. Of
especial relevance to our analysis is Nelson et al. (1995), which considers a thin film
situated well within a Blasius boundary layer. The film is fed by a constant flux at the
tip of a flat plate and is driven by the Blasius shear in the air. Sufficiently far away from
the tip of the plate, Nelson et al. (1995) show that the resulting film approaches a steady,
linear velocity profile and its thickness grows like the 1/4-power in distance along the
plate, while the air is unaffected by the film at leading order.
Timoshin (1997) looks at the stability of this solution when the film thickness is the

same as the classical lower-deck in triple-deck theory, see Neiland (1969), Stewartson
& Williams (1969) and Messiter (1970). Timoshin derives the nonlinear viscous-inviscid
interaction model and investigates the growth of Tollmien-Schlichting and interfacial
instabilities when the system is exposed to small perturbations for a wide range of fluid
parameters. A similar triple-deck stability analysis of a thin-film on an airfoil is given
in Tsao et al. (1997). Like Timoshin (1997), Tsao et al. (1997) find that the film has
a destabilising effect on Tollmien-Schlichting waves, so that for very large values of the
Reynolds number, the unstable Tollmien-Schlichting mode has comparable growth rate
to the interfacial mode. Rothmayer & Tsao (2000) look at the propagation of interfacial
waves for a film within an aerodynamic boundary layer in icing conditions, in particular
considering when waves are driven by air shear and when they are driven by air pressure.
Smyrnaios et al. (2000) and Pelekasis & Tsamopoulos (2001) adapt the Nelson et al.

(1995) model to include rainfall, or equivalently, the collection of drops by the liquid film
in the conservation of mass condition on the film surface. In steady-state, Smyrnaios et al.
(2000) show that the film thickness grows proportional to the 3/4-power in distance from
the leading edge of the flat plate, as opposed to the 1/4-power found by Nelson et al.

(1995). Moreover for a NACA-008 airfoil profile the film thickness is shown to blow-up
at a finite distance from the airfoil nose provided that the rainfall rate is sufficiently
large, indicating that flow separation may take place. Pelekasis & Tsamopoulos (2001)
concentrate on the stability of the flat-plate model, investigating the role of gravity and
inertia in the growth of Tollmien-Schlichting and interfacial waves.
There are several existing studies in the literature which look at ice formation in thin
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films within aerodynamic conditions. They differ from what we attempt here since they
consider ice and film formation simultaneously, generally initiated through a collection
of supercooled droplets on the substrate, which encompasses both rime and glaze icing
conditions. In our analysis we will consider ice growth in the Nelson et al. (1995) steady-
state film after heating is lost on part of the plate. We will briefly review the existing
literature before expanding on what our model does differently and what we hope to
achieve by considering it.
Tsao & Rothmayer (2002) adapt the triple-deck model of Tsao et al. (1997) for icing

conditions. By solving a coupled ice-film-air system numerically, they show that a clas-
sical boundary layer formulation cannot predict the waves and ice roughness formation
seen in experimental icing conditions. Therefore, they conclude that flow instabilities
are triggered by localized structures and switch to the triple-deck regime. The resulting
model predicts not only the interfacial and Tollmien-Schlichting instabilities seen in the
pure water case, but also ice modes that propagate upstream and may eventually cause
the film to rupture, forming dry patches and water beads. These beads are often seen in
icing experiments, see for example Olsen & Walker (1987) and Hansman et al. (1991).
Rothmayer (2003a) also considers the formation of ice surface roughness due to surface
instabilities and, in particular, finds that for several film thicknesses that fall in regimes
applicable to aircraft icing, three-dimensional modes of instability are comparable to
two-dimensional modes.
Shapiro & Timoshin (2006) and Shapiro & Timoshin (2007) also consider the freezing

of thin films on substrates, although their analysis is primarily focused on instabilities
driven by gravity. They also find ice modes that propagate upstream and suggest that,
provided that the timescale for ice growth is longer than the timescale associated with the
film flow, this upstream propagation can be explained by considering the imbalance in
heat flux when the ice surface is perturbed by a small amount. Ueno & Farzaneh (2011)
consider the Nelson et al. (1995) steady-state film with the plate replaced by a large ice
region. They find the undisturbed solution, which is then perturbed and the growth of
free surface and ice instabilities are investigated. Like Tsao & Rothmayer (2002), the ice
modes propagate upstream. Furthermore, Ueno & Farzaneh (2011) show that the heat
transfer coefficient at the air-water interface is strongly affected by disturbances to the
air shear stress.
In this paper, we take a different approach to the icing models in aerodynamic condi-

tions discussed above, by considering the response of an existing, heated film on a flat
plate after the temperature along part of the plate is reduced and phase change occurs.
In particular, we consider the Nelson et al. (1995) steady-state flow in the absence of
icing and ‘switch-off’ the heating at a point downstream of the leading edge of the plate.
Although the model possibly represents a somewhat artificial situation, it is a useful
benchmark for highlighting the important processes in the resulting icing. Our main aim
is to deduce the ice shape and to discern the response of the liquid film on the ice growth
timescale, showing that it will rupture in a finite time.
Our configuration bears similarities to Higuera (1991), who considers a similar problem

with an infinite pool of fluid moving past a flat plate. Since the fluid bath is infinite, he
is able to find a steady-state solution to the problem and investigate the effect of the ice
growth on the fluid flow. When the ice is sufficiently large, in particular as large as the
classical lower-deck, flow separation is shown to occur just in front of the leading edge of
the ice. We will adapt some of the methodology to our model, although since the film is
very thin – as opposed to the infinite bath of fluid in Higuera (1991) – there cannot be
a steady-state solution, as the freezing induces the film to rupture in finite time.
After introducing the dimensionless model in §2, we review the steady-state flow of
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Figure 1. Problem configuration after switch-off: an ice layer forms on the plate for x∗ > Lx0.
The air Reynolds number is defined by Re = ρaLU∞/µa, where ρa, µa are the density and
viscosity of air respectively.

Nelson et al. (1995) in §3, and give more details about the corresponding thermal problem.
We then discuss the early-time ice growth and show how the problem breaks down into
three distinct asymptotic regions in §4. The large-time solution is presented in §5, and
the limitations and possible extensions for the model are discussed in §6.

2. Problem configuration

Our analysis aims to model various scenarios in which loss of heating on a solid surface
causes a thin film of fluid within an aerodynamic boundary layer to freeze. We shall re-
strict our analysis to two-dimensional flat-plate flow, which to leading order is applicable
to bodies with suitably small curvature.
Consider a semi-infinite flat plate lying on the positive x∗-axis in a Cartesian (x∗, y∗)-

plane, where here and hereafter an asterisk indicates a dimensional variable. The free-
stream of speed U∞ is parallel to the plate. The air drives a shear flow in a thin film of
liquid attached to the plate. Before the heating switches off, the plate is kept at a constant
temperature Tw, which is greater than the freezing temperature, Tf . The external air
stream has temperature T∞, which can vary from temperatures below freezing, simulating
high-level clouds involved in aircraft icing, to the surface temperature Tw. We note that,
in practice, it is somewhat difficult to maintain a plate – or indeed, an aircraft component
– at a fixed temperature, which is a limitation to our modelling assumptions.
At time t∗ = 0, the heating along part of the plate is turned off, continuously decreasing

the temperature until eventually ice forms as the film freezes. Let Lx0 where x0 = O(1)
be a typical distance along the plate at which the heating is switched off and let ℓw, ℓi
represent typical film and ice thicknesses respectively. The configuration is summarised
in figure 1.
We denote the air and film viscosity and density by µj and ρj , where the subscript

j = a, w respectively, while the density of ice is represented by ρi. The interfacial tension
between the air and liquid is denoted by σ. The specific heat at constant pressure and
the thermal conductivity of each fluid and the ice are denoted by cj and λj , j = a, w, i.
The effects of gravity and viscous dissipation in the two fluids are neglected (i.e. the
Froude and Eckert numbers are small), although the analysis can be readily extended to
incorporate these effects.
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The air velocity, pressure and temperature are denoted by u∗ = (u∗, v∗), p∗ and
θ∗ respectively, with the corresponding variables in the film denoted by the upper case
counterparts. The ice temperature is denoted by Q∗. The air-water free surface is denoted
by H∗, while the ice thickness is denoted by h∗.

2.1. Nondimensionalisation

For the sake of brevity, we present the model directly in dimensionless form and use the
following scales:

x∗ =Lx, (H∗, h∗) = L(H,h), (u∗,U∗) = U∞ (u,U) ,

(p∗, P ∗) = ρaU
2
∞ (p, P ) , (θ∗,Θ∗, Q∗) = Tf − (T∞ − Tf )(θ,Θ, Q). (2.1)

We may take Tf > T∞ without loss of generality and the above temperature scaling is
purely for analytical convenience, since it fixes the film and ice temperatures on the ice
surface at zero.

The above rescaling thus introduces the following dimensionless numbers into the
model:

Re =
ρaLU∞

µa
, We =

ρaLU
2
∞

σ
, Pr =

µaca
λa

, Pei =
ρiciLU∞

λi
, Ste =

ci(Tf − T∞)

L ,

(2.2)
which are the air Reynolds, Weber and Prandtl numbers, the Péclet number in the
ice and the Stefan number respectively; L denoting the latent heat of ice-water phase
change. Furthermore, the air-water density, viscosity, thermal conductivity and specific
heat ratios, and the water-ice density and thermal conductivity ratios are defined by

ρ =
ρa
ρw

, µ =
µa

µw
, λ =

λa

λw
, c =

ca
cw

, ρ̂ =
ρi
ρw

, λ̂ =
λi

λw
. (2.3)

In the course of this analysis, ρ̂, λ̂, c and Pr are assumed O(1), which is reasonable for

air-water-ice systems – for example, when Tf − T∞ ≈ 10K, ρ̂ = 0.9, λ̂ = 4.11, c = 0.24,
Pr = 0.69 (cf. table 1 in §6.1). However, we shall also assume that ρ, µ and λ are O(1),
which are less reasonable assumptions for air-water-ice systems, although the assumption
is not uncommon in the literature and it does not greatly affect the asymptotic structure,
as discussed in §6.1. Note that when Tf −T∞ ≈ 10K, ρ/µ ≈ 0.26, so that Re = 0.26Rew,
where Rew = ρwLU∞/µw is the Reynolds number in the liquid, so that throughout the
analysis, we shall replace Rew by ρRe/µ where it would appear, and we assume that
Rew = O(Re).

Finally, we shall assume that the fluid properties are independent of the fluid temper-
ature throughout the analysis, which decouples the flow and thermal problems in each
phase. In general, this assumption would need to be checked carefully, since in an aircraft
icing scenario, there can be a wide range of temperatures, from subzero external air flow
to heating elements fed by excess bleed heat from the engines, which can be very high.



Ice formation within a thin film flowing over a flat plate 7

2.2. Dimensionless problem

The Navier-Stokes equations in each fluid are given by

ut + uux + vuy = −px +
1

Re
(uxx + uyy) , (2.4)

vt + uvx + vvy = −py +
1

Re
(vxx + vyy) , (2.5)

ux + vy = 0, (2.6)

Ut + UUx + V Uy = −ρPx +
ρ

µRe
(Uxx + Uyy) , (2.7)

Vt + UVx + V Uy = −ρPy +
ρ

µRe
(Vxx + Vyy) , (2.8)

Ux + Vy = 0. (2.9)

On the plate, the no-slip, no-flux boundary conditions are given by

U = 0, V = 0 on y = 0, (2.10)

while on the ice, the no-slip, no-flux conditions are

(U, V )T = (1 − ρ̂)htn on y = h, (2.11)

where n = (−hx, 1)
T /(1 + h2

x)
1/2 is the outward unit normal to the ice surface. On the

air-water interface, continuity of velocity and the kinematic condition must be satisfied,
so that

u = U, v = V on y = H, (2.12)

V = Ht + UHx on y = H. (2.13)

Moreover, continuity of normal and tangential stress on the interface give

p = P +
Hxx

We(1 +H2
x)

3/2
+

2

Re(1 +H2
x)

[

H2
x

(

ux − Ux

µ

)

+

vy −
Vy

µ
−Hx

(

uy + vx − (Uy + Vx)

µ

)]

on y = H, (2.14)

and

µ
[

2Hx (ux − vy) +
(

H2
x − 1

)

(uy + vx)
]

= 2Hx (Ux − Vy) +
(

H2
x − 1

)

(Uy + Vx) (2.15)

on y = H . These are supplemented with the far-field conditions

u → 1, p → 0 as x2 + y2 → ∞. (2.16)

Similarly, the energy equations in each fluid and the heat equation in the ice are given
by

θt + uθx + vθy =
1

PrRe
(θxx + θyy) , (2.17)

Θt + UΘx + VΘy =
ρc

λPrRe
(Θxx +Θyy) , (2.18)

Qt =
1

Pei
(Qxx +Qyy) , (2.19)

respectively. We discuss the plate temperature profile, Twall(x, t), in §2.3, but will give the
appropriate boundary conditions on the non-iced and iced regions here. On the non-iced
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part of the plate, the film temperature must satisfy

Θ = Twall(x, t), (2.20)

while on the iced part of the plate, we naturally have

Q = Twall(x, t). (2.21)

Continuity of temperature and continuity of heat flux across the free surface of the film
are given by

θ = Θ, λ (θy −Hxθx) = Θy −HxΘx on y = H. (2.22)

On the ice surface, we must have

Θ(x, h, t) = Q(x, h, t) = 0, (2.23)

while the Stefan condition is given by

Pei
Ste

ht = Qy − hxQx −
1

λ̂
(Θy − hxΘx) on y = h. (2.24)

Finally, the far-field condition is

θ → −1 as x2 + y2 → ∞. (2.25)

2.3. The plate temperature condition

At time t = 0− the plate is held at a constant temperature β = (Tw−Tf )/(Tf −T∞) > 0,
at which point the plate heating is switched off for x > x0, where x0 = O(1). It transpires
that the small-time response of the flow to temperature change has a major role on the
long-time film dynamics. For this reason, we consider a wall boundary condition that is
continuous in time. Therefore, we set

Twall(x, t) =







β for x < x0,

β − (β + α)f

(

t

τ

)

for x > x0,
(2.26)

where α = (Tf − Tcold)/(Tf −T∞) > 0, Tcold < Tf is specified, τ ≫ 1 and the function f
is such that f(0) = 0 and f → 1 as t → ∞ for all x > x0. Assuming that f is continuous
and monotonic in time, there is a time t = τtc with tc = O(1) at which ice first begins to
form – corresponding to the first time at which the plate temperature reaches the freezing
temperature for x > x0. Though we have chosen a step profile for the plate temperature
here, it is relatively straightforward to generalise to continuous profiles, which give a more
physical representation of the plate temperature distribution, although tc is a function
of time in such instances.
As seen in the definition of Twall, (2.26), the cooling of the plate happens over a long

timescale, τ ≫ 1. This means that the flow is quasi-steady and temporal effects arise in
the ice growth and the film evolution. Thus, there are three distinct temporal regimes in
the switch-off problem:
• when 0 < t < τtc, there is no ice growth, the flow is steady and the thermal problem

accounts for the change in plate condition;
• when t > τtc, t− τtc = O(1), there is ice growth, but the magnitude of the temper-

ature jump across the ice layer is small;
• when t > τtc, t − τtc = O(τ), the temperature jump across the ice layer is order

unity.
We shall discuss each of these regimes separately in §3, §4 and §5 respectively.
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3. Before freezing, 0 < t < τtc
For times 0 < t < τtc, the plate temperature for x > x0 exceeds the freezing tem-

perature and thus there is no ice present. This temperature change is slow since τ ≫ 1
and, since the flow and thermal problems decouple, it transpires that the flow problem
is exactly equivalent to the steady-state problem discussed by Nelson et al. (1995) and
Timoshin (1997). Here we present only a brief description of the steady-state flow solu-
tion following the analysis of Nelson et al. (1995), where the liquid is supplied at a given
flux at the leading edge of the plate; the steady-state thermal problem is discussed in
greater detail.
The key assumption in the model is that the aspect ratio of the film, εw = ℓw/L,

is much smaller than that of the air boundary layer, so that εwRe
1/2 ≪ 1, where the

Reynolds number is defined by Re = ρaLU∞/µa. This does not fix ℓw, rather it places
an upper bound on the dimensional film thickness.
In the air, the usual boundary layer scalings are applicable and we set

y = Re−1/2ŷ, u = û, v = Re−1/2v̂, p = p̂, θ = θ̂. (3.1)

In the liquid film, the tangential component of velocity U is driven by the shear in the
air boundary layer, so that, considering (2.15) and (2.9), the appropriate film scales are
given by

y = εwȳ, U = εwRe
1/2Û , V = ε2wRe

1/2V̂ , P = P̂ , Θ = Θ̂, H = εwĤ. (3.2)

We specifically note that, when εwRe
1/2 ≪ 1, the film velocity is an order of magnitude

smaller than the air velocity, so that the air does not notice the film to leading order.
Finally, we scale time according to the cooling rate by setting

t = τ t̄. (3.3)

3.1. The flow problem

The flow problem decouples from the thermal problem and hence remains steady. We
expand variables in asymptotic series of the form (recall εwRe

1/2 ≪ 1)

û = û0 + εwRe
1/2û1 + ε2wReû2 + . . . (3.4)

To leading order,

û0 = F ′

(

ŷ√
x

)

, v̂0 =
−1

2
√
x

(

F

(

ŷ√
x

)

− ŷ√
x
F ′

(

ŷ√
x

))

, p̂0 = 0 (3.5)

in the air, where F satisfies Blasius’s equation

F ′′′ +
FF ′′

2
= 0, F (0) = F ′(0) = 0, F ′(∞) = 1. (3.6)

In particular, note that F = λ̃η2/2+O(η5) as η → 0+, where λ̃ = 0.332. In the film, the
leading-order problem is given by

Û0ȳȳ = 0, P̂0ȳ = 0, Û0x + V̂0ȳ = 0, (3.7)

such that

Û0(x, 0) = 0, V̂0(x, 0) = 0, Û0ȳ(x, Ĥ0) = µû0ŷ(x, 0), P̂0(x, 0) = 0. (3.8)

Therefore, it is straightforward to show that

Û0 =
λ̃µȳ√
x
, V̂0 =

λ̃µȳ2

4x3/2
, P̂0 = 0, Ĥ0 = A0x

1/4, (3.9)
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where A0 is a constant determined by prescribing the flux of fluid at x = 0.
At O(εwRe

1/2), the correction to the Blasius solution in the air satisfies

(û0û1)x + v̂0û1ŷ + v̂1û0ŷ = −p̂1x + û1ŷŷ, 0 = −p̂1ŷ, û1x + v̂1ŷ = 0, (3.10)

subject to

û1(x, 0) =
λ̃(µ− 1)Ĥ0√

x
, v̂1(x, 0) = 0, (3.11)

while at infinity, we require

û1 → 0, p̂1 → 0 as ŷ → ∞. (3.12)

Hence p̂1 = 0, and we typically have to solve for û1, v̂1 numerically, which we do not
pursue here. In the film, the O(εwRe

1/2)-correction to the flow solution is given by

Û1 = µû1ŷ(x, 0)ȳ, V̂1 =
−µû1xŷ(x, 0)ȳ

2

2
, P̂1 = 0, Ĥ1 =

A1x
1/4

A0λ̃
− û1ŷ(x, 0)A0x

3/4

2λ̃
,

(3.13)

where in the O(εwRe
1/2)-form of the shear stress condition, we have used the fact that

the second derivative of the Blasius solution vanishes on the plate, that is û0ŷŷ(x, 0) = 0.

The constant A1 is the O(εwRe
1/2)-correction to the flux of fluid at the plate tip.

3.2. The thermal problem

To leading order, the thermal problem is given by

û0θ̂0x + v̂0θ̂0ŷ =
1

Pr
θ̂0ŷŷ, (3.14)

0 =
ρc

λPr
Θ̂0ȳȳ, (3.15)

such that

Θ̂0(x, 0) = Twall(t̄), θ̂0(x, 0) = Θ̂0(x, Ĥ0), Θ̂0ȳ(x, Ĥ0) = 0, θ̂0 → −1 as ŷ → ∞.
(3.16)

Therefore, it is straightforward to show that the film temperature is constant across the
layer, with

Θ̂0 =

{

β for y = 0, x < x0,

β − (β + α)f(t̄) for y = 0, x > x0.
(3.17)

The leading-order film temperature acts as a Dirichlet condition for the leading-order
problem for air temperature. To solve this problem, we note that if we consider a problem
in which θb satisfies (3.14) subject to

θb(x, 0, t̄) = β, θb → −1 as ŷ → ∞, (3.18)

we can use the Blasius similarity variable, η = ŷ/
√
x, to integrate (3.14) and we deduce

that θb = β − (1 + β)G(η), where

G(η) =

∫ η

0
exp

(

−Pr
2

∫ s

0
F (τ) dτ

)

ds
∫∞

0
exp

(

−Pr
2

∫ s

0
F (τ) dτ

)

ds
. (3.19)

Clearly, θ̂0 = θb is the solution for all 0 < t̄ < tc for x < x0. For x > x0, we write
θ̂0 = θb(x, ŷ)+ θ̃(x, ŷ, t̄) and make use of the Lighthill approximation, which assumes that
the perturbation to the steady-state solution due to the change in the plate temperature
is confined to a sublayer of the thermal boundary layer in which u0 and v0 are well
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approximated by their shear profiles for small ŷ, see Lighthill (1950) and Higuera (1991).
In the Appendix, we show that the Lighthill approximation is reasonable by computing
the full solutions and comparing with the approximation. Thus, the velocity components
are approximated by

û0 ∼ λ̃ŷ√
x
, v̂0 ∼ λ̃ŷ2

4x3/4
, (3.20)

so that

λ̃ŷ√
x
θ̃x +

λ̃ŷ2

4x3/4
θ̃ŷ =

θ̃ŷŷ
Pr

, (3.21)

subject to

θ̃(x, 0, t̄) = −(β + α)f(t̄), θ̃ → 0 as ŷ → ∞. (3.22)

We can solve (3.21)–(3.22) explicitly by seeking a similarity solution of the form θ̃ =
L(ζ, t̄), ζ = ŷ/d(x) and find that

d(x) =

(

4

λ̃Pr

)1/3

x1/4
(

x3/4 − x
3/4
0

)1/3

, (3.23)

L(ζ, t̄) = −(β + α)f (t̄)

(

1− 32/3

Γ(1/3)

∫ ζ

0

e−s3/3 ds

)

. (3.24)

The behaviour of d(x) – which essentially represents the size of the region where the
change to the steady-state temperature profile is appreciable – as x → x+

0 is given by

d(x) ∼
(

3x
1/2
0

λ̃Pr

)1/3

(x− x0)
1/3 + . . . as x → x+

0 . (3.25)

Proceeding to O(εwRe
1/2) in the film, we find that

Θ̂1 =















−λ(1 + β)G′(0)ȳ√
x

for x < x0,
[

−λ(1 + β)G′(0)√
x

+
32/3λ(β + α)f (t̄)

Γ(1/3)d(x)

]

ȳ for x > x0.
(3.26)

Now, since 1/d(x) is singular at the switch-off point, cf. (3.25), clearly the O(εwRe
1/2)-

correction for Θ̂ is singular at x = x0. Therefore, there is an inner region centred around
x = x0 in which the air and film thermal problems are coupled at leading order and the
expressions used for the velocities in the Lighthill approximation have to be amended
to account for the O(εwRe

1/2)-terms in the velocity expansion. This inner region has

horizontal extent of O(ε3wRe
3/2) and thickness O(εw). However, before freezing, the inner

region does not contribute anything significant to the analysis, so we shall forgo looking
at it until §4.3.
Thus, we have described how each fluid changes from the steady state once the plate

cooling is introduced. Specifically, the flow remains unchanged from the Nelson et al.

(1995) steady state discussed in §3.1, while the temperature in each fluid decreases due to
the cooling effect of the plate for x > x0. Due to the nature of our problem configuration,
there is a singularity in the air and film temperature profiles close to the switch-off point
x = x0, which will need further investigation once ice growth begins.
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4. Thin-ice regime

We now move on to discuss the growth of ice after the plate temperature has reached
the freezing temperature, that is t > τtc. The first of the ice growth regimes considered
is the early-stage, where the ice remains much thinner than the film. In particular, we
write

t = τtc + T, (4.1)

and assume that T = O(1). Hence, the ice temperature, Q, on the wall is given by

Q(x, 0, T ) = −(β + α)

(

f ′(tc)T

τ
+

f ′′(tc)T
2

2τ2
+ . . .

)

. (4.2)

The thickness of the ice layer is then determined by a balance of terms in the Stefan
condition, (2.24). Alluding to §3.2, the temperature in the film is driven by the heat flux
from the air and is thus small over the majority of the plate. Hence, the thickness of the
ice is determined by balancing the dominant terms of latent heat, (Pei/Ste)ht, and ice
heat flux, Qy, so that

Pei
Ste

εi ∼
1

τεi
, so that εi ∼

√

Ste

Peiτ
. (4.3)

A key assumption is that ice growth has a leading-order effect on the film flow. Along
most of the plate, we expect the steady-state scalings to apply for the sizes of the flow ve-
locities in the film, so that V ∼ ε2wRe

1/2. Therefore, maintaining a leading-order balance
in the water-ice surface condition (2.11) gives

εi ∼
√

Ste

Peiτ
= ε2wRe

1/2, (4.4)

whereby, since εwRe
1/2 ≪ 1, this assumption also guarantees that the ice is much thinner

than the film.
Even though we do not require any further conditions in this section, note that in our

large-time analysis of §5, the assumption that the ice growth has a leading-order effect
on the film flow enforces that τ = 1/(εwRe

1/2), which we use henceforth. We discuss
whether these assumptions are reasonable in §6.

4.1. Asymptotic structure

The asymptotic structure is pictured in figure 2. Away from the switch-off point in regions
Ia-c upstream (i.e. for x < x0), the air and the film do not undergo any change from
their steady-state solutions at leading order and we expect the scalings of §§3.1–3.2 to
hold there. Furthermore, under the assumptions made on the size of the ice growth and
the thickness of the ice, the air and film should also evolve on the steady-state scales
downstream. In the outer ice region Ic, there is an O(1/τ)-jump in the temperature over
a vertical distance of size εi.
Close to the switch-off point, we expect there to be a slightly different behaviour caused

by the sudden change in morphology due to the presence of the ice. Indeed, as alluded to
in §3.2, our outer analysis in §4.2 breaks down when x−x0 = O(ε3wRe

3/2) and y = O(εw)
in the air, so there is an inner problem to consider on this scale, denoted by regions IIIa-c.
In the inner region, the air and film flows are coupled at leading order. We assume that
ε3wRe

3/2 ≫ εw, so that the inner region still has a long, thin aspect ratio. Therefore,
there is in fact a further ‘inner-inner’ region in which x − x0 ∼ εw and the quasi-steady
Navier-Stokes equations hold. We do not consider the inner-inner region in any detail in
this paper.
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O(1)

O(εw)

O(εi)

x0

O(εw)

Ia

Ib

Ic

IIa

IIb

IIc

IIIa

IIIb

IIIc

Air

Film

O
(

Re−1/2
)O

(

εwRe
1/2
)

O
(

ε3wRe
3/2
)

Figure 2. Asymptotic structure of the switch-off problem for T = O(1) as described in the
text: the outer regions Ia-c, the intermediate regions IIa-c and the inner regions IIIa-c, where a,
b, c correspond to the air, film and ice respectively.

It transpires that the free surface solutions in the inner and outer regions do not match,
so we need an additional intermediate region between the inner and the downstream outer
in which x − x0 = O(εwRe

1/2) and y = O(εw). We denote the air, film and ice parts of
this region by IIa-c respectively. In this region, the flow and temperature solutions are
essentially local forms of the outer solution, but the equation describing the evolution of
the free surface is hyperbolic.

4.2. Outer region

For the sake of brevity we define h ≡ 0 for x < x0. The scalings for the outer regions Ia-c
are given by (3.1)–(3.2), along with the timescale (4.1) and the ice layer scalings

y = ε2wRe
1/2Y, h = ε2wRe

1/2ĥ, Q = εwRe
1/2Q̂; (4.5)

we note in particular that the horizontal coordinates in the air, film and ice regions are
denoted by ŷ, ȳ and Y respectively. After substituting these into (2.4)–(2.25), we return
the same problem as in §3 with τ = 1, which brings in the time derivatives in the leading-
order momentum and energy equations in the air; with the no-slip, no-flux conditions on
the ice surface replaced by

Û + ε3wRe
1/2ĥxV̂ = 0, V̂ = (1− ρ̂) ĥT on ȳ = εwRe

1/2ĥ, (4.6)

and, recalling that τ = 1/εwRe
1/2, the plate temperature condition is given by







Θ̂(x, 0, T ) = β for x < x0,

Q̂(x, 0, T ) = −(β + α)

(

f ′(tc)T + εwRe
1/2 f

′′(tc)T
2

2
+ . . .

)

for x > x0.
(4.7)

Additionally, the energy equation in the ice (2.19) becomes

ε4wRePeiQ̂T = ε4wReQ̂xx + Q̂Y Y , (4.8)

and we also require the temperature and Stefan conditions on the ice surface (2.23)–
(2.24), which are given by

Θ̂(x, εwRe
1/2ĥ, T ) = 0, Q̂(x, ĥ, T ) = 0, (4.9)
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and

ĥT =
(

Q̂Y − ε4wReĥxQ̂x

)∣

∣

∣

Y=ĥ
− 1

λ̂

(

Θ̂ȳ − ε3wRe
1/2ĥxΘ̂x

)∣

∣

∣

ȳ=εwRe
1/2

ĥ
(4.10)

respectively.

4.2.1. Outer flow problem

Treating ĥ as a known quantity, the flow problem decouples from the thermal problem,
as in §3.1. With the exception of the free surface profile, each of the variables is expanded
as an asymptotic series of the form

û = û0 + εwRe
1/2û1 + ε2wReû2 + . . . . (4.11)

For the free surface profile, since the coefficient of ĤT in the kinematic boundary condition
is large (cf. (2.13)), we need to write H as a perturbation to the leading-order steady-
state free surface profile: this is not surprising, since the ice is much thinner than the
film, we do not expect the change to the steady-state film thickness to be order unity.
Hence, we write

Ĥ = A0x
1/4 + εwRe

1/2Ĥ0 + ε2wReĤ1 + . . . . (4.12)

At leading-order, the steady-solution prevails in the air, so that û0, v̂0 and p̂0 are given
by (3.5). In the film, the leading-order flow is still given by (3.9), but with the vertical
component of velocity altered to take account of the ice growth through (4.6), so that

V̂0 =
λ̃µȳ2

4x3/2
+ (1− ρ̂) ĥ0T . (4.13)

Substituting Û0 and V̂0 into the leading-order form of (2.13), integrating and applying
the initial condition given in (3.13), we find that

Ĥ0 = (1− ρ̂) ĥ0 +
A1x

1/4

A0λ̃
− û1ŷ(x, 0)A0x

3/4

2λ̃
. (4.14)

For convenience, we shall define

Hs1(x) =
A1x

1/4

A0λ̃
− û1ŷ(x, 0)A0x

3/4

2λ̃
, (4.15)

henceforth. Therefore, defining Ĥ0−ĥ0 as the leading-order correction to the steady-state
film thickness, we see that the film thickness in the outer region decreases uniformly
according to the amount of fluid lost to the ice layer.

We do not seek to solve the flow problems at O(εwRe
1/2) and O(ε2wRe) in detail, but

for future reference, we do note that the first- and second-order slip conditions felt by
the air layer are given by

û1(x, 0) =
λ̃√
x
(µ− 1)A0x

1/4, û2(x, 0, T ) = û1ŷ(x, 0)A0(µ−1)x1/4+
λ̃√
x
(µ−1)Ĥ0−

λ̃µĥ0√
x

,

(4.16)
and that the first-order correction to the horizontal component of the film velocity is

Û1 = µû1ŷ(x, 0)ȳ −
λ̃µĥ0√

x
. (4.17)
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4.2.2. Outer thermal problem

The leading-order thermal problem is very similar to the before-freezing problem in
§3.2. To leading-order, the film temperature does not vary across the layer, so that

Θ̂0 =

{

β for x < x0,

0 for x > x0.
(4.18)

Therefore, the leading-order air temperature must satisfy

θ̂0T + ubθ̂0x + vbθ̂0ŷ =
θ̂0ŷŷ
Pr

, (4.19)

subject to

θ̂0 = Θ̂0 on ŷ = 0, θ̂0 → −1 as ŷ → ∞, (4.20)

with the initial condition

θ̂0(x, ŷ, 0) =

{

θb(x, ŷ) for x < x0,

θb(x, ŷ) + L (ŷ/d(x), tc) for x > x0.
(4.21)

It is straightforward that to show the initial condition satisfies (4.19) and (4.20) exactly
for all T > 0.
Assuming that ε4wRePei ≪ 1, by (4.8), the leading-order ice temperature profile varies

only linearly across the layer, so that applying (4.7) and (4.9), we find that

Q̂0 = −(β + α)f ′(tc)T

(

1− Y

ĥ0

)

. (4.22)

Hence, using the leading-order form of the Stefan condition, (4.10) along with the initial

condition, ĥ0 = 0, we find that

ĥ0 =
√

(β + α)f ′(tc)T. (4.23)

At O(εwRe
1/2), the correction to the film temperature is driven purely by the heat

flux from the air. We find that

Θ̂1 =















−λ(1 + β)G′(0)ȳ√
x

for x < x0,
(

−λ(1 + β)G′(0)√
x

+
32/3λβ

Γ(1/3)d(x)

)

ȳ for x > x0.
(4.24)

Provided that ε4wRePei ≪ εwRe
1/2, the first-order form of (4.8) is Q̂1Y Y = 0. Hence,

applying the O(εwRe
1/2)-forms of (4.7) and (4.9), the first-order correction to the ice

temperature is given by

Q̂1 =
(β + α)

ĥ0

(

f ′′(tc)T
2

2
− f ′(tc)T ĥ1

ĥ0

)

Y − (β + α)f ′′(tc)T
2

2
. (4.25)

Therefore, the O(εwRe
1/2)-form of the Stefan condition can be used to show that ĥ1

must satisfy

ĥ1 = −λT

2λ̂

(

− (1 + β)G′(0)√
x

+
32/3β

Γ(1/3)d(x)

)

+
f ′′(tc)T

2

6

√

(β + α)

f ′(tc)
, (4.26)

where we have applied the initial condition ĥ1(x, 0) = 0.
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We recall that 1/d(x) is singular as x → x0, so that εwRe
1/2ĥ1 is the same order of

magnitude as ĥ0 when x − x0 = O(ε3wRe
3/2). Therefore, as alluded to in §3.2, there is

an inner region in the neighbourhood of the switch-off point in which the heat flux from
the film determines the leading-order ice shape, which we investigate next.

4.3. Inner region

In the inner region, we scale (2.4)–(2.25) by

x = x0 + ε3wRe
3/2x̄, (4.27)

along with

y = εwȳ, u = εwRe
1/2ū, v =

v̄

εwRe
, p = ε2wRep̄, θ = θ̄, (4.28)

in the air (region IIIa in figure 2);

y = εwȳ, U = εwRe
1/2Ū , V =

V̄

εwRe
, P = ε2wReP̄ , Θ = Θ̄, H = εwH, (4.29)

in the film (region IIIb in figure 2), where H = A0x
1/4 + εwRe

1/2H̄ has been introduced
for notational convenience; and

y = ε2wRe
1/2Y, Q = εwRe

1/2Q̄, h = ε2wRe
1/2h̄ (4.30)

in the ice (region IIIc in figure 2).
The inner region depends on the relative size of

ǫ =
1

ε4wRe
3 . (4.31)

In this paper, we assume that ǫ ≪ 1, i.e. εw ≫ Re−3/4, which is equivalent to saying that
the inner region has a small aspect ratio and thus that the pressure is essentially constant
across the air and film layers. Therefore, the flow model is very similar to the outer region,
although now the air and film problems are coupled at leading order. Clearly, there is a
further ‘inner-inner’ region where the aspect ratio is order unity and the Navier-Stokes
equations apply at leading order. It will become apparent we do not need to consider
this region in detail to resolve the leading-order-outer singularity. Note that we shall also
assume that

1

ε7wRe
4We

≪ 1 (4.32)

throughout this paper in order to neglect surface tension at this stage of the analysis.
Furthermore, note that given the outer solution predicts an O(ε2wRe

1/2)-jump in the
free surface profile at the switch-off point, it is natural to entertain the possibility of
viscous-inviscid interactions occurring as the boundary layer is displaced. In particular,
the inner region scales (4.27)–(4.29) correspond to the lower deck of the classical triple-

deck when εw = O(Re−5/8). This is an interesting limit in its own right, but we do not
wish to concentrate on these interactions here; we assume that the film is much thinner
than the lower deck, so that εw ≪ Re−5/8.
When εw ≪ Re−5/8, the classic triple-deck structure acts as an intermediate region

between the inner and outer regions in which there is no viscous-inviscid interaction
until a lower order than we consider here. This is discussed in detail by Smith (1973),
who considers triple-deck theory over surface irregularities whose length is much greater
than O(Re−3/8L), with thickness of O(Re−5/8L). His analysis shows that the disturbance
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to the Blasius boundary layer flow is small, viscous and pressure-free. In our model, the
protrusion is much thinner thanO(Re−5/8L), so the viscous perturbation to the boundary
layer solution is of an even lower order, hence we can simply match between the inner
and outer regions directly.

4.3.1. Inner flow problem

After expanding variables in asymptotic series of the form ū = ū0 + εwRe
1/2ū1 + . . . ,

where the size of the first-order correction is chosen to match with the upstream flow,
the leading-order-inner flow problem is given by

ūūx̄ + ūv̄ȳ = − p̄x̄ + ūȳȳ, p̄ȳ =0, ūx̄ + v̄ȳ =0,

Ū Ūx̄ + Ū V̄ȳ = − P̄x̄ + Ūȳȳ, P̄ȳ =0, Ūx̄ + V̄ȳ =0, (4.33)

such that

Ū(x̄, 0, T ) = 0, V̄ (x̄, 0, T ) = 0, (4.34)

and

Ū = ū, V̄ = v̄, V̄ =
A0

4x
3/4
0

Ū , P̄ = p̄, Ūȳ = µūȳ on ȳ = A0x
1/4
0 . (4.35)

It is straightforward to show that the appropriate solution matching with the outer flow
up- and downstream is

ū0 =
λ̃√
x0

(

ȳ + (µ− 1)A0x
1/4
0

)

, v̄0 = 0, p̄0 = 0, Ū0 =
λ̃µȳ
√
x0

, V̄0 = 0, P̄0 = 0,

(4.36)
which is exactly the local shear profile of the leading-order-outer solution.
In order to find the first-order correction to the free surface profile, we require Ū1 and

V̄1. At O(εwRe
1/2), the inner region flow problem is given by

λ̃√
x0

(

ȳ + (µ− 1)A0x
1/4
0

)

ū1x̄ +
λ̃v̄1√
x0

= −p̄1x̄ + ū1ȳȳ, (4.37)

0 = −p̄1ȳ, (4.38)

ū1x̄ + v̄1ȳ = 0, (4.39)

λ̃µȳ
√
x0

Ū1x̄ +
λ̃µV̄1√

x0
= −ρP̄1x̄ +

ρ

µ
Ū1ȳȳ, (4.40)

0 = −ρP̄1ȳ, (4.41)

Ū1x̄ + V̄1ȳ = 0, (4.42)

subject to the no-slip, no-flux conditions

Ū1(x̄, 0, T ) = − λ̃µh̄0√
x0

, V̄0(x̄, 0, T ) = 0; (4.43)

the continuity of velocity conditions

ū1

(

x̄,A0x
1/4
0 , T

)

= Ū1

(

x̄,A0x
1/4
0 , T

)

− λ̃(µ− 1)H̄0√
x0

, (4.44)

v̄1

(

x̄,A0x
1/4
0 , T

)

= V̄1(x̄,A0x
1/4
0 , T ); (4.45)



18 M. R. Moore, M. S. Mughal & D. T. Papageorgiou

and the stress conditions

p̄1

(

x̄,A0x
1/4
0 , T

)

= P̄1

(

x̄,A0x
1/4
0 , T

)

, µū1ȳ

(

x̄,A0x
1/4
0 , T

)

= Ū1ȳ

(

x̄,A0x
1/4
0 , T

)

.

(4.46)
The pressure must decay in the far-field, that is

p̄1 → 0 as ȳ → ∞, p̄1, P̄1 → 0 as x̄ → −∞. (4.47)

Upstream, we must match to the oncoming flow from regions Ia-b. In the air, we have

ū1 → u1ŷ(x0, 0)
(

ȳ + (µ− 1)A0x
1/4
0

)

+
(µ− 1)λ̃Hs1(x0)√

x0
, v̄1 = 0 as x̄ → −∞,

(4.48)
while in the film we have

Ū1 = µu1ŷ(x0, 0)ȳ, V̄1 = 0 as x̄ → −∞. (4.49)

If we consider the solution in the main part of the boundary layer in region Ia as ŷ → 0
and x → x0, we deduce that the first-order-inner air velocity must satisfy

ū1 → u1ŷ(x0, 0)
(

ȳ + (µ− 1)A0x
1/4
0

)

+
(µ− 1)λ̃H̄0√

x0
− λ̃µh̄0√

x0
, v̄1 → 0 (4.50)

as ȳ → ∞.
Therefore, the O(εwRe

1/2)-inner solution is

ū1 = u1ŷ(x0, 0)
(

ȳ + (µ− 1)A0x
1/4
0

)

+
(µ− 1)λ̃H̄0√

x0
− λ̃µh̄0√

x0
, (4.51)

v̄1 = − λ̃µ√
x0

(

ȳ + (µ− 1)A0x
1/4
0

)

(

(µ− 1)H̄0x̄ − µh̄0x̄

)

, (4.52)

Ū1 = µu1ŷ(x0, 0)ȳ −
λ̃µh̄0√

x0

, (4.53)

V̄1 =
λ̃µh̄0x̄ȳ√

x0

. (4.54)

Hence using the O(εwRe
1/2)-form of the kinematic boundary condition, we find that

H̄0 = h̄0 +Hs1(x0), (4.55)

where the constant of integration is chosen to match with the incoming free surface as
x̄ → −∞. Note that the free surface correction simply tells us that, in the inner region,
the film moves up over the ice that forms, without losing mass (which is a lower order
effect), so its thickness remains constant. This will present a problem when matching
with the outer region.

4.3.2. Thermal problem in regions IIIa-c

The leading-order thermal problem is given by

λ̃
√
x0

(

ȳ + (µ− 1)A0x
1/4
0

)

θ̄0x̄ =
θ̄0ȳȳ
Pr

, (4.56)

λ̃µȳ
√
x0

Θ̄0x̄ =
ρc

λPr
Θ̄0ȳȳ, (4.57)

Q̄0Y Y = 0, (4.58)
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subject to

Θ̄0(x̄, 0, T ) =

{

β for x̄ < 0,

0 for x̄ > 0,
(4.59)

Q̄0(x̄, 0, T ) = −(β + α)f ′(tc)T, (4.60)

Q̄0(x̄, h̄0, T ) = 0, (4.61)

θ̄0(x̄,A0x
1/4
0 , T ) = Θ̄0(x̄,A0x

1/4
0 , T ), (4.62)

λθ̄0ȳ(x̄,A0x
1/4
0 , T ) = Θ̄0ȳ(x̄,A0x

1/4
0 , T ). (4.63)

In order to match with the thermal solutions in the outer region upstream in regions Ia-b
and to region Ia for large ȳ, we also require

θ̄0, Θ̄0 → β as x̄ → −∞, θ̄0 → β as ȳ → ∞. (4.64)

The second of these conditions follows from the similarity form of the outer solution: if
we fix x− x0 = O(ε3wRe

3/2) and set y = (εwRe
1/2)ky†, for 0 < k < 1, the integral term

in (3.24) vanishes, so that θ̄0 ∼ β.
It is straightforward to integrate (4.58), so that after applying (4.60)–(4.61), we find

that

Q̄0 = −(β + α)f ′(tc)T

(

1− Y

h̄0

)

, (4.65)

which is unchanged from the leading-order-outer solution, (4.22). In general, we must
tackle (4.56)–(4.57), (4.59), (4.62)–(4.64) numerically, but first we note that the problem
is independent of time, so we can use (4.65) along with the leading-order form of the
Stefan condition to find that

h̄0 =

(

− 1

λ̂
Θ̄0ȳ(x̄, 0) +

√

1

λ̂2
Θ̄0ȳ(x̄, 0)2 + 4(β + α)f ′(tc)

)

T

2
, (4.66)

where we have applied the initial condition h̄0(x̄, 0) = 0. Note that, provided that Θ̄0ȳ →
0 as x̄ → ∞, clearly this matches with the outer solution, (4.23), in the far-field.
In order to find Θ̄0, we return to (4.56)–(4.57), (4.59), (4.62)–(4.64). We note that it

is possible to use Fourier transforms to find a solution in Fourier-space in terms of Airy
functions, but since we would need to invert the resulting solution numerically, it is easier
to simply compute solutions to the partial differential equations directly. The equations
are parabolic, with linear coefficients, which can be solved numerically at each value of
x̄ as a tridiagonal system in ȳ. To simplify the computation, we first make the scalings

x̄ = λ̃PrA3
0x

1/4
0 x̌, ȳ = A0x

1/4
0 y̌, θ̄0 = βθ̌, Θ̄0 = βΘ̌, (4.67)

which reduces the number of parameters in the system to three: µ, λ and κ = µλ/(ρc).
We truncate the computational domain so that we solve on the rectangle [−N1, N2]×

[0,M ], where M , N1 are taken to be suitably large in order to impose the far-field
conditions. The most significant changes in behaviour happen close to x̌ = 0, close to the
plate and close to the air-water interface. Therefore, we use a non-uniform grid whose
points are clustered in the vicinity of these regions. Starting from −N1, we solve the
problem successively at each station in x̌, where the derivatives are approximated by a
centred finite-difference scheme. The leading-order-inner thermal problem can then be
written as a large, sparse tridiagonal system that is readily inverted.
We consider the results of this code for N1 = 10, N2 = 50, M = 50, κ = 2/3,

λ = µ = 1/2. The distances between neighbouring points vary between 10−3 and 10−1.
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Figure 3. (Colour online.) a) The film temperature on the air-water interface in the inner region
and the outer solution asymptote (red crosses) for the parameters given in the text. b) The ice
surface profile in the inner region and its asymptote according to the outer solution (red crosses)
for the parameters given in the text.

In figure 3a, we have plotted the film temperature on the free surface, Θ̌(x̌, 1), along with
the first term of the outer solution for the film temperature expanded in inner variables,
viz.

β−1Θ0 ∼ 31/3λ

Γ(1/3)x̌1/3
as x− x0 = ε3wRe

3/2
(

λ̃PrA3
0x

1/4
0 x̌

)

→ 0 (4.68)

calculated from (4.24). We only present the solution for x̌ > 0 since Θ̌0 is identically 1 for
x̌ < 0. As we can see, the temperature rapidly decays from the steady-state temperature
towards the outer solution as x̌ gets large. It is clear that Θ̌0x̌ is discontinuous at the
switch-off point, but this is something that can readily be regularised by making the
plate temperature continuous or by considering the ‘inner-inner’ region in which the full
Navier-Stokes equations hold.
Given a heating function f(·), we use the numerical solution for Θ̌0 to solve for the

leading-order-inner ice profile using the analytic solution (4.66). We take

f(s) = 1− e−s, (4.69)

which gives tc = − log(α/(β + α)). For α = 5, β = 1.4, A0x
1/4
0 = 1 and λ̂ = 0.714, the

ice profile at time T = 1 is plotted against x̌ in figure 3b, along with the first term of the
inner expansion of the outer ice profile solution (4.23), (4.26), viz.:

ĥ ∼
√

(β + α)f ′(tc)T − 31/3βλT

2λ̂Γ(1/3)A0x
1/4
0 x̌1/3

as x− x0 = ε3wRe
3/2
(

λ̃PrA3
0x

1/4
0 x̌

)

→ 0.

(4.70)
We see very good agreement between the asymptotic results and analytic solutions,
which indicates that the numerical scheme is convergent. What is also clear, is the sharp
front the ice forms as x̄ → 0+, forming a step-like profile. This could lead to interesting
interactions with the air flow for larger εw– recall that the free surface correction is simply
given by the ice profile, cf. (4.55).
We noted previously that the solution for the correction to the free surface profile in

the inner region suggests that no mass is lost to the ice layer, which means that H̄1

cannot match with the outer solution as x̄ → ∞. This means that we require a further
intermediate region in order to match between the inner and outer free surface profiles,
cf. regions IIa-c in figure 2.
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4.4. Intermediate region

In the inner region, the kinematic boundary condition on the free surface is dominated
by the nonlinear uHx term, while in the outer region, it is dominated by the Ht term.
In the intermediate region, we therefore expect to retain the full kinematic boundary
condition, which should allow a solution to be found that matches with both the inner
and outer regions. The appropriate horizontal scale in (2.4)–(2.25) is

x = x0 + εwRe
1/2x̊. (4.71)

Note that we are only interested in the intermediate region for x̊ > 0. Furthermore, in
the air (IIa in figure 2), we scale

y = εwȳ, u = εwRe
1/2ů, v = εwv̊, p = p̊, θ = θ̊; (4.72)

and in the film (IIb in figure 2), we set

y = εwȳ, U = εwRe
1/2Ů , V = εwV̊ , P = P̊ , Θ = Θ̊, H = εwH̊, (4.73)

where H̊ = A0(x0 + εwRe
1/2x̊)1/4 + εwRe

1/2H̊ . In the ice (IIc in figure 2), we set

y = ε2wRe
1/2Y, Q = εwRe

1/2Q̊, h = ε2wRe
1/2̊h. (4.74)

The method of solution is very similar to the inner region, so we omit details here.
We expand the variables in asymptotic series of the form ů = ů0 + εwRe

1/2ů1 + . . . . At
leading order, we find that the flow solution is again the local shear profile of the outer
solution:

ů0 =
λ̃√
x0

(

ȳ + (µ− 1)A0x
1/4
0

)

, v̊0 = 0, p̊0 = 0, Ů0 =
λ̃µȳ√
x0

, V̊0 = 0, P̊0 = 0.

(4.75)

At O(εwRe
1/2), we have

ů1 =

(

−λ̃x̊

2x
3/2
0

+ u1ŷ(x0, 0)

)

ȳ − λ̃(µ− 1)A0x̊

4x
5/4
0

+(µ− 1)A0x
1/4
0 u1ŷ(x0, 0) +

λ̃(µ− 1)H̊0√
x0

− λ̃µ̊h0√
x0

(4.76)

v̊1 =
λ̃

4x
3/2
0

(

ȳ2 −A2
0

√
x0

)

+
λ̃µȳ2

4x
3/2
0

+ (1 − ρ̂)̊h0T

+
λ̃√
x0

(

(µ− 1)A0

4x0
− (µ− 1)H̊0x̊ + µ̊h0x̊

)

(

ȳ −A0x
1/4
0

)

, (4.77)

Ů1 = µ

(

−λ̃x̊

2x
3/2
0

+ u1ŷ(x0, 0)

)

ȳ − λ̃µ̊h0√
x0

, (4.78)

V̊1 =
λ̃µȳ2

4x
3/2
0

+ (1− ρ̂)̊h0T , (4.79)

along with p̊1 = P̊1 = 0.
Therefore, using the O(εwRe

1/2)-form of the kinematic boundary condition, we find
that

H̊0T +
λ̃µA0

x
1/4
0

H̊x̊ = (1− ρ̂)̊h0T . (4.80)
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We require an initial condition and a boundary condition to solve this hyperbolic problem.
Initially, the steady-state solution prevails, so that

H̊0(̊x, 0) = Hs1(x0) for x̊ > 0. (4.81)

Furthermore, matching with the far-field behaviour of the inner solution, the boundary
condition we must prescribe is given by

H̊0(0, T ) =
√

(β + α)f ′(tc)T +Hs1(x0) for T > 0. (4.82)

We require the leading-order ice shape in the intermediate region to solve (4.80). On
the horizontal lengthscale of the inner region, however, our outer solution is still valid,
thus the thermal region is completely passive in the intermediate region at leading order,
whereby

θ̊0 = 0, Θ̊0 = 0, Q̊0 = −(β + α)f ′(tc)T

(

1− Y

h̊0

)

, h̊0 =
√

(β + α)f ′(tc)T. (4.83)

Hence, we can solve (4.80)–(4.82) using the method of characteristics, finding that

H̊0 =







(1− ρ̂)
√

(β + α)f ′(tc)T +Hs1(x0) for x̊ > ζT, T > 0,
√

(β + α)f ′(tc)T − ρ̂
√

(β + α)f ′(tc)x̊

ζ
+Hs1(x0) for 0 < x̊ 6 ζT, T > 0,

(4.84)

where ζ = λ̃µA0x
−1/4
0 . By fixing T and letting x̊ → ∞, it is clear that (4.84) matches

with (4.23) in the far-field, while it must match with the inner solution due to our choice
of boundary condition (4.82).
Clearly, we see that the solution is continuous in x̊, but its slope is not continuous.

Differentiating (4.84), we see that

H̊0x̊ =







0 for x̊ > ζT, T > 0,

− ρ̂
√

(β + α)f ′(tc)

ζ
for 0 < x̊ 6 ζT, T > 0,

(4.85)

so that a slope discontinuity propagates along the characteristic emanating from the
switch-off point at T = 0. It is possible we can remove this slope discontinuity by con-
sidering the problem at even earlier timescales or by introducing further physical effects,
but we do not pursue this any further here.
Perhaps more importantly, if we let T and x̊ become large simultaneously – specifically

when T, x̊ = O(1/(εwRe
1/2)) – we see that the slope discontinuity moves into the outer

region, so that in the large-time problem that we now move on to consider, we expect
the outer free surface to be more complex than that which we saw in §4.2, where the free
surface was perturbed simply by the loss of mass into the ice region.

5. Large-time solution

Now let us suppose that t = τ(tc + t̄), so that the temperature jump across the ice
layer is O(1). The dimensionless Stefan condition, (2.24), tells us that the ice thickness
on this timescale is

[h] ∼
√

Steτ

Pei
(5.1)

which is O(τ) larger than in §4. Hence, the ratio of the ice to film thickness is O(τ)
larger in this region. However, the flux condition on the film velocity is the same order
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of magnitude, since both h and t are scaled with τ . Therefore, assuming that the ice is
at most the same thickness as the film, we take

1

εw

√

Steτ

Pei
= O(1), (5.2)

which, combined with (4.4) gives τ = 1/(εwRe
1/2) as we stated a priori in §4.

5.1. Asymptotic structure

The asymptotic structure is simpler in the large-time limit. Upstream of the switch-off
point, nothing has changed, and the steady-state solution still holds. Furthermore, the
steady-state scalings still apply in the outer region downstream, although we now expect
O(1)-perturbations in the free surface profile due to the presence of the ice. As in the
early-time model, we denote the outer air, film and ice regions by Ia-c.
Therefore, akin to §4.2, we shall find that the outer thermal solution is singular when

x − x0 = O(ε3wRe
3/2), so that we require an inner region about the switch-off point. As

in the early-time model, we denote the inner air, film and ice regions by IIIa-c. We shall
be able to match between these directly when t = O(1/(εwRe

1/2)), so the intermediate
region is not necessary. Hence the schematic in figure 2 still applies, except regions IIa-c
are no longer the result of a formal asymptotic solution.

5.2. Outer region

The outer region (Ia-c in figure 2) scales are again given by (3.1)–(3.2) along with the
ice scales

y = εwȳ, Q = Q̂, h = εwĥ. (5.3)

We expand all the variables in the outer region in asymptotic series of the form û =
û0 + εwRe

1/2û1+ . . . . At leading-order, it is unsurprising that (3.5) still holds in the air,
while the leading-order film flow is modified slightly due to the ice, so that

Û0 =
λ̃µ√
x

(

ȳ − ĥ0

)

, V̂0 =
λ̃µ

4x3/2

(

ȳ − ĥ0

)

+
λ̃µĥ0x√

x

(

ȳ − ĥ0

)

+ (1− ρ̂)ĥ0t̄, P0 = 0.

(5.4)
Hence, using the kinematic condition, the free surface must satisfy

(

Ĥ0 − ĥ0

)

t̄
+

(

λ̃µ(Ĥ0 − ĥ0)
2

2
√
x

)

x

= −ρ̂ĥ0t̄. (5.5)

We shall talk more about solving this equation after considering the thermal problem.
The leading-order thermal problem is also very similar to §4.2. The film temperature

does not vary across the layer and is given by (4.18), while the air temperature problem
is the steady equivalent of (4.19)–(4.20), so the solution is given by (4.21). The ice
temperature satisfies

Q̂0ȳȳ = 0, Q̂0(x, ĥ0, t̄) = 0, Q̂0(x, 0, t̄) = β − (β + α)f(tc + t̄), (5.6)

whereby

Q̂0 = (β − (β + α)f(tc + t̄))

(

1− ȳ

ĥ0

)

. (5.7)

Therefore, the leading-order-outer ice profile is found from the Stefan condition to be

ĥ0 =

(

−2

∫ t̄

0

β − (β + α)f(tc + s) ds

)1/2

, (5.8)
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which clearly matches with (4.23) as t̄ → 0.

Since the leading-order air temperature is given by (4.21), the O(εwRe
1/2)-correction to

the film temperature is given by (4.24) with ȳ replaced by (ȳ−ĥ0). Thus, the O(εwRe
1/2)-

correction to the ice profile is given by

ĥ1 =
−λ

λ̂ĥ0(t̄)

(

− (1 + β)G′(0)√
x

+
32/3β

Γ(1/3)d(x)

)∫ t̄

0

ĥ0(s) ds (5.9)

Wherefore, since d(x) is singular at the switch-off point, there is a nonuniformity in the

asymptotic expansions of Θ̂ and ĥ as x− x0 → 0. In particular, when x− x0 = ε3wRe
3/2

and ŷ = O(εwRe
1/2), the air and film heat fluxes across the free surface balance at

leading-order. Hence, an inner region exists around the switch-off point.
We will not go into the inner region in detail here, since the analysis is essentially the

same as the thin-ice case presented in §4.3. The important information is the far-field
behaviour of the inner free surface, which is readily found to be

H̄0 ∼ A0x
1/4
0 + ĥ0 as x̄ → ∞, (5.10)

where H̄0 is the leading-order-inner free surface profile and x̄ is the horizontal inner
coordinate. We can use this condition to apply a boundary condition at x = x0 on (5.5).

5.3. Free surface equation

We now return to the evolution equation for the free surface profile in the leading-order-
outer problem. Recall that

(

Ĥ0 − ĥ0

)

t̄
+







λ̃µ
(

Ĥ0 − ĥ0

)2

2
√
x







x

=
−ρ̂

˙̂
h0

ĥ0

(5.11)

From the leading-order-inner solution, the appropriate boundary condition to apply at
x = x0 is

Ĥ0(x0, t̄) = A0x
1/4
0 + ĥ0. (5.12)

If we consider what happens as T → ∞ in §4.4, it transpires that the appropriate initial
condition is

Ĥ0 ∼







A0x
1/4 +

√

(β + α)f ′(tc)t̄−
ρ̂
√

(β + α)f ′(tc)(x− x0)

ζ
for x0 < x < ζt̄+ x0,

A0x
1/4 + (1 − ρ̂)

√

(β + α)f ′(tc)t̄ for x > ζt̄+ x0

(5.13)
as t̄ → 0.
We need to solve (5.11)–(5.13) numerically. We pick an initial time station, t0 ≪ 1,

and march the problem forward in time using a Lax-Wendroff scheme with a Superbee
flux limiter, see Sweby (1984). The flux limiter uses a Lax-Wendroff scheme away from
any rapid changes in H̄0 and an upwind scheme close to these regions of rapid change.
The flux limiter should capture any rapid changes in height in the free surface that may
arise due to the non-smooth initial data we supply.
With f chosen as in (4.69), we plot the thickness of the ice film, Ĥ0 − ĥ0, at various

times and for various values of α in figure 4. Changing α essentially dictates how fast the
ice grows through the ice heat flux in the Stefan condition, cf. (5.8). The initial time is
chosen to be t0 = 0.01, with the timestep taken to be 10−5. The switch-off point is taken
to be x0 = 2, and the computational domain extends to x = 22 with space steps of size
10−3.
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Figure 4. The film thickness at various times for: a) α = 1/7; b) α = 1/2; c) α = 1.

In figure 4a, α = 1/7, which represents relatively slow ice growth. The discontinuity in
the slope of the free surface clearly moves downstream and accentuates as time increases,
eventually steepening into what appears to be a shock. The magnitude of the jump across
the discontinuity also grows, until eventually the thickness of the water film vanishes in
finite time, at t̄ = 8.2. The discontinuity persists because the fluid in the inner region
does not lose mass to the ice layer at leading order, so it is imposing the steady state
profile on the film thickness. Downstream of the discontinuity, the mass of water in the
film is being rapidly reduced by freezing. Even for this relatively small value of α, there
is no way that the downstream film can be replenished quickly enough to prevent the
film rupturing. If we increase α further, see figure 4b for α = 1/2 and figure 4c for α = 1,
rupture of the liquid film happens more rapidly, at t̄ = 2.82 and t̄ = 1.73 respectively.
Furthermore, the rupture point is closer to the switch-off point.
We investigate the time, t̄d, and location, x0+xd, of rupture in figure 5 for 0.05 < α < 5.

As expected, increasing the strength of the heat flux in the ice layer speeds up the
rupturing process, whilst also causing it to occur closer to the switch-off point, x0 = 2.
Hence, we see that for large time, even when the plate temperature is only just below

freezing, we expect to see rupture of the liquid film in finite time. This is in contrast to
Tsao & Rothmayer (2002), whose coupled model for icing on an arbitrary airfoil shape
does not see any rupture of the liquid film without accounting for local effects, such as the
Gibbs-Thomson relationship between the ice-surface curvature and the freezing tempera-
ture. We see rupture here because of the competition between the incoming steady-state
flux from upstream and the loss-of-mass to the ice layer in the film downstream. Note
that our model is limited in the same sense as Nelson et al. (1995). If we allowed the film
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Figure 5. Plot of the time (left) and location (right) of rupture of the liquid film as a function
of the ice heat flux strength, α.

to be replenished by a droplet influx at the free surface, we might expect a delay of – or
even a prevention of – rupture. This needs to be investigated in more detail.
Since the film is thinning underneath the steepening free surface, our assumption that

the ice and film are of equal thickness breaks down. Moreover, the region about the shock
where there is a large jump in the free surface height has a short horizontal lengthscale (cf.
figure 4). Therefore, close to the shock we expect our model to no longer be applicable.
The local solution may influence the ice growth close to the shock. We do not speculate
on this local problem any further here.
The question of what happens after this film rupture occurs is also an open one. There

is a large bulk of fluid upstream of the rupture, which is still freezing. We postulate that
this will cause a build up of ice upstream of the rupture, close the switch-off point. This
will, in turn, cause the film to be held up and accentuate the ice growth. The ice should
eventually grow to a significant enough size to induce viscous-inviscid interaction in the
air and a resultant change in aerodynamics. Such a problem is likely to be very difficult
to pursue either analytically or numerically, since the film terminates on the ice.

6. Discussion and summary

6.1. Applicability of the model

We have made several assumptions in our model, the most important of which are

εwRe
1/2 ≪ 1, εw ≪ Re−5/8, εw ≫ Re−3/4,

Ste

Pei
= O(ε3wRe

1/2). (6.1)

The first of these conditions demands that the film be much thinner than the aerody-
namic boundary layer, the second precludes the possibility of viscous-inviscid interactions
developing in the steady-state regime and the inner region, the third allows us to assume
that the inner region in §4.3 has a long, thin aspect ratio, and the final condition leads to
the ice growth having a leading-order influence on the film velocity profile. The assump-
tion that the film is thinner than the triple-deck limit is stronger than the assumption
that the film lies deep inside the aerodynamic boundary layer.
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Parameter Value Parameter Value
L 1 m λa 2.32× 10−2 Js−1m−1K−1

U∞ 2.5× 102 ms−1 λi 2.18 Js−1m−1K−1

ρa 1.349 kgm−3 λw 0.53 Js−1m−1K−1

ρi 9.17× 102 kgm−3 ca 103 Jkg−1K−1

ρw 9.98× 102 kgm−3 ci 2× 103 Jkg−1K−1

µa 1.61 × 10−5 kgm−1s−1 cw 4.25× 103 Jkg−1K−1

µw 3× 10−3 kgm−1s−1 Tf − T∞ 10 K
σ 7.7× 10−2 Nm−1

L 2.84× 106 Jkg−1

Table 1. Example values of some of the key parameters in the model, taken from a high-seed
aerodynamic flow in which the free-stream temperature is lower than but close to the freezing
temperature. The data for supercooled water is taken from Hare & Sorensen (1987), Holten
et al. (2012), Biddle et al. (2013), Hrubý et al. (2014) and Dehaoui et al. (2015).

We have also neglected surface tension throughout our analysis. It is at its most relevant
in the inner region, so that our assumption of small surface tension is equivalent to

1

ε7wRe
4We

≪ 1. (6.2)

It seems pertinent to check whether these assumptions are reasonable. We consider a
generic high-speed air flow past a flat plate and without loss of generality assume that
the external air flow is supercooled, i.e. colder than the freezing temperature of water.
We have assumed that the steady-state plate temperature is warm enough to prevent the
water from freezing at any point within the film. We summarise the parameters we use
for our example in table 1.
Using these parameters,

Re ∼ 2.09× 107, Pei ∼ 2.1× 108, Ste = 7× 10−3, We = 1.1× 106 (6.3)

Therefore, the restrictions on the film thickness are

3.23× 10−6 ≪ ℓw ≪ 2.66× 10−5, (6.4)

giving a range of film thicknesses over which the analysis is applicable. For the parameters
in table 1, we require the film to be approximately 20µm thick. At larger Reynolds
numbers, naturally, the range is wider, allowing for thicker films. Rothmayer & Tsao
(2000) note that typical supercooled droplets impacting an airfoil surface can reasonably
be expected to form surface films that are 10–40µm in thickness, so it is encouraging
that (6.4) overlaps this range.
The condition on the ice growth and thickness, i.e. the fourth condition in (6.1), requires

that the film thickness approximated by

ℓw ∼
(

Ste

Re1/2Pei

)1/3

, (6.5)

lie in the range (6.4). Using the values in (6.3) we find that ℓw ∼ 1.01 × 10−5, which is
indeed within the bounds of (6.4). Hence our assumptions on the ice growth rate and
thickness, as well as the resulting asymptotic structure outlined in §4.1 and §5.1, are
reasonable.
Finally, we look at the assumption of small surface tension. Using (6.2)–(6.3), we can
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neglect surface tension provided that

ℓw ≫ 8.97× 10−6, (6.6)

which suggests that surface tension may be important in the inner region. However, as
in general ρ ≪ 1, our analysis will hold even if surface tension has a leading-order effect
on the film pressure in the inner region.
In general, the range of acceptable film thicknesses is relatively small, so we expect one

of two situations to arise in practice. For ℓw much larger than the range (6.4), we expect
triple-deck effects to play a significant role in the model, even when the ice layer is thin.
Timoshin (1997) explicitly considers this limit for the steady-state problem without icing
and shows that the solution given in §3.1 is unstable to small disturbances. There are
both interfacial and Tollmien-Schlichting waves, and, in particular, the film enhances the
Tollmien-Schlichting disturbances. Therefore, the perturbation to the film flow due to ice
growth in our model could cause instabilities to arise if ℓw is sufficiently large. Moreover,
in this regime, the inner region is exactly the same size as the lower-deck, making the
problem highly nonlinear and much less tractable.
For ℓw much smaller than the range (6.4), the aspect-ratio of the inner region can no

longer be assumed to be large, so that the full (steady) Navier-Stokes equations must
be solved in the inner region. Naturally such a problem will be extremely expensive
computationally.
As discussed in §2, our assumptions that ρ, µ and λ are order unity are not strictly

true for water-air systems – indeed, by table 1, ρ ∼ 1.4 × 10−3, µ = 5.4 × 10−3 and
λ ∼ 4.38× 10−2. We briefly assess how we can adapt our model to accommodate this.
In order to incorporate the small viscosity ratio into the problem, we would choose

µεwRe
1/2 as the film velocity scale in order to balance the shear stress on the air-water

interface. This would change the slip felt by the first-order correction to the Blasius
solution (equivalent to just setting µ = 0 in (4.16)) and, moreover, decouple the air and
film in the inner region. There would also be slight changes to the asymptotic expansions
of the other variables in §4 to account for µ ≪ 1: for example the free surface profile in
§4.2 would have an expansion of the form

Ĥ = A0x
1/4 + εwRe

1/2Ĥs1(x) + · · ·+ µεwRe
1/2Ĥ1 + . . . . (6.7)

Furthermore, the appropriate timescale would now be τ = 1/(µεwRe
1/2). However, the

general structure and analysis of what we have seen in this paper would remain the same.
The small density ratio, ρ, has no major effect on our analysis, other than to diminish

the role of surface tension in the inner region. The pressure terms in the inner region are
O(ρ), compared to the viscous term, which is of O(ρ/µ). Hence the pressure term, and
therefore surface tension, has a lower-order effect on the film flow.
To consider a small thermal conductivity ratio, we can simply expand our derived ex-

pressions in asymptotic series as λ → 0 under appropriate restrictions on the comparative
size of λ and εwRe

1/2.
We have also neglected several physical effects in this paper. The exclusion of gravity

and viscous dissipation in the two fluids was for a matter of convenience; these effects
could readily be brought back into the model. However, perhaps the boldest assumption
made in the derivation was that the flow parameters are independent of the fluid tem-
perature. In aircraft icing conditions, the external air flow is typically subzero. The plate
temperature, which plays the role of an anti-icing heating element, is typically very high,
since these elements often make use of the bleed heat from the aircraft engines. Therefore,
due to this large range of temperatures, we might expect there to be significant variation
in the fluid properties. These considerations will form part of future work.
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6.2. Summary

In this paper, we have modelled the freezing of a thin film situated within an aerodynamic
boundary layer due to the loss of heating on part of a flat plate. Throughout, we have
assumed that the liquid film is much thinner than the air boundary layer thickness. We
systematically derived models for the behaviour of the flow before and after freezing.

Prior to freezing, the flow is steady, as described by the work of Nelson et al. (1995)
and Timoshin (1997). The thermal problem is driven by the changing plate boundary
condition. We looked at a specific case where the plate temperature cools sufficiently
slowly that the thermal problem is quasi-steady, with time only entering through the
boundary condition. Due to the change in film temperature, a sublayer develops in the
air thermal boundary layer in which the temperature changes from the steady profile to
the reduced film temperature. We used the Lighthill approximation on the flow variables
to solve for the temperature in this sublayer analytically.

Once the plate temperature reaches the freezing temperature at time t = tc, ice begins
to form on the plate. We assumed throughout that the ice growth rate has a leading-order
effect on the film velocity profile. We outlined two temporal regimes. When t−tc = O(1),
the ice layer is thin and the temperature jump across the ice is small. Since the ice is so
thin, the film thickness only changes by a small amount from its steady solution. In the
second temporal regime, when t − tc = O(1/(εwRe

1/2)), the ice layer is comparable to
the film in thickness, which causes a leading-order variation to the steady-state solution.

When t− tc = O(1), there are three distinct asymptotic regions: an outer region where
the length and velocity scales are the same as the steady-state problem; an inner region
close to the switch-off point where the air and film heat fluxes balance on the free surface;
and an intermediate region in which the free surface profile can be matched between the
inner and outer solutions.

Upstream of the switch-off point, the outer flow is unchanged from the steady solution.
In the outer region downstream of the switch-off point, since the film is much thinner
than the air boundary layer, ice growth is driven purely by the heat flux from the ice
layer. Hence, the height of the ice layer depends purely on the applied temperature on
the plate: if the applied temperature is uniform along the plate, ice growth is uniform
along the plate. Therefore, the outer region sees the ice layer as a small step on the plate.
In the regime in which the film is thinner than the classical lower-deck scale, this step is
not enough to trigger viscous-inviscid interaction at leading-order. In the inner region,
the flow solution is simply given by the local shear profile of the boundary layer solution,
while the thermal problem is straightforward to solve numerically. For our specific plate
temperature profile, we showed that the ice growth rate in the inner region is proportional
to t − tc, with an x-dependence coming through the film heat flux evaluated on the ice
surface.

The inner and outer solutions for the film thickness are matched via an intermediate
region in which there is a full balance in the kinematic equation. The free surface is con-
tinuous, but not smooth, with a slope discontinuity propagating along the characteristic
that emanates from the switch-off point at t = tc. Upstream of the slope discontinu-
ity, the free surface profile is driven by the steady-state flux, while downstream the free
surface is driven by the mass loss due to freezing.

When t− tc = O(1/(εwRe
1/2)), the characteristic along which this slope discontinuity

propagates enters the outer region. Furthermore, on this time scale, the ice thickness
is the same order of magnitude as the film. We now must solve a nonlinear hyperbolic
equation in the outer region for the film thickness. Matching with the small-time solution
gives an initial profile that is continuous but not smooth. The slope discontinuity in the
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free surface is accentuated by the nonlinearity and eventually leads to shock formation.
We solved the equation numerically and showed that the film can rupture in finite time.
The location and speed of rupture depend strongly on the size of the applied temperature
at the wall.
Naturally, since the film thins rapidly before rupture, our assumption that its thickness

is of the same order of magnitude as the ice breaks down. While we have not looked in
detail at what happens when this assumption breaks down, it is interesting to postulate
on possible behaviours. There is a large bulk of liquid upstream of the touchdown, while
downstream the film is much thinner, and is freezing rapidly. It seems likely that a bias
toward ice growth will form upstream of film rupture, causing an ice hump to develop
close to the switch-off point. This is akin to the ice ‘horns’ seen in runback flow on aircraft.
In conditions when the surrounding air has a high liquid water content and is close to
the freezing temperature, not all of the film freezes on the aircraft elements. Some water
flows aft along the elements, with a localised thickening of the ice layer forming ‘horned’
or ‘beaked’ ice shapes. Whether or not we see this in our model after rupture remains to
be studied.
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Appendix A. Justification for the Lighthill approximation

Making no assumptions about the velocity profiles, the leading-order-outer problem
for θ̃ in §3.2 for x > x0 is

ub(x, ŷ)θ̃x + vb(x, ŷ)θ̃ŷ =
1

Pr
θ̃ŷŷ, (A 1)

θ̃(x, 0, t̄) = −(β + α)f(t̄), (A 2)

θ̃ → 0 as ŷ → ∞, (A 3)

θ̃(0, 0, t̄) = 0. (A 4)

If we write θ̃ = θ̃lh + θ†, where θ̃lh = L(ζ, t̃) is the Lighthill solution found in §3.2, the
correction θ† satisfies the parabolic problem

ubθ
†
x + vbθ

†
ŷ =

θ†ŷŷ
Pr

− 32/3(β + α)f(t̄)e−ŷ3/d(x)3/3

Γ(1/3)d(x)
×

(

vb −
λ̃ŷ2

4x3/2
− yd′(x)(ub − λ̃ŷ/

√
x)

d(x)

)

(A 5)

θ†(x, 0, t̄) = 0, (A 6)

θ† → 0 as ŷ → ∞, (A 7)

θ†(0, 0, t̄) = 0. (A 8)

After truncating the domain in ŷ by choosing a suitably large value at which to apply
the far-field condition, say ŷ = N , we can solve this problem numerically. Since time is
a parameter in the problem, it is sufficient to solve it at one time instant only. We select
t̄ = tc/3 without loss of generality. Moreover, the problem has homogeneous boundary



Ice formation within a thin film flowing over a flat plate 31

Figure 6. (Colour online.) Numerical solution of (A 5)–(A 8). This contour plot depicts the
difference between the full solution and the Lighthill approximation. Clearly, this difference is
very small, suggesting that the approximation is valid.

conditions, so it is relatively easy to solve by marching upstream from x = x0, solving a
tridiagonal system in ŷ for each value of x. In figure 6 we plot the contours of constant
θ† when the heating condition is given by (4.69). In this simulation, α = 5, β = 1.4,
Pr = 1, N = 20 and we have marched from x = x0 = 4 up to x = 20. The grid
is uniform with ∆x = 10−2. Clearly the difference between the full solution and the
Lighthill approximation is very small, even for ŷ = O(1). Hence, the approximation is
excellent.
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